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Abstract. This manuscript investigates the following aspects of the one-dimensional dissipative
Boltzmann equation associated to a variable hard-spheres kernel: (1) we show the optimal cooling
rate of the model by a careful study of the system satisfied by the solution’s moments, (2) we give
existence and uniqueness of measure solutions, and (3) we prove the existence of a nontrivial self-
similar profile, i.e., homogeneous cooling state, after appropriate scaling of the equation. The latter
issue is based on compactness tools in the set of Borel measures. More specifically, we apply a
dynamical fixed point theorem on a suitable stable set, for the model dynamics, of Borel measures.
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1. Introduction. In this document we study a standard one-dimensional (1-D)
dissipative Boltzmann equation associated to “variable hard potentials” interaction
kernels. The model is given by

∂tf(t, x) = Q(f, f)(t, x), (t, x) ∈ [0,∞)× R ,
f(0, x) = f0(x),

(1.1)

where the dissipative Boltzmann operator Q = Qγ is defined as

(1.2) Q(f, f)(x) :=

∫
R
f (x− ay) f (x+ by) |y|γdy − f(x)

∫
R
f(x+ y) |y|γdy .

The parameters of the model satisfy γ > 0, a ∈ (0, 1), b = 1 − a and will be fixed
throughout the paper. Such a model can be seen as a generalization of the one intro-
duced by Ben-Nam and Krapivsky [8] for γ = 0 and happens to have many applica-
tions in physics, biology, and economics; see, for instance, the process presented in
[5, 8] with applications to biology.

The case γ = 0—usually referred to as the Maxwellian interaction case—is by
now well understood [18] and we will focus our efforts on extending several of the
results known for that case (γ = 0) to the more general model (1.1). Let us recall that,
generally speaking, the analysis of Boltzmann-like models with Maxwellian interaction
essentially renders explicit formulas that allow for a very precise analysis [12, 14, 13,
32, 18, 8] because (1) moments solve closed ODEs and (2) Fourier transform techniques
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ONE-DIMENSIONAL DISSIPATIVE BOLTZMANN EQUATION 1279

are relatively simple to implement. In [8] a Brownian thermalization is added to the
equation which permits a study of stationary solutions of (1.1) for γ = 0. Here we
are more interested in generalizing the works of [12, 14, 13, 32, 18] that deal with the
so-called self-similar profile which in the particular case of Mawellian interactions is
unique and explicit. Such a self-similar profile is the unique stationary solution of the
self-similar equation associated to (1.1) and, by means of a suitable Fourier metric,
it is possible to show (in the Maxwellian case) exponential convergence of the (time
dependent) self-similar solution to this stationary profile [14, 13, 18]. In particular,
this means that solutions of (1.1) with γ = 0 approach exponentially fast the “back
rescaled” self-similar profile as t→ +∞.

Self-similarity is a general feature of dissipative collision-like equations. Indeed,
since the kinetic energy is continuously decreasing, solutions to (1.1) converge as
t → ∞ toward a Dirac mass. As a consequence, one expects that a suitable time-
velocity scale depending on the rate of dissipation of energy may render a better setup
for the analysis. For this reason, we expect that several of the results occurring for
Maxwellian interactions remain valid for (1.1) with γ > 0. The organization of the
document is as follows: We finish this introductory material with a general setup of
the problem, including notation, scaling, relevant comments, and the statement of the
main results. In section 2 the Cauchy problem is studied. The framework will be the
space of probability Borel measures. Such a framework is the natural one for (1.1) as
it is for kinetic models in general. In 1-D problems, however, we will discover that
it is essential to work in this space in contrast to higher dimensional models, such as
viscoelastic Boltzmann models in the plane or the space where one can avoid it and
work in smaller spaces such as Lebesgue’s spaces [11, 35, 2, 29]. This last fact proves
to be a major difficulty in the analysis of the model. The Cauchy problem is then
based on a careful study of a priori estimates for the moments of solutions of (1.1)
and standard fixed point theory. In section 3 we find the optimal rate of dissipation
(commonly referred to as Haff’s law) which follows from a careful study of a lower
bound for the moments using a technique introduced in [2, 3]. In section 4 we prove
the existence of a nontrivial self-similar profile which is based, again, on the theory
of moments and the use of a novel dynamical fixed point result on a compact stable
set of Borel probability measures [6]. The key remaining argument is, then, to prove
that the self-similar profile—which a priori is a measure—is actually an L1-function.
Needless to say, such a stable set is engineered out of the moment analysis of sections
2 and 3. In section 5, numerical simulations are presented that illustrate the previous
quantitative study of (1.8) as well as some peculiar features of the self-similar profile
G. The simulations are based upon a discontinuous Galerkin (DG) scheme. The
paper ends with some perspectives and open problems related to (1.1), in particular,
its link to a recent kinetic model for rods alignment [5, 9].

1.1. Self-similar equation and the long time asymptotic. The weak for-
mulation of the collision operator Q reads

∫
R
Q
(
f,f
)
(x)ψ(x)dx

=
1

2

∫
R

∫
R
f(x)f(y)

∣∣x− y∣∣γ (ψ(ax+ by) + ψ(bx+ ay)− ψ(x)− ψ(y)
)

dxdy

(1.3)

for any suitable test function ψ. In particular, plugging successively ψ(x) = 1 and
ψ(x) = x into (1.3) shows that (1.1) conserves mass and momentum. Namely, for any
reasonable solution f(t, x) to (1.1), one has
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1280 R. ALONSO, V. BAGLAND, Y. CHENG, AND B. LODS

(1.4)∫
R
f(t, x)dx =

∫
R
f0(x)dx and

∫
R
xf(t, x)dx =

∫
R
xf0(x)dx ∀t > 0 .

However, the second-order moment is not conserved: indeed, plugging now ψ(x) = |x|2
into (1.3) one sees that∫

R
Q(f, f)(x) |x|2dx = −a b

∫
R2

f(x)f(y) |x− y|2+γdxdy

since |ax+ by|2 + |ay + bx|2 − |x|2 − |y|2 = −2a b |x− y|2 for any (x, y) ∈ R2. There-
fore, for any nonnegative solution f(t, x) to (1.1), we get that the kinetic energy is
nonincreasing,

(1.5)
d

dt
E(t) :=

d

dt

∫
R
f(t, x) |x|2dx = −a b

∫
R2

f(t, x) f(t, y) |x− y|2+γdxdy 6 0 .

This is enough to prove that a nontrivial stationary solution to problem (1.1) exists.
Indeed, for any x0 ∈ R, the Dirac mass δx0

is a steady (measure) solution to (1.1).
For this reason one expects the large-time behavior of the system to be described by
self-similar solutions. In order to capture such a self-similar behavior, it is customary
to introduce the rescaling

(1.6) V (t) g(s(t), ξ) = f(t, x) , ξ = V (t)x,

where V (t) and s(t) are strictly increasing functions of time satisfying V (0) = 1,
s(0) = 0, and limt→∞ s(t) =∞. Under such a scaling, one computes the self-similar
equation as

∂tf(t, x) =
(
V̇ (t)g(s, ξ) + V (t)ṡ(t)∂sg(s, ξ) + ξV̇ (t)∂ξg(s, ξ)

) ∣∣∣∣
s=s(t) , ξ=V (t)x

=
(
V̇ (t)∂ξ (ξ g(s, ξ)) + V (t)ṡ(t)∂sg(s, ξ)

) ∣∣∣∣
s=s(t) , ξ=V (t)x

,

while the interaction operator turns into

(1.7) Q
(
f, f
)
(t, x) = V 1−γ(t)Q

(
g, g
)
(s(t), V (t)x) .

Consequently f = f(t, x) is a solution to (1.1) if and only if g = g(s, ξ) satisfies

ṡ(t)V γ(t)∂sg(s, ξ) +
V̇ (t)

V 1−γ(t)
∂ξ
(
ξ g
)
(s, ξ) = Q

(
g, g
)
(s, ξ).

Choosing

V (t) = (1 + cγ t)
1
γ and s(t) =

1

cγ
log(1 + c γ t) , c > 0,

it follows that g solves

(1.8) ∂sg(s, ξ) + c ∂ξ (ξg(s, ξ)) = Q
(
g, g
)
(s, ξ) .

Thus, the argument of understanding the long time asymptotic of (1.1) is simple: if
there exists a unique steady solution G to (1.8), then such a steady state G should
attract any solution to (1.8) and, back scaling to the original variables,

f(t, x) ' V (t)G(V (t)x) as t→∞

in some suitable topology. We give in this paper a first step toward a satisfactory
answer to this problem; more specifically, we address here two main questions:
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ONE-DIMENSIONAL DISSIPATIVE BOLTZMANN EQUATION 1281

Question 1. Determine the optimal convergence rate of solutions to (1.1) toward the
Dirac mass centered in the center of mass x0 :=

∫
R xf0(x)dx. The deter-

mination of this optimal convergence rate is achieved by identifying the
optimal rate of convergence of the moments Mk(t) of f(t, x) defined as

Mk(t) :=

∫
R
|x− x0|k f(t, x)dx, k > 0.

Question 2. Prove the existence of a “physical” steady solution G ∈ L1
max(γ,2)(R) to

(1.8), that is, a function satisfying

(1.9) c
d

dξ
(ξ G(ξ)) = Q(G,G)(ξ) , ξ ∈ R ,

in a weak sense (where c > 0 is arbitrary and, for simplicity, can be
chosen as c = 1). Note that (1.9) has at least two solutions for any
γ > 0, the trivial one and the Dirac measure at zero. None of them is a
relevant steady solution since both have energy zero, which is a feature
not satisfied by the dynamical evolution of (1.8) (provided the initial
measure is neither the trivial measure nor the Dirac measure).

Similar questions have already been addressed for the 3-D Boltzmann equation for
granular gases with different type of forcing terms [29, 24, 10]. For the inelastic
Boltzmann equation in R3, the answer to Question 1 is known as Haff’s law, proven
in [29, 2, 3] for the interesting case of hard-spheres interactions (essentially the case
γ = 1). The method we adopt here is inspired by the last two references since it
appears to be the most natural to the equation. Concerning Question 2, the existence
and uniqueness (the latter in a weak inelastic regime) of solutions to (1.9) has been
established rigorously for hard-spheres interactions in [29, 30]. In [29, 24, 10], and
in [6, 21] in the context of coagulation problems, the strategy to prove the existence
of solutions to a problem similar to (1.9) is achieved through the careful study of
the associated evolution equation ((1.8) in our context) and an application of the
following dynamic version of the Tykhonov fixed point theorem (see [6, Appendix A]
for a proof).

Theorem 1.1 (dynamic fixed point theorem). Let Y be a locally convex topo-
logical vector space and Z a nonempty convex and compact subset of Y. If (Ft)t≥0 is
a continuous semigroup on Z such that Z is invariant under the action of Ft (that
is, Ftz ∈ Z for any z ∈ Z and t ≥ 0), then there exists zo ∈ Z which is stationary
under the action of Ft (that is, Ftzo = zo for any t ≥ 0).

