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The collective motion of microswimmers in suspensions induce patterns of vortices on scales that are
much larger than the characteristic size of a microswimmer, attaining a state called bacterial turbulence.
Hydrodynamic turbulence acts on even larger scales and is dominated by inertial transport of energy. Using
an established modification of the Navier-Stokes equation that accounts for the small-scale forcing of
hydrodynamic flow by microswimmers, we study the properties of a dense suspension of microswimmers
in two dimensions, where the conservation of enstrophy can drive an inverse cascade through which energy
is accumulated on the largest scales. We find that the dynamical and statistical properties of the flow show a
sharp transition to the formation of vortices at the largest length scale. The results show that 2D bacterial
and hydrodynamic turbulence are separated by a subcritical phase transition.
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Thin layers of bacteria in their planctonic phase form
structures that are reminiscent of jets and vortices in
turbulent flows [1–3]. This state has been called “bacterial
turbulence” [1] because of the shape and form of the
patterns, and has been seen in many swimming micro-
organisms [1–3] and active nematics [4–6]. Bacterial
turbulence usually appears on scales much smaller than
those of hydrodynamic turbulence, with its inertial range
dynamics and the characteristic energy cascades [7]. A
measure of this separation is the Reynolds number, which is
of the order 10−4 − 10−6 for an isolated swimmer in a fluid
at rest [8] and typically several tens of thousands in
hydrodynamic turbulence. Recent studies of the rheology
of bacterial suspensions have indicated, however, that the
active motion of pusher-type bacteria can lower consid-
erably the effective viscosity of the suspension [9–14], to
the point where it approaches an active-matter induced
“superfluid” phase where the energy input from active
processes compensates viscous dissipation [15,16]. In such
a situation the collective action of microswimmers can
produce a dynamics that may be influenced by the inertial
terms. In two dimensions, a possible connection to hydro-
dynamic turbulence is particularly intriguing because the
energy cascade proceeds from small to large scales and can
result in an accumulation of energy at the largest scales
admitted by the domain, thereby forming a so-called
condensate [17–20]. If bacterial turbulence can couple to
hydrodynamic turbulence, then the inverse cascade in 2D
provides a mechanism by which even larger scales can be
driven. We here discuss the conditions under which such a
coupling between bacterial and hydrodynamic turbulence
can occur.

A dense bacterial suspension consists of active
swimmers in a solvent. It is generally described in terms
of coupled equations for the flow velocity of the suspension
and a polarization vector field that captures the coarse-
grained dynamics of the microswimmers. In most previous
studies the fluid flow was slaved to the swimmer dynamics,
so that the equations focused on the velocity or polarization
of the swimmers [21–23]. Here, following recent works by
Słomka and Dunkel [24,25], we examine instead the
effective equation for the fluid flow, obtained by slaving
the swimmer velocity to the velocity of the suspension [26].
Both approaches incorporate activity via active stresses that
provide a forcing in the dynamical equations and yield
minimal models that capture the pattern-formation process
associated with bacterial turbulence [21,24]. The effective
Navier-Stokes equation for the fluid introduced in
Refs. [24,25] bears a strong similarity to models studied
in the context of inertial turbulence [27,28], hence provid-
ing an excellent starting point for examining the relation
between bacterial and hydrodynamic turbulence.
These effective models have been compared with experi-

ments in Bacillus subtilis [2,21,25], and have been widely
used for investigating active turbulence [22–25,29–34]. In
this Letter we study the connection between 2D bacterial
and hydrodynamic turbulence systematically within a
model that focuses on the suspension flow and is, in that
sense, independent of details of the bacterial motion. We
use the model of Refs. [24,25], and slightly modify its
structure so that we have a single parameter that controls
the strength of the bacterial forcing. Increasing this param-
eter, we find a discontinuous transition to flow states which
are hydrodynamically turbulent in the strict sense, that is,
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they display an inverse energy cascade characterized by a
scale-independent energy flux [7,17,35].
For the model [24,25,31], we take the velocity field u to

be incompressible, ∇ · u ¼ 0, and periodic in a rectangular
domain. The momentum balance is Navier-Stokes-like
(with the density scaled to 1),