In the aforementioned references, the natural approach consists in applying The-
orem 1.1 to Y = L1 endowed with its weak topology and consider for the subset Z
a convex set which includes an upper bound for some of the moments and some Lp-
norm, with p > 1, which yield the desired compactness in Y. As a consequence, with
such approach a crucial point in the analysis is to determine uniform Lp-norm bounds
for the self-similar evolution problem. This last particular issue, if true, appears to be
quite difficult to prove in the model (1.8), mainly because of the lack of angular aver-
aging in the 1-D interaction operator Q as opposed to higher dimensional interaction
operators. This problem is reminiscent of related 1-D interaction operators associated
to coagulation-fragmentation problems, for instance, in Smoluchowski equation, for
which propagation of Lp-norms is hard to establish; see [26] for details. Having this in
mind, it appears to us more natural to work with measure solutions and considering
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1282 R. ALONSO, V. BAGLAND, Y. CHENG, AND B. LODS

then Y as a suitable space of real Borel measures endowed with the weak-? topology
for which the compactness will be easier to establish. Of course, the main difficulty
will then be to determine that the fixed point provided by Theorem 1.1 is not the
Dirac measure at zero (the trivial solution is easily discarded by mass conservation).
In fact, we will prove that this steady state is a L1 function (see Theorem 1.5). Let
us introduce some notation before entering in more details.

1.2. Notation. Let us introduce the set Ms(R) as the Banach space of real
Borel measures on R with finite total variation of order s endowed with the norm
‖ · ‖s defined as

‖µ‖s :=

∫
R
〈x〉s |µ |(dx) <∞ with 〈x〉 :=

(
1 + |x|2

) 1
2 ∀x ∈ R ,

where the positive Borel measure |µ| is the total variation of µ. We also set

M+
s (R) = {µ ∈Ms(R) ; µ > 0}

and denote by P(R) the set of probability measures over R. For any k > 0, define the
set

Pk(R) =

{
µ ∈ P(R) ;

∫
R
|x|kµ(dx) <∞

}
.

For any µ ∈ Pk(R) and any 0 6 p 6 k, let us introduce the p-moment

Mp (µ) :=

∫
R
|x|pµ(dx).

If µ is absolutely continuous with respect to the Lebesgue measure with density f ,
i.e., µ(dx) = f(x)dx, we simply denote

Mp(f) = Mp(µ) =

∫
R
|x|pf(x)dx for any p > 0.

We also define, for any k > 1, the set

P0
k(R) =

{
µ ∈ Pk(R) ;

∫
R
xµ(dx) = 0

}
.

In the same way, we set L1
k(R) = L1(R) ∩ Mk(R) for any k > 0. Moreover, we

introduce the set L∞−s (s > 0) of locally bounded Borel functions ϕ such that

‖ϕ‖L∞−s := sup
x∈R
|ϕ(x) | 〈x〉−s <∞ .

For any p > 1 and µ, ν ∈ Pp(R), we recall the definition of the Wasserstein distance
of order p, Wp(µ, ν) between µ and ν by

Wp(µ, ν) =

(
inf

π∈Π(µ,ν)

∫
R2

|x− y|pπ(dx,dy)

) 1
p

,

where Π(µ, ν) denotes the set of all joint probability measures π on R2 whose marginals
are µ and ν. For the peculiar case p = 1, we shall address the first-order Wasser-
stein distance W1(µ, ν) as the Kantorovich–Rubinstein distance, denoted dKR, i.e.,
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dKR(µ, ν) = W1(µ, ν). We refer to [36, section 7] and [37, Chapter 6] for more details
on Wasserstein distances. The Kantorovich–Rubinstein duality asserts that

dKR(µ, ν) = sup
ϕ∈Lip1(R)

∫
R
ϕ(x)(µ− ν)(dx),

where Lip1(R) denotes the set of Lipschitz functions ϕ such that

‖ϕ‖Lip(R) = sup
x6=y

|ϕ(x)− ϕ(y)|
|x− y|

6 1 .

For a given T > 0 and a given k > 0, we shall indicate as Cweak([0, T ],Pk(R)) the set
of continuous mappings from [0, T ] to Pk(R), where the latter is endowed with the
weak-? topology.

1.3. Collision operator and definition of measure solutions. We extend
the definition (1.3) to nonnegative Borel measures; namely, given µ, ν ∈M+

γ (R), let

(1.10) 〈Q(µ, ν) ; ϕ〉 :=
1

2

∫
R2

∣∣x− y∣∣γ ∆ϕ(x, y)µ(dx)ν(dy)

for any test function ϕ ∈ C(R) ∩ L∞(R), where

∆ϕ
(
x, y
)

:= ϕ
(
ax+ by

)
+ ϕ

(
bx+ ay

)
− ϕ

(
x
)
− ϕ

(
y
)
, (x, y) ∈ R2 .

A natural definition of measure solutions to (1.1) is the following; see [27].

Definition 1.2. Let γ > 0, γ∗ := max(γ, 2), µ0 ∈ M+
γ∗(R), and (µt)t>0 ⊂

M+
γ∗(R) be given. We say that (µt)t>0 is a measure weak solution to (1.1) associated

to the initial datum µ0 if it satisfies
1. supt>0 ‖µt‖γ∗ 6 ‖µ0‖γ∗ ,

∫
R
µt(dx) =

∫
R
µ0(dx) and

∫
R
xµt(dx) =

∫
R
xµ0(dx) ∀t > 0;

(1.11)

2. for any test function ϕ ∈ Cb(R) := C(R) ∩ L∞(R), the following hold:
(i) the mapping t 7→ 〈Q(µt, µt) ; ϕ〉 belongs to C

(
[0,∞)

)
,

(ii) for any t > 0 it holds that

(1.12)

∫
R
ϕ(x)µt(dx) =

∫
R
ϕ(x)µ0(dx) +

∫ t

0

〈Q
(
µτ , µτ

)
; ϕ〉dτ .

Notice that if µt ∈M+
γ∗(R) for any t > 0, then∫

R2

∣∣x− y∣∣γ ∣∣∆ϕ(x, y)
∣∣µt(dx)µt(dy) 6 4‖ϕ‖∞‖µt‖2γ <∞

for any ϕ ∈ Cb(R) and t > 0. This shows that 〈Q(µt, µt) ; ϕ〉 is well defined for any
t > 0 and any ϕ ∈ Cb(R). Similarly, the notion of measure solution to (1.9) is given
in the following statement.

Definition 1.3. A measure µ ∈ P0
max(γ,2)(R) is a solution to (1.9) if

(1.13)

−
∫
R
ξφ′(ξ)µ(dξ) =

1

2

∫
R2

|ξ−η|γ
(
φ (aξ + bη)+φ (aη + bξ)−φ(ξ)−φ(η)

)
µ(dξ)µ(dη)

for any φ ∈ C1
b (R), where φ′ stands for the derivative of φ.

Notice that, by assuming ‖µ‖0 = 1, we naturally discard the trivial solution
G = 0 to (1.9).
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1.4. Strategy and main results. Thanks to the conservative properties (1.11),
we shall assume in what follows, and without any loss of generality, that the initial
datum µ0 ∈M+

γ∗(R) is such that∫
R
µ0(dx) = 1 and

∫
R
xµ0(dx) = 0 ,

i.e., µ0 ∈ P0
γ∗(R). This implies that any weak measure solution (µt)t>0 to (1.1)

associated to µ0 is such that

µt ∈ P0
γ∗(R) ∀t > 0 .

Theorem 1.4. Fix γ > 0, γ∗ = max(γ, 2) and let µ0 ∈ P0
γ∗(R) be given an initial

datum. Then, there exists a measure weak solution (µt)t>0 to (1.1) associated to µ0

in the sense of Definition 1.2 satisfying∫
R
µt(dx) =

∫
R
µ0(dx) = 1 ,

∫
R
xµt(dx) =

∫
R
xµ0(dx) = 0 ,

and

∫
R
|x|γ∗µt(dx) 6

∫
R
|x|γ∗µ0(dx) ∀t > 0 .

Moreover, such a solution enjoys the following instantaneous appearance of higher-
order moments: for all t0 > 0,

sup
t>t0

∫
R
|x|sµt(dx) <∞ ∀s > γ∗.

If additionally there exists ε > 0 such that

(1.14)

∫
R

exp(ε|x|γ)µ0(dx) <∞ ,

then such a measure weak solution is unique. Furthermore, if µ0 is absolutely contin-
uous with respect to the Lebesgue measure, i.e., µ0(dx) = f0(x)dx with f0 ∈ L1

γ∗(R),
then µt is absolutely continuous with respect to the Lebesgue measure for any t > 0.
That is, there exists (ft)t>0 ⊂ L1

γ∗(R) such that µt(dx) = ft(x)dx for any t > 0.

We prove Theorem 1.4 following a strategy introduced in [27] and [23] for the
case of a Boltzmann equation with hard potentials (with or without cut-off). The
program consists essentially of the following steps: (1) Establish a priori estimates for
measure weak solutions to (1.1) concerning the creation and propagation of algebraic
moments, and (2) construct measure weak solutions to (1.1) by approximation of
L1-solutions. Step (1) helps prove that such an approximating sequence converges
in the weak-? topology. The final step is (3) for the uniqueness of measure weak
solution, it seems difficult to adapt the strategy of [27] for which the conservation of
energy played a crucial role. For this reason, we rather follow the approach of [23],
which requires the strong confining assumption (1.14) and is based upon suitable log-
Lipschitz estimates for the Kantorovich–Rubinstein distance between two solutions of
(1.1). It is likely that assumption (1.14) can be relaxed. Notice that even though such
an assumption is a restriction for the Cauchy theory, it provides valuable information
on the exponential tail of the self-similar profile we aim to construct.

As far as Question 1 is concerned, we establish the optimal decay of the mo-
ments of the solutions to (1.1) by a suitable comparison of ODEs. Such techniques
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are natural and have been applied to the study of Haff’s law for the 3-D granular
Boltzmann equation in [2]. The main difficulty is to provide optimal lower bounds for
the moments; see Propositions 3.3 and 3.4. Essentially, we obtain that

Mk(t) =

∫
R
|x|k µt(dx) ≈ Ck t−

k
γ as t→∞;

see Theorem 3.5 for a more precise statement. Such a decay immediately translates
into convergence of µt toward δ0 in the Wasserstein topology.

Regarding Question 2, once the fixed point Theorem 1.1 is at hand, the key step
is to engineer a suitable stable compact set Z. Compactness is easily achieved in
Y = Pmax(γ,2)(R) endowed with weak-? topolgy; only uniform boundedness of some
moments suffices. However, Y must overrule the possibility that the fixed point will
be a plain Dirac mass located at zero. This is closely related to the sharp lower
bound found for the moments in Question 1. In such a situation, a series of simple
observations on the regularity of the solution to (1.13) proves that such a steady state
is actually an L1-function. Namely, one of the most important steps in our strategy
is the following observation.

Theorem 1.5. Any steady measure solution µ ∈ P0
max(γ,2)(R) to (1.9) such that

(1.15) mγ :=

∫
R
|ξ|γµ(dξ) > 0

is absolutely continuous with respect to the Lebesgue measure over R, i.e., there exists
some nonnegative G ∈ L1

max(γ,2)(R) such that

µ(dξ) = G(ξ)dξ .

In other words, any solution to (1.9) lying in P0
max(γ,2)(R) different from a Dirac

mass must be a regular measure. This leads to our main result.

Theorem 1.6. For any γ > 0, there exists G ∈ L1
max(γ,2)(R) which is a steady

solution to (1.9) in the weak sense.

2. Cauchy theory. We are first concerned with the Cauchy theory for problem
(1.1) and we begin with studying a priori estimates for weak measure solutions to
(1.1). Let us fix γ > 0 and set γ∗ = max(γ, 2).

2.1. A priori estimates on moments. We first state the following gen-
eral properties of weak measure solutions to (1.1) which have sufficient bounded
moments.

Proposition 2.1. Let µ0 ∈M+
γ∗(R) and let (µt)t>0 be any weak measure solution

to (1.1) associated to µ0. Given k > 0, assume there exists p > k + γ such that

(2.1) sup
δ<t<T

‖µt‖p <∞ ∀ T > δ > 0 .

Then, the following hold:
1. For any ϕ ∈ L∞−k(R)∩C(R), the mapping t > 0 7→ 〈Q(µt, µt) ; ϕ〉 is continuous

in (0,∞).
2. For any ϕ ∈ L∞−k(R) ∩ C(R) it holds that

(2.2)
d

dt

∫
R
ϕ(x)µt(dx) = 〈Q(µt, µt) ; ϕ〉 ∀ t > 0 .
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The proof of Proposition 2.1 will need the following preliminary lemma (see [27,
Proposition 2.2] for a complete proof).

Lemma 2.2. Let (µn)n∈N be a sequence from M+
γ∗(R) that converges weakly-? to

some µ ∈M+
γ∗(R). We assume that for some p > 0 it holds that

sup
n∈N
‖µn‖p <∞ .

Then, for any ψ ∈ C(R2) satisfying lim|x|+|y|→+∞
ψ(x,y)
〈x〉p+〈y〉p = 0, one has

lim
n→+∞

∫
R2

ψ(x, y)µn(dx)µn(dy) =

∫
R2

ψ(x, y)µ(dx)µ(dy).

Proof of Proposition 2.1. Let k > 0 and ϕ ∈ L∞−k(R) ∩ C(R) be given. Choose
χ ∈ C∞(R) such that ‖χ‖∞ 6 1 with χ(x) = 0 if |x| > 2 and χ(x) = 1 for |x| 6 1 and
set for any n ∈ N∗, ϕn(x) = ϕ(x)χ

(
x
n

)
. It follows that ϕn ∈ Cc(R) ⊂ Cb(R) for any n

with ϕn(x) → ϕ(x) for any x ∈ R as n → ∞. Consequently, ∆ϕn(x, y) → ∆ϕ(x, y)
for any (x, y) ∈ R2 as n → ∞. Now, since ϕn ∈ Cb(R) for any n ∈ N, one deduces
from (1.12) that∫
R
ϕn(x)µt2(dx)=

∫
R
ϕn(x)µt1(dx)+

∫ t2

t1

〈Q(µτ , µτ ) ; ϕn〉dτ ∀ t2 > t1 > 0, ∀ n > 1 .

Notice that ‖ϕn‖L∞−k 6 ‖ϕ‖L∞−k <∞. Thus, there is C > 0 such that for any n ∈ N∗,
any (x, y) ∈ R2,

(2.3) |∆ϕ(x, y)| 6 C
(
〈x〉k + 〈y〉k

)
and |∆ϕn(x, y)| 6 C

(
〈x〉k + 〈y〉k

)
,

where the constant C depends only on ϕ (and a). Using the dominated convergence
theorem together with (2.1), one deduces that∫ t2

t1

〈Q(µτ ,µτ ) ; ϕn〉dτ =
1

2

∫ t2

t1

dτ

∫
R2

|x− y|γ∆ϕn(x, y)µτ (dx)µτ (dy)

−→
n→∞

1

2

∫ t2

t1

dτ

∫
R2

|x− y|γ∆ϕ(x, y)µτ (dx)µτ (dy)=

∫ t2

t1

〈Q(µτ , µτ ) ; ϕ〉dτ,

so, the identity

(2.4)

∫
R
ϕ(x)µt2(dx) =

∫
R
ϕ(x)µt1(dx) +

∫ t2

t1

〈Q(µτ , µτ ) ; ϕ〉dτ ∀ t2 > t1 > 0 ,

holds true. It follows from (2.3) that∣∣∣∣〈Q(µτ , µτ ) ; ϕ〉
∣∣∣∣6C ∫

R2

|x− y|γ
(
〈x〉k+〈y〉k

)
µτ (dx)µτ (dy) 6 2C‖µτ‖2k+γ ∀τ > 0.

Combining this with (2.4), one sees that, for any T > δ > 0,∣∣∣∣ ∫
R
ϕ(x)µt2(dx)−

∫
R
ϕ(x)µt1(dx)

∣∣∣∣ 6 2C |t2 − t1| sup
δ6τ6T

‖µτ‖2k+γ ∀ t1, t2 ∈ [δ, T ] .

In particular, under assumption (2.1), the mapping t 7→
∫
R ϕ(x)µt(dx) is continuous

over (0,∞). This shows that, for any t > 0 and sequence (tn)n ⊂ [t/2, 3t/2] with
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limn tn = t, the sequence (µtn)n converges weakly-? toward µt. In addition, since
ϕ ∈ L∞−k(R) and p > k + γ one concludes that

lim
|x|+|y|→∞

|x− y|γ∆ϕ(x, y)

〈x〉p + 〈y〉p
= 0 .

Thus, it readily follows from Lemma 2.2 that

(2.5) lim
n

∫
R2

|x− y|γ∆ϕ(x, y)µtn(dx)µtn(dy) =

∫
R2

|x− y|γ ∆ϕ(x, y)µt(dx)µt(dy) .

Henceforth, the mapping t 7→ 〈Q(µt, µt), ϕ〉 is continuous over (0,∞) proving point
(1). Point (2) then follows directly from (2.4).

Moments estimates of the collision operator are given by the following.

Proposition 2.3. Let µ ∈ P0
k+γ(R) with k > 2. Then

(2.6a) 〈Q(µ, µ) ; | · |k〉 6 −1

2

(
1− ak − bk

)
Mk+γ(µ) 6 0 .

In particular,

(2.6b) 〈Q(µ, µ) ; | · |k〉 6 −1

2

(
1− ak − bk

)
Mk (µ)

1+ γ
k ,

and, if k > 2,

(2.6c) 〈Q(µ, µ) ; | · |k〉 6 −1

2

(
1− ak − bk

)
M2(µ)−

γ
k−2 Mk(µ)1+ γ

k−2 .

Proof. We apply the weak form (1.10) to ϕ(x) = |x|k. Using the elementary
inequality

(2.7) |x|k + |y|k − |ax+ by|k − |ay + bx|k >
(
1− ak − bk

)
|x− y|k

valid for any (x, y) ∈ R2 and k > 2 (with equality sign whenever k = 2), and noticing
that 1− ak − bk is nonnegative for any k > 2 and any a ∈ (0, 1) we have

(2.8) 〈Q(µ, µ) ; | · |k〉 6 −1

2

(
1− ak − bk

) ∫
R2

|x− y|γ+kµ(dx)µ(dy) .

Since µ ∈ P0
k+γ(R) and the mapping [0,∞) 3 r 7→ rγ+k is convex, one deduces from

Jensen’s inequality that∫
R2

|x− y|γ+kµ(dx)µ(dy) >
∫
R
|x|k+γµ(dx) ,

from which inequality (2.8) yields (2.6a). Using again Jensen’s inequality we get also
that Mk+γ(µ) > Mk(µ)1+ γ

k which proves (2.6b). Finally, according to the Hölder
inequality

Mk+γ(µ) >Mk(µ)1+ γ
k−2 M2(µ)−

γ
k−2 ∀ k > 2 ,

and (2.6c) is deduced from (2.6a).
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The assumption on the measure µ in the above proposition is stronger than the
one made on the initial datum µ0 in our main result—Theorem 1.4. It will serve as
a tool toward a priori estimates on solutions to (1.1) in Proposition 2.4. Hereafter,
(2.9) will result in the construction of the stable set ΩK,δ in Theorem A.1 while (2.10)
is the main tool for appearance of higher-order moments.

Proposition 2.4. Let µ0 ∈ P0
γ∗(R) be a given initial datum and (µt)t>0 be a

measure weak solution to (1.1) associated to µ0. Then, the following holds:
1. If (µt)t>0 ⊂ P0

p (R) with p > k + γ for some k > 2, then t > 0 7→ Mk(µt) is
decreasing with

(2.9) Mk (µt) 6Mk (µ0)
(

1 +
γ

2k

(
1− ak − bk

)
Mk(µ0)

γ
k t
)− kγ ∀ t > 0 .

In particular, supt>0Mk(µt) <∞.
2. If for some k > 2 and p > k + γ, supt>δ ‖µt‖p <∞ for any δ > 0, then

(2.10) Mk(µt) 6 Ck(γ) ‖µ0‖γ∗ min
{
t−

k−2
γ , t−

k
γ
}

∀ t > 0 ,

where Ck(γ) > 0 is a positive constant depending only on k > 2, γ, and a.

Proof. For the proof of (2.9), apply (2.2) with ϕ(x) = |x|k and note that using
(2.6b)

d

dt
Mk(µt) 6 −

1

2

(
1− ak − bk

)
Mk (µt)

1+ γ
k ∀t > 0 .

This directly implies point (1) of Proposition 2.4. To prove estimate (2.10) for short
time observe that applying (2.2) to ϕ(x) = |x|k and using (2.6c), one gets

d

dt
Mk(µt) 6 −

1

2

(
1− ak − bk

)
M2(µt)

− γ
k−2 Mk(µt)

1+ γ
k−2 ∀ t > 0 ,

and, since by the definition of measure weak solution it holds that M2(µt) 6 ‖µ0‖γ∗
for any t > 0, one deduces that

d

dt
Mk(µt) 6 −

1

2

(
1− ak − bk

)
‖µ0‖

− γ
k−2

γ∗ Mk(µt)
1+ γ

k−2 ∀ t > 0 .

This inequality leads to estimate (2.10) with constant Ck(γ) = ( γ
2(k−2) (1−ak−bk))−

k−2
γ .

The long time decay follows applying (2.9) for t > δ.