∂tuþ ðu ·∇Þuþ∇p ¼ ∇ · σ; ð1Þ

where p is the pressure and σ the stress tensor. The stress
tensor contains three adjustable parameters Γi,

σij ¼ ðΓ0 − Γ2Δþ Γ4Δ2Þð∂iuj þ ∂juiÞ; ð2Þ

and is most conveniently discussed in Fourier space, where
the dissipative term in Eq. (1) can be used to introduce an
effective viscosity, ∇ · σ ¼ νeffΔu, with

ν̃effðkÞ ¼ Γ0 þ Γ2k2 þ Γ4k4; ð3Þ

where ν̃eff is the Fourier transform of νeff . The first
parameter Γ0 corresponds to the kinematic viscosity, and
Γ4 > 0 ensures that modes with large k are always damped
by hyperviscosity. If Γ2 < 0 and sufficiently negative, the
effective viscosity becomes negative in a range of wave
numbers, thus providing a source of energy and instability.
This is the only forcing in the model, it corresponds to the
mesoscale vortices observed in bacterial turbulence,
and without it all fields decay. In 2D, and for a suitable
set of parameters, statistically stationary states with an
inverse energy transfer from the band of forced wave
numbers to smaller wave numbers have been found in
variants of both minimal models [24,36,37]. The energy
spectrum in Ref. [24] showed a scaling exponent close to
the Kolmogorov value of − 5

3
, characteristic of the constant-

flux inverse energy cascade in 2D turbulence [35]. Small
condensates were observed in Refs. [36,37].
In the stress model given by Eq. (3), Γ2 determines not

only the strength but also the range of wave numbers that
are forced. In order to eliminate this influence, we introduce
a variant of the model, where the bacterial forcing is
modeled by a piecewise constant viscosity (PCV) in
Fourier space. We take

ν̃ðkÞ ¼
8
<

:

ν0 > 0 for k < kmin;

ν1 < 0 for kmin ≤ k ≤ kmax;

ν2 > 0 for k > kmax;

ð4Þ

where ν0, like Γ0, is the kinematic viscosity of the
suspension and ν1 and ν2 > ν0 correspond to higher-order
terms Γ2k2 and Γ4k4, respectively, in the gradient expansion
of the active stresses in Eq. (3). That is, as in the model of
Refs. [24,25], they arise from a linear relation between the
suspension flow and the bacterial forcing. The latter is
justified for dense 2D suspensions, where both polarization

and suspension velocity are solenoidal, through a reduction
in degrees of freedom [26]. With this model, the forced
wave numbers are confined to the interval ½kmin; kmax� and
the strength of the forcing is controlled by ν1 < 0. In what
follows we carry out a parameter study of the PCV model
where ν1 is the only variable parameter.
We solve the 2D PCV model in vorticity formulation

∂tω̃ðkÞ þ F k½u ·∇ω� ¼ −ν̃ðkÞk2ω̃ðkÞ; ð5Þ

where ω is the vorticity, ωðx1; x2Þe3 ¼ ∇ × uðx1; x2Þ, and
·̃≡ F k½·� denotes the Fourier transform. The equations are
integrated in Fourier space, in a domain ½0; 2π�2 with
periodic boundary conditions, and using the standard
pseudospectral method with full dealiasing according to
the 2=3rds rule [38]. The simulations are run without
additional large-scale dissipation terms, until a statistically
stationary state is reached. As this can take a long time, we
used a resolution of 2562 collocation points to explore the
parameter space, and confirmed the results for a few isolated
parameter values with higher resolution, see Table I.
Different resolutions can be mapped onto each other using
the invariance of Eq. (5) under the transformation

x→ λx; t→ t; ν→ λ2ν; u→ λu; ω→ω: ð6Þ

For all simulations the initial data are Gaussian-distributed
random velocity fields.
A measure of the formation of large scale structures is

the energy at the largest scale, E1 ≡ Eðk ¼ 1Þ, where

EðkÞ≡
�
1

2

Z

dk̂jũðkÞj2
�

t
; ð7Þ

with k̂ ¼ k=jkj a unit vector, is the time-averaged energy
spectrum after reaching a statistically steady state. E1 is
shown as a function of the ratio jν1=ν0j in Fig. 1, together