Remark 2.5. It is not difficult to prove that the conclusions of the previous two
propositions hold for general measure µ0 ∈M+

γ∗(R) with

‖µ0‖0 = % 6= 0 and

∫
R
xµ0(dx) = 0 .

In such a case, the constant Ck(γ) depends also continuously on %.

Introduce the class Pexp,γ(R) of probability measures with exponential tails of
order γ,

(2.11) Pexp,γ(R) =

{
µ ∈ P(R) ; ∃ ε > 0 such that

∫
R

exp(ε|x|γ)µ(dx) <∞
}
.

We have the following.
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Theorem 2.6. Let µ0 ∈ P0
γ∗(R) be an initial datum and (µt)t be a measure weak

solution to (1.1) associated to µ0. If µ0 ∈ Pexp,γ(R), then there exists α > 0 and
C > 0 such that

(2.12) sup
t>0

∫
R

exp(α|x|γ)µt(dx) 6 C .

Proof. Since µ0 ∈ Pexp,γ(R), there exists α > 0 and C0 > 0 such that∫
R

exp(α|x|γ)µ0(dx) 6 C0 .

Let us denote by p0 the integer such that γ p0 > γ∗ and γ (p0 − 1) < γ∗. Thus, for
0 6 p 6 p0 − 1 and t > 0,

Mγp(µt) 6 ‖µt‖γ∗ 6 ‖µ0‖γ∗ .

For p > p0 and t > 0, one deduces from (2.6a) that

Mγp(µt) 6Mγp(µ0) .

Thus, for any t > 0 and any n > p0

n∑
p=0

Mγp(µt)
αp

p!
6 ‖µ0‖γ∗

p0−1∑
p=0

αp

p!
+

n∑
p=p0

Mγp(µ0)
αp

p!
6 ‖µ0‖γ∗ exp(α) + C0 .

Letting n→ +∞ we get (2.12).

2.2. Cauchy theory. The main ingredients of the proof of Theorem 1.4 are
Propositions 2.7 and 2.10. Namely, by studying first the Cauchy problem for L1

initial data and then introducing a suitable approximation we can construct weak
measure solutions to (1.1) leading to the following result of existence of solutions.

Proposition 2.7. For any µ0 ∈ P0
γ∗(R), µ0 6= δ0, there exists a measure weak

solution (µt)t>0 ⊂ P0
γ∗(R) associated to µ0 and such that

sup
t>0
‖µt‖γ∗ 6 ‖µ0‖γ∗ and sup

t>t0
‖µt‖s <∞ ∀ t0 > 0, s > γ∗ .

Remark 2.8. The instantaneous appearance of higher-order moments for solution
to Boltzmann-like equations associated to so-called hard potentials (corresponding to
γ > 0) is a well-documented feature which can be traced back to [38] (see also [1] for
the appearance of exponential moments). It has already been observed for measure
solutions like the ones considered here in [27].

Proof. The proof follows the approach of [27, section 4] and it relies on an exis-
tence Theorem in an L1-framework borrowing ideas from [16] (see Theorem A.1 in
Appendix A). We only sketch here the main steps.

First, since µ0 ∈ P0
γ∗(R) is not the Dirac mass centered at 0, the temperature

T0 :=
∫
R x

2µ0(dx) is positive and one can define a sequence (Fn0 )n) such that

(2.13) lim
n→∞

∫
R
ϕ(x)Fn0 (x)dx =

∫
R
ϕ(x)µ0(dx) ∀ϕ ∈ L∞−γ∗(R) ∩ C(R)

with Fn0 ∈
⋂
s>0 L

1
s(R) for any n > 1 (notice that, as in [27], Fn0 is some slight

modification of the Mehler transform of µ0). Then, according to Theorem A.1, for
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any n > 0, there exists a family (Fnt )t>0 ⊂ L1
γ∗(R) such that (µnt )t>0 is a weak

measure solution to (1.1) associated to µn0 , where

µnt (dx) = Fnt (x)dx ∀ t > 0 .

Then, noticing that

‖µnt ‖γ 6 ‖µnt ‖γ∗ 6 ‖µn0‖γ∗ ∀n > 1,

one easily checks that∣∣〈Q(µnt , µ
n
t ) ; ϕ〉

∣∣ 6 2‖ϕ‖∞‖µn0‖2γ∗ ∀ t > 0, n > 1,

from which one deduces as in [27] that there exists C = C(µ0) > 0 (depending only
on ‖µ0‖γ∗) such that, for any t2 > t1 > 0,

sup
n>1

∣∣∣∣ ∫
R
ϕ(x)µnt1(dx)−

∫
R
ϕ(x)µnt2(dx)

∣∣∣∣ 6 C(µ0) ‖ϕ‖∞
∣∣t2 − t1∣∣ ∀ϕ ∈ Cb(R) .

(2.14)

Moreover, on the basis of the a priori estimates (2.10) (see also Remark 2.5),

Mk(Fnt ) 6 Ck(γ, ‖µn0‖0)‖µn0‖γ∗ t
− k−2

γ ∀ k > 2 .

Since limn→∞ ‖µn0‖0 = 1 and limn→∞ ‖µn0‖γ∗ = ‖µ0‖γ∗ according to (2.13), we deduce
that, for any k > 2, there exists some positive constant Ck depending only on k, γ,
and Mγ∗(µ0) such that

sup
n>1

Mk(Fnt ) 6 Ckt
− k−2

γ ∀ k > 2 .

From this, we conclude as in [27] that there exists a subsequence (still denoted by)
(µnt )t>0 and a family (µt)t>0 ⊂M+

γ∗(R) such that

(2.15) lim
n→∞

∫
R
ϕ(x)µnt (dx) =

∫
R
ϕ(x)µt(dx) ∀ϕ ∈ Cc(R), t > 0 ,

‖µt‖γ∗ 6 ‖µ0‖γ∗ , Mk(µt) 6 Ckt
− k−2

γ ∀ t > 0, k > 2 ,

and (2.14) still holds for the limit µt (which implies that, for any ϕ ∈ Cb(R), the
mapping t ∈ [0,∞) 7→

∫
R ϕ(x)µt(dx) is continuous). To prove that (µt)t>0 is a

measure weak solution to (1.1) associated to µ0 in the sense of Definition 1.2, one
argues exactly as in [27, section 4].

Remark 2.9. Arguing as in [27], it is not difficult to prove that any weak measure
solution to (1.1) is in fact a strong solution in the sense of [27].

To achieve the proof of Theorem 1.4, it remains only to prove the uniqueness of the
solution. It seems difficult here to adapt the strategy of [27] for which the conservation
of energy played a crucial role. For this reason, we rather follow the approach of [23],
which requires the exponential tail estimate (1.14). The main step toward uniqueness
is the following log-Lipschitz estimate for the Kantorovich–Rubinstein distance.

Proposition 2.10. Let µ0 and ν0 be two probability measures in P0
γ∗(R) satisfy-

ing (1.14), i.e., there exists ε > 0 such that∫
R

exp (ε |x|γ)µ0(dx) +

∫
R

exp (ε |x|γ) ν0(dx) <∞ .
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Let then (µt)t>0 and (νt)t>0 be two measure weak solutions to (1.1) associated respec-
tively to the initial data µ0 and ν0. There exists Kε > 0 such that, for any T > 0,

dKR(µt, νt) 6 dKR(µ0, ν0)(2.16)

+Kε CT (ε)

∫ t

0

dKR(µs, νs)
(

1 +
∣∣ log dKR(µs, νs)

∣∣)ds ∀ t ∈ [0, T ] ,

where CT (ε) = supt∈[0,T ]

∫
R exp(ε |x|γ)(µt + νt)(dx) <∞.

The proof of Proposition 2.10 can be found in Appendix A.

Proof of Theorem 1.4. Given Proposition 2.7, to prove Theorem 1.4 it suffices to
show the uniqueness of measure weak solutions to (1.1). Let µ0 be a probability
measure in P0

γ∗(R) satisfying (1.14) and let (µt)t>0 and (νt)t>0 be two measure weak
solutions to (1.1) associated to µ0. From Proposition 2.10, given T > 0 there exists a
finite positive constant KT such that

dKR(µt, νt) 6 KT

∫ t

0

Φ(dKR(µs, νs))ds ∀t ∈ [0, T ]

with Φ(r) = r(1 + | log r|) for any r > 0. Since Φ satisfies the so-called Osgood
condition

(2.17)

∫ 1

0

dr

Φ(r)
=∞ ,

a nonlinear version of the Gronwall lemma (see, for instance, [7, Lemma 3.4, p. 125])
asserts that dKR(µt, νt) = 0 for any t ∈ [0, T ]. Since T > 0 is arbitrary, this proves
the uniqueness.

The existence and uniqueness of a weak measure solution to (1.1) allows us to
define a semiflow (St)t>0 on Pexp,γ(R) (recall (2.11)). Namely, Theorem 1.4 together
with Theorem 2.6 asserts that for any µ0 ∈ Pexp,γ(R) ∩ P0(R), there exists a unique
weak measure solution (µt)t>0 to (1.1) with µt ∈ Pexp,γ(R) for any t > 0 and we shall
denote

µt := St(µ0) ∀t > 0 .

Then, the semiflow St is a well-defined nonlinear mapping from Pexp,γ(R)∩P0(R) into
itself. Moreover, by definition of weak solution, the mapping t 7→ St(µ0) belongs to
Cweak([0,∞),P2(R)). One has the following weak continuity result for the semiflow.

Proposition 2.11. The semiflow (St)t>0 is weakly continuous on P1(R) in the
following sense. Let (µn)n ∈ P0

γ∗(R) be a sequence such that there exists ε > 0
satisfying

(2.18) sup
n∈N

∫
R

exp(ε|x|γ)µn(dx) <∞ .

If (µn)n converges to some µ ∈ P0
γ∗(R) in the weak-? topology, then for any t > 0,

St(µn) −→ St(µ) in the weak-? topology as n→∞ .

Proof. The proof is based upon the stability result established in Proposition
2.10. Namely, because (µn)n converges in the weak-? topology to µ ∈ P0

γ∗(R), one
deduces from (2.18) that ∫

R
exp(ε|x|γ)µ(dx) <∞,
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1292 R. ALONSO, V. BAGLAND, Y. CHENG, AND B. LODS

which means that all µn and µ share the same exponential tail estimate with some
common ε > 0. Then, for any T > 0 one deduces from (2.16) that

dKR(St(µn) ,St(µ)) 6 dKR(µn , µ)

+K(ε)CT (ε)

∫ t

0

Φ (dKR(Ss(µn) , Ss(µ)) ds ∀ t ∈ [0, T ], n ∈ N ,

for some universal positive constant K(ε) and

CT (ε) = sup
n∈N

sup
t∈[0,T ]

∫
R

exp(ε|x|γ) (St(µn) + St(µ)) (dx) <∞

according to Theorem 2.6. Here above, Φ(r) = r (1 + | log r|) satisfies the Osgood
condition (2.17); thus, using again a nonlinear version of the Gronwall lemma [7,
Lemma 3.4], we deduce from this estimate that

Ψ
(
dKR (µn , µ)

)
−Ψ

(
dKR (St(µn) , St(µ))

)
6 K(ε)CT (ε) t ∀ t ∈ [0, T ], n ∈ N,

where

Ψ(x) =

∫ 1

x

dr

Φ(r)
∀x > 0 .

Taking now the limit n → ∞, since dKR metrizes the weak-? topology of P1(R) it
follows that limn→∞ dKR(µn, µ) = 0. Furthermore, recalling that Ψ(0) = ∞ one
concludes that

lim
n→∞

Ψ
(
dKR

(
St(µn) , St(µ)

))
=∞ .

That is, limn→∞ dKR

(
St(µn) , St(µ)

)
= 0, which proves the result.

3. Optimal decay of the moments. We now prove that the upper bounds
obtained for the moments of solutions to (1.1) in Proposition 2.4 are actually optimal.

3.1. Lower bounds for moments. We begin with the case γ ∈ (0, 1].

Proposition 3.1. Fix γ ∈ (0, 1] and let µ0 ∈ P0
2 (R) be an initial datum and

(µt)t>0 be a measure weak solution to (1.1) associated to µ0. Then, there exists
Kγ > 0 depending only on a and γ such that

(3.1) Mγ(µt) >
Mγ(µ0)

1 +KγMγ(µ0)t
∀ t > 0 .

Thus,

(3.2) M2(µt) >Mγ(µ0)
2
γ (1 +KγMγ(µ0)t)

− 2
γ ∀ t > 0 .

Proof. For γ ∈ (0, 1] the following elementary inequality holds:
(3.3)

Bγ(x, y) =
(
|ax+ by|γ + |ay + bx|γ − |x|γ − |y|γ

)
|x− y|γ > −Cγ |x|γ |y|γ ∀x, y ∈ R

for some positive constant Cγ > 0 explicit depending only on a and γ. Using (2.2)
and the weak form (1.10) with ϕ(x) = |x|γ ∈ L∞−2(R) ∩ C(R), we get that
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d

dt
Mγ(µt) =

1

2

∫
R2

Bγ(x, y)µt(dx)µt(dy) > −Cγ
2

∫
R2

|x|γ |y|γµt(dx)µt(dy)

from which it follows that

d

dt
Mγ(µt) > −

Cγ
2
Mγ(µt)

2 ∀ t > 0 .

This inequality, after integration, yields (3.1) with Kγ =
Cγ
2 . Inequality (3.2) follows

from the fact that according to the Hölder inequality

Mγ(µt) 6M2(µt)
γ
2 ‖µt‖

2−γ
2

0 ,

while ‖µt‖0 = ‖µ0‖0 = 1 for any t > 0.

The remaining case γ > 1 is more involved. In this case, inequality (3.3) no longer
holds and we need the following result.

Lemma 3.2. Fix γ > 1. For any p > 1 and µ ∈ P0
p+γ(R) it holds that

(3.4) 〈Q(µ , µ) ; | · |p〉 6 −
(
1− βp(a)

)
Mp+γ(µ) +Rp(µ),

where β2p(a) = max{ap−1, bp−1} and

Rp(µ) = 2γ−1βp(a)

[ p+1
2 ]∑

k=1

( p
k

)(
Mk+γ(µ)Mp−k(µ) +Mk(µ)Mp−k+γ(µ)

)
.

Moreover, for k ∈ (0, 1]

(3.5) − 〈Q(µ , µ) ; | · |k〉 6 Cγ,kMγ(µ)Mk(µ) .

The constant Cγ,k depends only on γ and k.

Proof. Let us begin with inequality (3.4). We first notice the following elementary
inequality, valid for any p > 0:

(3.6) |ax+by|p+|ay+bx|p 6 βp(a)
(
x2 + y2

) p
2 6 βp(a) (|x|+ |y|)p ∀(x, y) ∈ R2 ,

where k 7→ βk(a) is decreasing with β2(a) = 1 and limk→∞ βk(a) = 0 (recall that
max{a, b} < 1). We use then the following useful result given in [15, Lemma 2] for
estimation of the binomial for fractional powers. For any p > 1, if kp denotes the
integer part of p+1

2 , the following inequality holds for any u, v ∈ R+:

(3.7)
(
u+ v

)p − up − vp 6 kp∑
k=1

(
p
k

)(
ukvp−k + up−kvk

)
,

where the binomial coefficients are defined as(
p
k

)
=

{
p(p−1)···(p−k+1)

k! for k > 1,
1 for k = 0 .

Therefore, for any p > 1, one gets
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1294 R. ALONSO, V. BAGLAND, Y. CHENG, AND B. LODS

|ax+ by|p + |ay + bx|p − |x|p − |y|p 6 −
(
1− βp(a)

)(
|x|p + |y|p

)
+ βp(a)

kp∑
k=1

(
p
k

)(
|x|k |y|p−k + |x|p−k |y|k

)
.

Therefore, using (1.10) we get

〈Q(µ , µ) ; | · |p〉 6 − 1
2

(
1− βp(a)

) ∫
R2

(|x|p + |y|p)
∣∣x− y∣∣γµ(dx)µ(dy)

+
1

2
βp(a)

kp∑
k=1

( p
k

)∫
R2

|x− y|γ
(
|x|k |y|p−k + |x|p−k |y|k

)
µ(dx)µ(dy).

Furthermore, since γ > 1 using Jensen’s inequality and the fact that µ ∈ P0(R), one
obtains ∫

R2

(|x|p + |y|p)
∣∣x− y∣∣γµ(dx)µ(dy) > 2Mp+γ(µ).

Consequently,

〈Q(µ , µ) ; | · |p〉 6 −
(
1− βp(a)

)
Mp+γ(µ)

+
1

2
βp(a)

kp∑
k=1

( p
k

)∫
R2

|x− y|γ
(
|x|k |y|p−k + |x|p−k |y|k

)
µ(dx)µ(dy).

For the remainder term, one uses the inequality |x − y|γ 6 2γ−1
(
|x|γ + |y|γ

)
to get

that∫
R2

|x− y|γ
(
|x|k |y|p−k + |x|p−k |y|k

)
µ(dx)µ(dy)

6 2γ
(
Mk+γ(µ)Mp−k(µ) +Mk(µ)Mp−k+γ(µ)

)
,

which proves (3.4). The proof of (3.5) relies on inequality (3.3). Indeed, for any µ
and any k ∈ (0, 1) one has

〈Q(µ , µ) ; | · |k〉 =
1

2

∫
R2

(
|ax+ by|k + |ay + bx|k − |x|k − |y|k

)
|x− y|γ µ(dx)µ(dy) .

Now, by virtue of (3.3) with k ∈ (0, 1) instead of γ(
|ax+ by|k + |ay + bx|k − |x|k − |y|k

)
|x− y|k > −Ck|x|k |y|k ∀x, y ∈ R

for some positive constant Ck > 0 explicit and depending only on a and k. Therefore,

−〈Q(µ , µ) ; | · |k〉 6 Ck
2

∫
R2

|x|k |y|k |x− y|γ−kµ(dx)µ(dy) .

Using that |x− y|γ−k 6 max{1, 2γ−k−1} (|x|γ−k + |y|γ−k) we get

−〈Q(µ , µ) ; | · |k〉 6 1

2
max{1, 2γ−k−1}Ck

∫
R2

|x|k |y|k
(
|x|γ−k + |y|γ−k

)
µ(dx)µ(dy)

= max{1, 2γ−k−1}CkMγ(µ)Mk(µ),

which gives the proof with Cγ,k = max{1, 2γ−k−1}Ck.
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As a consequence, we have the following proposition.

Proposition 3.3. For any γ > 1 and s ∈ (0, 1] it follows that

(3.8) Ms+γ(µt) 6 AsMs(µt)
1+ γ

s , t > 0 ,

with As any constant such that

(3.9) As > max

{
C̃γ,s,

Ms+γ(µ0)

M
1+ γ

s
s (µ0)

}
,

and C̃γ,s is a constant depending only on γ and s.

Proof. Define X(t) := Ms+γ(µt) − AMs(µt)
1+ γ

s , where the constant A will be
conveniently chosen later on. Since γ + s > 1 and s ∈ (0, 1] we can use Lemma 3.2 to
conclude that

d

dt
X(t) =

d

dt
Ms+γ(µt)−A

(
1 +

γ

s

)
Ms(µt)

γ
s

d

dt
Ms(µt)

(3.10)

6 − (1− βs+γ(a))Ms+2γ(µt) +Rs+γ(µt) +ACγ,s

(
1 +

γ

s

)
Ms(µt)

1+ γ
s Mγ(µt) .

Let us observe that for such a choice of s and γ, one has
[
s+γ+1

2

]
< s + γ and for

1 6 k 6
[
s+γ+1

2

]
, a simple use of Hölder and Young’s inequalities leads to, for any

ε > 0,

Mk+γ(µt)Ms+γ−k(µt) 6Ms+2γ(µt)
k+γ
s+2γ Ms+γ(µt)

s+γ−k
s+γ

6 εMs+2γ(µt) +Ks,γ,εMs+γ(µt)
s+2γ
s+γ

with Ks,γ,ε > 0 a constant depending only on s, γ, and ε. Similar interpolation
holds for the terms of the form Mk(µt)Ms+2γ−k(µt) appearing in Rs+γ(µt). As a
consequence, for any ε > 0, we have

(3.11) Rs+γ(µt) 6 εKs,γMs+2γ(µt) +Ks,γ Ks,γ,εMs+γ(µt)
s+2γ
s+γ ,

where Ks,γ > 0 is a constant depending only on s and γ. Choosing ε = ε(γ) > 0 such
that

2Ks,γ ε 6 1− βs+γ(a)

we obtain from estimates (3.10) and (3.11) that there are constants K1 = K1(s, γ)
and K2 = K2(s, γ) such that

d

dt
X(t) 6 −1

2
(1− βs+γ(a))Ms+2γ(µt)

+AK1Ms(µt)
1+ γ

s+ s
γ Ms+γ(µt)

1− s
γ +K2Ms+γ(µt)

s+2γ
s+γ ,(3.12)

where we also used the interpolation

Mγ(µt) 6Ms(µt)
s
γ Ms+γ(µt)

1− s
γ .
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As a final step, notice that

(3.13)
Ms+γ(µt)

2

Ms(µt)
6Ms+2γ(µt) .