TABLE I. Parameters used in DNSs of the piecewise constant
viscosity model and resulting observables. The number of grid
points in each coordinate is denoted by N, the viscosity ν0 and ν1,
ν2, kmin, kmax are the parameters in Eq. (4). The Reynolds number
Re ¼ UL=ν0 is based on ν0, the root-mean-square velocityU and
the integral length scale L ¼ 2=U2

R
∞
0 dkEðkÞ=k, with ν0 ¼

1.1 × 10−3 for N ¼ 256 and ν0 ¼ 1.7 × 10−5 for N ¼ 1024.
Averages in the statistically stationary state are computed from
at least 1800 snapshots separated by one large-eddy turnover time
T ¼ L=U.

N jν1=ν0j ν2=ν0 kmin kmax Re U L

256 0.25–7.0 10.0 33 40 19–13 677 0.29–7.77 0.07–1.92
1024 1.0 10.0 129 160 45 0.027 0.029
1024 2.0 10.0 129 160 226 0.041 0.094
1024 5.0 10.0 129 160 132 914 1.17 1.93
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with typical examples of velocity fields. At low values
jν1=ν0j ≤ 2 the energy at the largest scale is negligible and
the corresponding flows at jν1=ν0j ¼ 2 and jν1=ν0j ¼ 1 do
not show any large-scale structure. At a critical value
jν1;crit=ν0j ¼ 2.06� 0.02 a sharp transition occurs so that
for larger values of jν1=ν0j a condensate consisting of
two counter-rotating vortices at the largest scales exists
(see the case jν1=ν0j ¼ 5 in Fig. 1, and Refs. [39–41]).
Since a condensate can only build up once the transfer of
kinetic energy reaches up to the largest scales, the presence
of a condensate is a tell-tale sign of an inverse energy
transfer.
For jν1j ≫ jν1;critj, we observe E1 ∼ ν21, which can be

rationalized by mapping the large-scale dynamics onto an
Ornstein-Uhlenbeck process [42–45]. Neglecting small-
scale dissipation, Eq. (5) can formally be written as
∂tω ¼ −ν0ΔωLS − ν1ΔωIN, where ωLS and ωIN are the
vorticity field fluctuations at scales larger and smaller than
π=kmin, respectively. For ωLS, this results in an Ornstein-
Uhlenbeck process with relaxation time 1=ν0 and diffusion
coefficient ν21=2, because ωIN can be considered as noise on
the timescale of ωLS. Therefore, E1 ≃ ELS ∼ ν21=ν0.
The transition and its precursors can be analyzed in terms

of energy spectra, shown in the top panel of Fig. 2 for three
typical examples. As expected from the large-scale pattern
observed for the case jν1=ν0j ¼ 5, the corresponding
energy spectrum shows the condensate as a high energy
density at k ¼ 1. In the other two cases, jν1=ν0j ¼ 1 and
jν1=ν0j ¼ 2, the energy density tapers off towards small
wave numbers, and there is no condensate. The spectra for
k ≤ kmin follow power laws, with exponents in the range set
by energy equipartion where EðkÞ ∼ k, and a Kolmogorov
scaling, EðkÞ ∼ k−5=3, as indicated by the solid lines in
the figure. The spectral exponent is known to depend on

large-scale dissipation if present [30] and on the presence of
a condensate [39]. For the case jν1=ν0j ¼ 1, the energy
spectrum is EðkÞ ∼ k0.75, and close to the equipartition case.
With increasing amplification factor the spectral exponent
turns negative, with EðkÞ ∼ k−0.75 for jν1=ν0j ¼ 2 and
EðkÞ ∼ k−1.2 for jν1=ν0j ¼ 5.
The occurrence of states close to absolute equilibrium in

the region k < kmin for weak forcing suggests the presence
of a second transition to a net inverse energy transfer for
stronger forcing, as in the case jν1=ν0j ¼ 2. Although the
spectral exponent in this case suggests that energy is
transferred upscale, the absence of a condensate implies
that this energy transfer must stop before reaching k ¼ 1.
The flux of energy across scale k in the statistically steady
state can be measured with

FIG. 1. Mean energy at the largest scale as a function of ν1. The
black, blue, and red dots correspond to cases jν1=ν0j ¼ 1,
jν1=ν0j ¼ 2, and jν1=ν0j ¼ 5, respectively, and the corresponding
visualizations show juðxÞj.

FIG. 2. Energy spectra (top) and fluxes (bottom) for three
example cases jν1=ν0j ¼ 1 (black), jν1=ν0j ¼ 2 (blue), and
jν1=ν0j ¼ 5 (red) for N ¼ 256 (dotted lines) and N ¼ 1024
(solid lines). The higher-resolution data have been rescaled
according to Eq. (6) to account for k → 4k. The gray-shaded
area indicates the interval ½kmin; kmax�, and the solid lines in the
top panel correspond to theoretical predictions, i.e., energy
equipartion: EðkÞ ∼ k, and Kolmogorov scaling: EðkÞ ∼ k−5=3.
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ΠðkÞ≡ −
�Z

jk0j≤k
dk0ũð−k0Þ · F k0 ½ðu ·∇Þu�

�

t

: ð8Þ

The sign ofΠðkÞ is defined such thatΠðkÞ < 0 corresponds
to an inverse energy transfer and ΠðkÞ > 0 to a direct
energy transfer. As shown in Fig. 2, bottom panel, the
fluxes tend to zero as k tends to 1 for jν1=ν0j ¼ 1 and
jν1=ν0j ¼ 2, indicating that the inverse energy transfer is
suppressed by viscous dissipation close to kmin. In contrast,
for jν1=ν0j ¼ 5, the flux ΠðkÞ ≃ const, clearly indicating an
inertial range and hence an inverse energy cascade in the
strict sense, as expected for a hydrodynamic energy transfer
that is dominated by the inertial term in the Navier-Stokes
equations.
The transition shows up not only in the energy transfer

across scales, but also in the total energy balance. The
special form of Eq. (1) with the piecewise constant
viscosity as in Eq. (4) gives a balance between the energy
contained in the forced modes, EIN ≡ R kmax

kmin
dkEðkÞ, and

the dissipation in the other wave number regions, ε ¼
2ν0

R kmin
0 dkk2EðkÞ þ 2ν2

R∞
kmax

dkk2EðkÞ. In a statistically

stationary state ε≃2k2f jν1jEIN, where kf ¼ ðkmin þ kmaxÞ=2
corresponds to an effective driving scale. Figure 3 presents
the relation between ε and EIN, obtained from simulations
for different ν1. Statistically stationary states are obtained
as crossings between εðEINÞ (the symbols connected
by continuous lines) and the equilibrium condition
ε ≃ 2k2f jν1jEIN, shown by dashed lines for different ν1.

For small jν1j the energy content in the forced wave
number range increases with jν1j. However, as the transfer
to a wider range of wave numbers sets in dissipation
increases, and the energy EIN decreases (branch labeled
ε−). This is a smooth transition from absolute equilibrium
to viscously damped inverse energy transfer. At the critical
forcing jν1;critj, both ε and EIN drop, and a gap forms: the
signal of the first-order phase transition. Further increasing
jν1j results in even lower EIN, with only small variations in
ε, so that EIN ∼ jν1j−1. In this region, the dynamics cannot
be dominated by the condensate. Eventually, the conden-
sate takes over the energy dissipation; the curve turns
around to give ε ∝ E1 ∝ jν1j2 and EIN ∝ ε1=2 (branch
labeled εþ). In this region, a strong condensate will alter
the nonlinear dynamics [39,41] and the characteristic
Kolmogorov scaling of EðkÞ for 2D turbulence disappears.
Finally, the particular S shape of the curve shows that two
nonequilibrium steady states corresponding to the branches
εþ and ε−, respectively, can be realized for the same value
of the energy EIN in the forced range. The existence of two
stable branches connected by an unstable region describes
the bistable scenario characteristic of a first-order non-
equilibrium phase transition.
In order to relate the numerical data to experimental