Therefore, including (3.13) in (3.12) one finally concludes that

d

dt
X(t) 6 −1

2
(1− βs+γ(a))Ms+γ(µt)

2Ms(µt)
−1

+AK1Ms(µt)
1+ γ

s+ s
γ Ms+γ(µt)

1− s
γ +K2Ms+γ(µt)

s+2γ
s+γ .(3.14)

Now, choosing A > 0 such that X(0) < 0, if there exists t0 > 0 for which X(t0) = 0,
then estimate (3.14) implies that

(3.15)
d

dt
X(t0) 6

(
− 1

2
(1− βs+γ(a))A2 +K1A

2− s
γ +K2A

1+ γ
s+γ

)
Ms(µt0)1+ 2γ

s .

Then, choosing A = A(γ, s) sufficiently large such that the term in parentheses in
(3.15) is negative we conclude that X ′(t0) 6 0. This shows that, for such a choice of
A, X(t) 6 0 for any t > 0.

Using Proposition 3.3 the desired lower bound is obtained.

Proposition 3.4. For any γ > 1 and s ∈ (0, 1] one has

(3.16) Ms(µt) >
Ms(µ0)(

1 + Cγ,sA
1− s

γ
s

γ
s Ms(µ0)

γ
s t
) s
γ

,

where Cγ,s depends only on γ and s and As is given by (3.9). Moreover, it holds that

(3.17) Mk(µt) >
Ms(µ0)

k
s(

1 + Cγ,sA
1− s

γ
s

γ
s Ms(µ0)

γ
s t
) k
γ

∀ k > 1, s ∈ (0, 1], and t > 0 .

Proof. Using Lemma 3.2 and inequality (3.8), since s ∈ (0, 1) one gets

− d

dt
Ms(µt) = −〈Q(µt, µt) ; | · |s〉 6 Cγ,sMs(µt)Mγ(µt)

6 Cγ,sMs(µt)
1+ s

γ Ms+γ(µt)
1− s

γ 6 Cγ,sA
1− s

γ
s Ms(µt)

1+ γ
s ,

where, for the second estimate, we used the inequality

Mγ(µt) 6M
s
γ
s (µt)M

1− s
γ

s+γ (µt).

Integration of this differential inequality leads to

Ms(µt) >
Ms(µ0)(

1 + Cγ,sA
1− s

γ
s

γ
s Ms(µ0)

γ
s t
) s
γ

.

The second part of the result follows from

Ms(µt) 6M
s
k

k (µt)M0(µt)
1− sk = M

s
k

k (µt),

valid for any k > 1.
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We can now completely characterize the decay of any moments of the weak mea-
sure solution (µt)t>0 associated to µ0.

Theorem 3.5. Let k > 2 and µ0 ∈ P0
k+γ(R) be given. Denote by (µt)t>0 a

measure weak solution to (1.1) associated to the initial datum µ0. Then, we have the
following:

(1) When γ ∈ (0, 1], there exists some universal constant Kγ > 0 (not depending
on µ0) such that for any p > γ

(3.18a)
Mγ (µ0)

p
γ(

1 +KγMγ(µ0) t
) p
γ

6Mp (µt) ∀ t > 0 ,

and for any p ∈ [2, k]

(3.18b) Mp (µt) 6
Mp (µ0)(

1 + γ
2p (1− ap − bp)Mp (µ0)

γ
p t
) p
γ

∀ t > 0 .

In particular, if µ0 ∈ Pexp,γ(R), then (3.18b) holds true for any p > 2.
(2) When γ > 1, for any p > 1,

(3.19a)
M1 (µ0)

p(
1 + γ Cγ,1A

1− 1
γ

1 M1(µ0)γ t
) p
γ

6Mp (µt) ∀ t > 0 ,

and for any p ∈ [2, k]

(3.19b) Mp (µt) 6
Mp (µ0)(

1 + γ
2p (1− ap − bp)Mp (µ0)

γ
p t
) p
γ

∀ t > 0 ,

where Cγ,1 and A1 are defined in Proposition 3.4.

Proof. The upper bounds in (3.18b) and (3.19b) have been established in Proposi-
tion 2.4. For the lower bound, whenever γ ∈ (0, 1), one simply uses Jensen’s inequality
to get

Mp(µt) >Mγ(µt)
p
γ ∀ t > 0, p > γ ,

and then conclude thanks to (3.1). For γ > 1, the lower bound is just (3.17) with
s = 1.

Corollary 3.6. Fix γ > 0 and let µ0 ∈ P0(R) ∩ Pexp,γ(R) be an initial datum.
Then, for any p > 1, the unique measure weak solution (µt)t>0 is converging as t→∞
toward δ0 in the weak-? topology of Pp(R) with the explicit rate

Wp(µt, δ0) ∝
(
1 + C t

)− 1
γ as t→∞

for some positive constant C depending on µ0.

Proof. The result is a direct consequence of Theorem 3.5 since

Wp(µt, δ0)p =

∫
R
|x|pµt(dx) = Mp(µt), t > 0 ,

and Wp metrizes Pp(R) (see [37, Theorem 6.9]).
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3.2. Consequences on the rescaled problem. Assume µ0 ∈ P0
γ∗(R) satisfy-

ing (1.14) and let (µt)t>0 denote the unique weak measure solution to (1.1) associated
to µ0. Recall from section 1 the definitions of the rescaling functions

V (t) := (1 + c γ t)
1
γ and s(t) :=

1

c γ
log(1 + c γ t), (c > 0).

For simplicity, in what follows, we shall assume c = 1. The inverse mappings are
defined as

V(s) = exp(s), t(s) =
exp(γ s)− 1

γ
,

i.e.,

s(t) = s⇐⇒ t(s) = t and V
(
t(s)

)
= V(s) ∀ t, s > 0 .

In this way we may define, for any s > 0, the measure νs as the image of µt(s) under
the transformation x 7→ V(s)x,

νs(dξ) =
(
V(s)#µt(s)

)
(dξ), ∀ s > 0 ,

where # stands for the push-forward operation on measures,

(3.20)

∫
R
φ(ξ)νs(dξ) =

∫
R
φ(V(s)x)µt(s)(dx) ∀φ ∈ Cb(R), s > 0 .

Notice that whenever µt is absolutely continuous with respect to the Lebesgue measure
over R with µt(dx) = f(t, x)dx, the measure νs is also absolutely continuous with
respect to the Lebesgue measure over R with νs(dξ) = g(s, ξ)dξ, where

g(s, ξ) = V(s)−1 f
(
t(s),V(s)−1ξ

)
∀ ξ ∈ R, s > 0 ,

which is nothing but (1.6). Such a definition of νs allows us to define the semiflow
(Fs)s>0 which given any initial datum µ0 ∈ P0(R) satisfying (1.14) associates

Fs(µ0) = νs = V(s)#St(s)(µ0) ∀ s > 0 ,

where (St)t>0 is the semiflow associated to (1.1). Notice that the semiflow (St)t>0

satisfies the following scaling property.

Lemma 3.7. For any λ > 0, t > 0, µ0 ∈ Pexp,γ(R),

St(λµ0) = λSλt(µ0), St(λ(λ#µ0)) = λ(λ#(Sλγ+1t(µ0))).

From this, it is not difficult to prove that (Fs)s>0 is indeed a semiflow on Pexp,γ(R).
The decay of the moments given by Theorem 3.5 readily translates into the following
result.

Theorem 3.8. Let γ > 0 and let µ0 ∈ P0(R)∩Pexp,γ(R) be a given initial datum.
Denote by Fs(µ0) = νs for any s > 0. Then,

(1) when γ ∈ (0, 1], there exists some universal constant Kγ > 0 (not depending
on µ0) such that for any p > γ

(3.21a) min

{
Mγ (µ0)

p
γ ;

(
γ

Kγ

) p
γ
}

6Mp (νs) ∀ s > 0 ,
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and for any p > 2,

(3.21b) Mp (νs) 6 max

{
Mp(µ0) ;

(
2p

1− ap − bp

) p
γ
}

∀ s > 0 ;

(2) when γ > 1, for any p > 1

(3.22a) min

{
M1 (µ0)

p
;

 1

Cγ,1A
1− 1

γ

1


p
γ }

6Mp (νs) ∀ s > 0 ,

and for any p > 2

(3.22b) Mp (νs) 6 max

{
Mp(µ0) ;

(
2p

1− ap − bp

) p
γ
}

∀ s > 0 ,

where Cγ,1 and A1 are defined in Proposition 3.4.

Proof. The proof follows simply from the fact that

Mp(νs) = V(s)pMp(µt(s)) ∀ s > 0 ,

where (µt)t is the weak measure solution to (1.1) associated to µ0. Then, according

to Theorem 3.5 and using that exp(p s) =
(
1 + γ t(s)

)p/γ
, we see that for γ ∈ (0, 1] it

holds that(
Mγ(µ0)(1+γt(s))

1+KγMγ(µ0) t(s)

) p
γ

6Mp (νs)6Mp(µ0)

(
1+γt(s)

1+ γ
2p (1−ap−bp)Mp (µ0)

γ
p t(s)

) p
γ

,

where the lower bound is valid for any p > γ while the upper bound is valid for
any p > 2. Since min(1, AB ) 6 1+At

1+Bt 6 max(1, AB ) for any A,B, t > 0, we get the
conclusion. We proceed in the same way for γ > 1.

An important consequence of the above decay is the following proposition.

Proposition 3.9. Let µ0 ∈ ∩k>0P0
k(R) be a given initial condition. Assume that

(3.23) Mp(µ0) 6 Mp ∀ p > max(γ, 2) ,

where

Mp :=

(
2p

1− ap − bp

) p
γ

∀ p > max(γ, 2) .

Then, µ0 ∈ Pexp,γ(R) and there exists an explicit α > 0 and C = C(α) > 0 such that

sup
s>0

∫
R

exp(α|ξ|γ)νs(dξ) 6 C ,

where νs = Fs(µ0) for any s > 0.

Proof. Let us first prove that µ0 ∈ Pexp,γ(R). Notice that for any z > 0∫
R

exp(z |ξ|γ)µ0(dξ) =

∞∑
p=0

Mγ p(µ0)
zp

p!
.
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Let us denote by p0 the integer such that γ p0 > max(γ, 2) and γ (p0−1) < max(γ, 2).
Using the Stirling formula together with the fact that limp→∞(1 − aγ p − bγ p) = 1,
one can check that there exists some explicit α > 0 such that the series

∞∑
p=p0

Mγ p
zp

p!

converges for any 0 6 z 6 α, which gives the result. Now, we may define νs = Fs(µ0)
for any s > 0. As previously, for any z > 0∫

R
exp(z |ξ|γ)νs(dξ) =

∞∑
p=0

Mγ p(νs)
zp

p!
,

and we deduce from Theorem 3.8 that

Mp(νs) 6 Mp ∀ p > max(γ, 2), s > 0 .

The conclusion follows.

Remark 3.10. We do not need to derive the equation satisfied by νs since we are
interested only in the fixed point of the semiflow. However, using the fact that St(µ0)
actually provides a strong solution to (1.1), using the chain rule it follows that
(3.24)∫

R
φ(ξ)νs(dξ)=

∫
R
φ(ξ)µ0(dξ)+

∫ s

0

dτ

∫
R
ξφ′(ξ)ντ (dξ)+

∫ s

0

〈Q (ντ , ντ ) ; φ〉dτ ∀ s>0

for any φ ∈ C1
b (R) and where φ′ stands for the derivative of φ.

The link between the solution to (1.13) and the semiflow (Fs)s>0 is established
by the following lemma.

Lemma 3.11. Any fixed point µ ∈ P0(R) ∩ Pexp,γ(R) of the semiflow (Fs)s>0 is
a solution to (1.13).

Proof. Let µ be a fixed point of the semiflow (Fs)s, that is, Fs(µ) = µ for any
s > 0. Then, according to (3.20), for any φ ∈ Cb(R)∫

R
φ(ξ)µ(dξ) =

∫
R
φ(V(s)x)µt(s)(dx) ∀ s > 0 ,

where µt(s) = St(s)(µ). In particular, choosing s = s(t)∫
R
φ(ξ)µ(dξ) =

∫
R
φ(V (t)x)µt(dx) ∀ t > 0 .

Applying the above to φ
(
V (t)−1 ·

)
instead of φ, one obtains∫

R
φ
(
V (t)−1ξ

)
µ(dξ) =

∫
R
φ(x)µt(dx) ∀ t > 0 .

Computing the derivative with respect to t and assuming φ ∈ C1
b (R), we get

d

dt

(
V (t)−1

) ∫
R
ξφ′
(
V (t)−1ξ

)
µ(dξ) = 〈Q(µt, µt) ; φ〉 ∀ t > 0 .

Using the definition of V (t) it finally follows that

−
(
1 + γt

)− 1
γ−1

∫
R
ξφ′
(
V (t)−1ξ

)
µ(dξ) = 〈Q(µt, µt) ; φ〉 ∀ t > 0 .

Taking in particular t = 0 it follows that µ satisfies (1.13).
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4. Existence of a steady solution to the rescaled problem.

4.1. Steady measure solutions are L1 steady states. In this section we
prove Theorem 1.5, that is, we prove that steady measure solutions to (1.9) are in
fact L1 functions provided no mass concentration happens at the origin. The argument
is based on the next two propositions.

Proposition 4.1. Let µ ∈ P0
max(γ,2)(R) be a steady solution to (1.9). Then,

there exists H ∈ L1(R) such that

ξ µ(dξ) = H(ξ)dξ .

Proof. Introduce the distribution β(ξ) := ξµ(dξ) which, of course, is defined by
the identity ∫

R
β(ξ)ψ(ξ)dξ =

∫
R
ξψ(ξ)µ(dξ) for any ψ ∈ C∞c (R) .

One sees from (1.13) that β satisfies

(4.1)
d

dξ
β(ξ) = Q(µ,µ)

in the sense of distributions. Since µ ∈ P0
max(γ,2)(R), it follows that Q±(µ,µ) belongs

to M+(R). Therefore, as a solution to (4.1), the measure β is a distribution whose
derivative belongs to M(R). It follows from [20, Theorem 6.77] that β ∈ BVloc(R),
where BV (R) denotes the space of functions with bounded variations. This implies
that the measure β is absolutely continuous. In particular, there exists H ∈ L1(R)
such that β(dξ) = H(ξ)dξ. This proves the result.

Proposition 4.2. Let µ ∈ P0
max(γ,2)(R) be a steady solution to (1.9). Then,

there exist κ0 > 0 and G ∈ L1
max(γ,2)(R) nonnegative such that

µ(dξ) = G(ξ)dξ + κ0 δ0(dξ),

where δ0 is the Dirac mass in 0.

Proof. Let us denote by B(R) the set of Borel subsets of R. According to Lebesgue
decomposition theorem [34, Theorem 8.1.3] there exists G ∈ L1(R) nonnegative and
a measure µs such that

µ(dξ) = G(ξ)dξ + µs(dξ),

where the measure µs is singular to the Lebesgue measure over R. More specifically,
there is Γ ∈ B(R) with zero Lebesgue measure such that µs(R\Γ) = 0. The proof
of the lemma consists then in proving that µs is supported in {0}, i.e., Γ = {0}.
This comes directly from Proposition 4.1. Indeed, by uniqueness of the Lebesgue
decomposition, one has

ξµ(dξ) = ξG(ξ)dξ + ξµs(dξ) = H(ξ)dξ ,

with H ∈ L1(R), so that

ξµs(dξ) = 0 .

This implies that µs(R\(−δ; δ)) = 0 for any δ > 0 and therefore that µs is supported
in {0}. Notice that since µ ∈ P0

max(γ,2)(R) one has G ∈ L1
max(γ,2)(R).
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Proof of Theorem 1.5. With the notation of Proposition 4.2, our aim is to show
that κ0 = 0. Plugging the decomposition obtained in Proposition 4.2 in the weak
formulation (1.13), we get

−
∫
R
ξφ′(ξ)G(ξ)dξ =

∫
R
Q(G,G)(ξ)φ(ξ)dξ

+ κ0

∫
R
|ξ|γ
(
φ (a ξ) + φ (b ξ)− φ(ξ)− φ(0)

)
G(ξ)dξ ,

where we used that Q(δ0, δ0) = 0 =
∫
R ξφ

′(ξ)δ0(dξ). Recall the hypothesis

(4.2) mγ =

∫
R
|ξ|γG(ξ)dξ > 0 ,

from which the above can be reformulated as

κ0 mγφ(0) =

∫
R
Q(G,G)(ξ)φ(ξ)dξ

+

∫
R
ξφ′(ξ)G(ξ)dξ + κ0

∫
R
|ξ|γ
(
φ (a ξ) + φ (b ξ)− φ(ξ)

)
G(ξ)dξ

for any φ ∈ C1
b (R). Notice that the above identity can be rewritten as

(4.3) κ0 φ(0)mγ =

∫
R

(
A(ξ)φ(ξ) +B(ξ)φ′(ξ)

)
dξ

for some L1-functions

A(ξ) = Q(G,G)(ξ) +
κ0

a

∣∣∣∣ ξa
∣∣∣∣γ G( ξa

)
+
κ0

b

∣∣∣∣ξb
∣∣∣∣γ G(ξb

)
− κ0 |ξ|γ G(ξ)

and B(ξ) = ξG(ξ). Let φ be a smooth function with support in (−1, 1) and satisfying
φ(0) = 1. For any ε > 0, φ

( ·
ε

)
belongs to C1

b (R), one can apply (4.3) to get

κ0 mγ =

∫ ε

−ε

(
A(ξ)φ

(
ξ

ε

)
+G(ξ)

ξ

ε
φ′
(
ξ

ε

))
dξ .

Hence,

0 6 κ0 mγ 6 ‖φ‖L∞
∫ ε

−ε
|A(ξ)|dξ + sup

ξ∈R
|ξ φ′(ξ)|

∫ ε

−ε
G(ξ)dξ .

Letting ε → 0, one obtains κ0 mγ = 0, thus, using hypothesis (4.2) we must have
κ0 = 0.

4.2. Proof of Theorem 1.6. We have all the previous machinery at hand to
prove the existence of “physical” solutions to (1.9) in the sense of Definition 1.3
employing the dynamic fixed point Theorem 1.1. Let us distinguish here two cases:

(1) First, assume that γ ∈ (0, 1]. Setting Y to be the space M(R) endowed with
the weak-? topology, we introduce the nonempty closed convex set

Z : =

{
µ∈P0(R) such that

∫
R
|ξ|γµ(dξ) >

γ

Kγ
, and

∫
R
|ξ|p µ(dξ) 6 Mp ∀ p>2

}
,

where Mp was defined in Proposition 3.9 and Kγ > 0 is the positive constant given in
Theorem 3.8. This set is a compact subset of Y thanks to the uniform moment esti-
mates (recall that Y is endowed with the weak-? topology): indeed, for any compact
K ⊂ R with K ⊂ (−A,A) (A > 0)

D
ow

nl
oa

de
d 

02
/1

9/
18

 to
 1

93
.5

4.
49

.1
0.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ONE-DIMENSIONAL DISSIPATIVE BOLTZMANN EQUATION 1303

sup
µ∈Z

µ(R \K) 6 A−pMp <∞.

Choosing A > 0 large enough, supµ∈Z µ(R \ K) can be made arbitrarily small and
this provides the tightness of Z. We conclude thanks to Prokhorov’s compactness
Theorem (see [25, Theorem 1.7.6, p. 41]). Moreover, according to Proposition 3.9,
there exists α > 0 and C(α) > 0 such that, for any µ ∈ Z,∫

R
exp(α|ξ|γ)µ(dξ) 6 C(α) <∞ .

Thus, µ ∈ Pexp,γ(R). Therefore, using Theorem 1.4, (St(µ))t>0 and, consequently,
(Fs(µ))s>0 are well defined. Setting νs = Fs(µ), it follows from Theorem 3.8 that∫

R
|ξ|pνs(dξ) 6 Mp ∀ p > 2, s > 0 .

Using the lower bound in (3.21a), we deduce that∫
R
|ξ|γ νs(dξ) >

γ

Kγ
∀s > 0 .

This shows that νs ∈ Z for any s > 0, i.e., Fs(Z) ⊂ Z for all s > 0. Moreover,
one deduces directly from Proposition 2.11 that (Fs)s is continuous over Z. As a
consequence, it is possible to apply Theorem 1.1 to deduce the existence of a measure
µ ∈ Z such that Fs(µ) = µ, a steady measure solution to (1.9) in the sense of
Definition 1.3. Finally, since µ ∈ Z, its moment of order γ is bounded away from
zero, and by Theorem 1.5, µ is absolutely continuous with respect to the Lebesgue
measure. This proves the result in the case γ ∈ (0, 1].

(2) Assume now γ > 1 and let γ∗ = max(γ, 2). Then, consider Y to be the space
M(R) endowed with the weak-? topology and we introduce the nonempty closed
convex set

Z :=

{
µ ∈ P0(R) such that

∫
R
|ξ|p µ(dξ) 6 Mp ∀ p > γ∗, and

∫
R
|ξ|µ(dξ) > `

}
for some positive constant ` to be determined. In fact, we prove that there exists
` = `(γ) sufficiently small such that Z is invariant under the semiflow (Fs)s>0. Indeed,
according to (3.22a), for any ` > 0 if µ0 is such that M1(µ0) > `, then

M1

(
Fs(µ0)

)
> min

` ;

 1

Cγ,1A
1− 1

γ

1

 1
γ

 ∀ s > 0 ,

where Cγ,1 > 0 is some positive universal constant. And, according to (3.9), A1 is

any real number larger than max{C̃γ,1 ;
M1+γ(µ0)
M1(µ0)1+γ }, where C̃γ,1 is another universal

positive constant. In particular, choosing ` small enough such that

M1+γ

`1+γ
> C̃γ,1 ,

it is possible to pick A1 :=
M1+γ

`1+γ , where we recall that, since µ0 ∈ Z and 1 + γ > γ∗,
one has M1+γ(µ0) 6 M1+γ . In such a case, one gets

D
ow

nl
oa

de
d 

02
/1

9/
18

 to
 1

93
.5

4.
49

.1
0.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1304 R. ALONSO, V. BAGLAND, Y. CHENG, AND B. LODS

min

` ;

 1

Cγ,1A
1− 1

γ

1

 1
γ

 = min

` ;
`
1− 1

γ2

C
1
γ

γ,1 M
γ−1

γ2

1+γ

 .