results, we now compare the Reynolds numbers and
characteristic scales involved in active suspensions and in
our simulations. For a suspension of B. subtilis, the
characteristic size of the generated vortices is about
100 μm with a characteristic velocity around 35–100 μm
[1], resulting in Revortex ¼ Oð10−2 − 10−3Þ. Taking into
account a possible reduction in viscosity down to a “super-
fluid” regime measured experimentally for Escherichia coli
[13], a Reynolds number regime of Oð10Þ seems possible,
provided the density of the suspension is not too high. Larger
microswimmersmay lead to even higherReynolds numbers,
with values of around 30 formagnetic spinners accompanied
by Kolmogorov scaling of EðkÞ [46], and 25 for camphor
boats [47].
The forcing in our equations models the scale of such

vortices, so we need a corresponding Reynolds number for
the comparison between the model and potential realiza-
tions. With kf ¼ ðkmin þ kmaxÞ=2 the center of the forced
modes, and EIN the energy in these modes, we can define
ReB ¼ ffiffiffiffiffiffiffi

EIN
p ðπ=kfÞ=ν0. Just above the critical point, we

measure ReB ≃ 15. While these value are still larger than
the typical Reynolds number of active suspensions, an
experimental realization of the transition seems within
reach.
This comparison also gives relations for the length and

time scales. Setting the forcing scale to π=kf ¼ 50 μm, the
lattice with 2562 collocation points corresponds to a box
length of 3600 μm, larger than the usual experimental
domain sizes. It is possible to detect the formation of the
vortices also in smaller domains, but then it will be difficult
to extract scaling exponents for the energy densities and

FIG. 3. Total mean dissipation rate as a function of the energy
in the interval ½kmin; kmax�. The dashed lines indicate different
values of the amplification factor. Error bars indicate the standard
deviation. The larger open symbols in black, blue, and red
correspond to cases jν1=ν0j ¼ 1, jν1=ν0j ¼ 2, and jν1=ν0j ¼ 5,
respectively.
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the energy flux. For the timescales, the comparison is
more favorable, with the large-eddy turnover time T and
the characteristic timescale of the mesoscale vortices
Lbox=

ffiffiffiffiffiffiffi
EIN

p
resulting in 0.4s ≤ T ≤ 0.8 s, and hence a

runtime of 20–40 min for the different simulations. For
comparison, constant levels of activity in E. coli can be
maintained for several hours [13].
The systematic parameter study of a hydrodynamic

model applicable to dense suspensions of microswimmers
presented here shows a sharp transition between spatio-
temporal chaos (bacterial turbulence) and large-scale coher-
ent structures (hydrodynamic turbulence). The transition is
preceded by a statistically steady state in which a net
inverse energy transfer is damped by viscous dissipation at
intermediate scales before reaching the largest scales in the
system. Above the critical point, a condensate forms at the
largest scales and the energy flux is scale independent over
a range of scales; i.e., the flows in that parameter range are
hydrodynamically turbulent. A comparison between the
driving-scale Reynolds number in our simulations and
typical Reynolds numbers of active suspensions suggests
that it should be possible to observe the transition to large-
scale coherent structures also experimentally. Our results
should be generic for active systems where the forcing is
due to linear amplification. For instance, we verified that
also in the continuum model [Eq. (3)] the condensate forms
suddenly under small changes in forcing at similar
Reynolds numbers as in the PCV model [26].
Finally, we note that in rotating Newtonian fluids,

transitions to condensate states have been observed as a
function of the rotation rate (Rossby number) [48–50]. This
suggests that the appearance of a condensate may be
connected with a phase transition also in other flows.
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