We set ` 6 C−γγ,1 M1−γ
1+γ in order to get

min

` ;

 1

Cγ,1A
1− 1

γ

1

 1
γ

 = ` ,

and M1(Fs(µ0)) > ` for any s > 0. Arguing as in the case γ ∈ (0, 1], this shows that
Fs(Z) ⊂ Z for any s > 0, and there exists a steady measure µ which is absolutely
continuous with respect to the Lebesgue measure.

5. Numerical simulations. This section contains numerical simulations for the
rescaled equation

(5.1) ∂sg(s, ξ)− 1
2

(
a2 + b2 − 1

)
∂ξ
(
ξ g(s, ξ)

)
= Q(g, g)(s, ξ), s > 0 , ξ ∈ R,

where Q(g, g) has been previously defined in (1.2) and (1.3). We recall that such a
model has been studied in [18, 32] in the case of γ = 0 and it admits a unique steady
state

(5.2) M1(ξ) =
2

π

(
1

1 + ξ2

)2

such that ∫
R
M1(ξ)

 1
ξ
ξ2

 dξ =

 1
0
1

 .

We will use the numerical solutions of (5.1) to verify the properties of our models for
general values of γ. We shall consider here initial datum g0(ξ) = g(0, ξ) which shares
the same first moments of M1, i.e.,

(5.3)

∫
R
g0(ξ)

 1
ξ
ξ2

dξ =

 1
0
1

 .

The coefficient c = − 1
2

(
a2+b2−1

)
= ab > 0 in (5.1) is the only one that gives a station-

ary self-similar profile with finite energy in the case γ = 0; see [18]. In contrast, as al-
ready noticed, the case γ > 0 accepts any arbitrary positive coefficient in the equation;
thus, we will perform all numerical simulations with such a coefficient for comparison
purposes. Recall that in our previous analysis we choose this coefficient to be 1.

5.1. Numerical scheme. To compute the solution, we have to make a technical
assumption which is the truncation of R into a finite domain Ω = [−L,L]. When L
is chosen large enough so that g is machine zero at ξ = ±L, this will not affect the
quality of the solutions. Then, we use a discrete mesh consisting of N cells as follows:

−L = ξ 1
2
< ξ 3

2
< · · · < ξN+ 1

2
= L .

We denote cell Ij =
(
ξj− 1

2
, ξj+ 1

2

)
, with cell center ξj = 1

2

(
ξj− 1

2
+ξj+ 1

2

)
and length

∆ξj = ξj+ 1
2
− ξj− 1

2
. The scheme we use is the DG method [19], which has excellent

conservation properties. The DG schemes employ the approximation space defined by

V kh = {vh : vh|Ij ∈ P k(Ij), 1 6 j 6 N},
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where P k(Ij) denotes all polynomials of degree at most k on Ij , and look for the
numerical solution gh ∈ V kh such that

(5.4)

∫
Ij

∂sgh(s, ξ) vh(ξ) dξ + 1
2

(
a2 + b2 − 1

) ∫
Ij

ξ gh(s, ξ) ∂ξvh(ξ) dξ

+ 1
2

(
a2 + b2 − 1

) (
(ξ̂gh v

+
h )j− 1

2
− (ξ̂gh v

−
h )j+ 1

2

)
=

∫
Ij

Q(gh, gh)(s, ξ) vh(ξ) dξ , j = 1, . . . , N,

holds true for any vh ∈ V kh . In (5.4), ξ̂gh is the upwind numerical flux

ξ̂gh =

{
ξg−h (s, ξ) if ξ ≥ 0,
ξg+
h (s, ξ) if ξ < 0,

where g−h , g
+
h denote the left and right limits of gh at the cell interface. Equation

(5.4) is in fact an ordinary differential equation for the coefficients of gh(s, ξ). The
system can then be solved by a standard ODE integrator, and in this paper we use
the third-order TVD-Runge–Kutta methods [33] to evolve this method-of-lines ODE.
Notice that the implementation of the collision term in (5.4) is done by recalling (1.3),
and we only need to calculate it for all the basis functions in V kh . This is done before
the time evolution starts to save computational cost.

The DG method described above when k > 1 (i.e., we use a scheme with at
least piecewise linear polynomial space) will preserve mass and momentum up to
discretization error from the boundary and numerical quadratures. This can be easily
verified by using appropriate test functions vh in (5.4). For example, if we take vh = 1
for any j, and sum up on j, we obtain∫

Ω

∂sgh dξ =
L

2

(
a2 + b2 − 1

) (
g−h (ξ = L) + g+

h (ξ = −L)
)
.

If L is taken large enough so that gh achieves machine zero at ±L, this implies mass
conservation. Similarly, we can prove∫

Ω

∂sgh ξ dξ = − 1
2

(
a2+b2−1

) ∫
Ω

gh ξ dξ+
L2

2
(a2+b2−1)

(
g−h (ξ = L)− g+

h (ξ = −L)
)
.

Again, when L is large enough and the initial momentum is zero, this shows conser-
vation of momentum for the numerical solution.

5.2. Discussion of numerical results. We use as the initial state the discon-
tinuous initial profile

g(0, ξ) =

{ 1
2
√

3
if |ξ| ≤

√
3,

0 otherwise.

This profile clearly satisfies the moment conditions (5.3). We take the domain to
be [−40, 40] and use piecewise quadratic polynomials on a uniform mesh of size
2000. Four sets of numerical results have been computed, corresponding to (γ, a) =
(1, 0.1), (1, 0.3), (1, 0.5), (2, 0.5), and (3, 0.5), respectively. The computation is stopped
when the residual √∫

Ω

(
gh(sn+1, ξ)− gh(sn, ξ)

∆s

)2

dξ

reduces to a threshold below 10−4 indicating convergence to a steady state.
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1306 R. ALONSO, V. BAGLAND, Y. CHENG, AND B. LODS

In Figure 1 we plot the objects of study in this document, that is, the equilibrium
solutions for different values of γ. In this plot, the amplitude of the solutions has been
normalized to one at the origin for comparison purposes. The numerical solutions are
used for the cases γ = 1, 2, 3, while for γ = 0, we use the theoretical equilibrium
M1 as defined in (5.2). In general terms, these smooth patterns are expected with
exponential tails happening for any γ > 0. The behavior of the profiles at the origin
is quite subtle and will depend nonlinearly on the potential, for instance, the case
γ = 2 renders a wider profile relative to γ = 0 in contrast to γ = 1 or γ = 3. This
is not to say that such behavior is discontinuous with respect to γ; it is simply the
net result of the contributions of short- and long-range interactions of the particles in
equilibrium.

In Figure 2, we fix γ = 1 and compare the stationary solution for different values
of a. Recall that the parameter a measures the “inelasticity” degree of the system
with a = 0 being elastic particles and with a = 0.5 being sticky particles. As expected,
smaller values of a will render a wider distribution profile at the origin keeping the
tails unchanged. Near the origin, the distribution of particles for less inelastic systems
will be underpopulated relative to more inelastic systems which force particles to
a more concentrated state. Tails, however, are more dependent on the growth of
the potential and should remain relatively unchanged despite changes in inelasticity.
Interestingly, the numerical simulation shows an unexpected effect: the maximum
density of particles is not necessarily located at the origin.

In Figure 3, we plot the evolution of energy as a function of time in a system of
sticky particles a = 0.5 using different values of γ. Changes in the relaxation times
are expected since the potential growth γ impacts directly on the spectral gap of
the linearized interaction operator. This numerical result seems to confirm, in one
dimension, the natural idea that higher γ implies a higher spectral gap, hence faster
relaxation to equilibrium. Refer to [30] for ample discussion in higher dimensions for
the so-called quasi-elastic regime. Additionally, the results of Figure 3 are numerical
confirmation of the optimal cooling rate given in our Theorems 3.5 and 3.8.

−4 −2 0 2 4

0

0.2

0.4

0.6

0.8

1

ξ

g
h

 

 

γ=0

γ=1

γ=2

γ=3

Fig. 1. Rescaled equilibrium solutions for different values of γ with a = 0.5 (sticky particles).
Curves corresponding to γ = 1, 2, 3 are computed numerically, while the curve for γ = 0 is obtained
from the known steady state M1 in (5.2).
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Fig. 2. Equilibrium solutions for different values of inelasticity a when γ = 1.
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Fig. 3. Evolution of energy for γ = 1, 2, 3 when a = 0.5.

In Figure 4, we investigate the evolution of the distribution function and its dis-
continuities for the case γ = 1 and a = 0.5. The simulation shows, in our 1-D setting,
a well-established phenomena happening in elastic and quasi-elastic Boltzmann equa-
tions in higher dimensions: discontinuities are damped at an exponential rate [30]. As
a consequence, points of low regularity which are contributed by Q+(g, g) due to such
discontinuities will be smoothed out exponentially fast as well. This is the case for the
point ξ = 0 in this particular simulation. A numerical simulation was also performed
using an initial Gaussian profile (not included). Both numerical simulations showed
an evolution toward the same equilibrium profile which reinforces the belief of the
uniqueness of the self-similar profile.

Finally, we verify the performance of our scheme by plotting the distribution’s
mass, momentum, and energy. Only the plot for γ = 1, a = 0.5, is shown since

D
ow

nl
oa

de
d 

02
/1

9/
18

 to
 1

93
.5

4.
49

.1
0.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1308 R. ALONSO, V. BAGLAND, Y. CHENG, AND B. LODS
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Fig. 4. Evolution of g(s, ξ) when γ = 1, a = 0.5.
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Fig. 5. γ = 1, a = 0.5, evolution of mass, momentum, energy, and residual.

the other cases display similar accuracy. In Figure 5 we plot the evolution of mass,
momentum, energy, and residual (in the log scale). The decay of residual shows
convergence to steady state, while mass and momentum are preserved up to 10 digits
of accuracy verifying the performance of the DG method.
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6. Conclusion and perspectives. In the present paper we studied the large-
time behavior of the solution to the dissipative Boltzmann equation in one dimension.
The main achievement of the document is threefold: (1) give a proof for the well-
posedness of such a problem in the measure setting, (2) provide a careful study of
the moments, including the optimal rate of convergence of solutions toward the Dirac
mass at 0 in the Wasserstein metric, and (3) prove the existence of “physical” steady
solutions in the self-similar variables, that is, steady measure solutions that are in
fact absolutely continuous with respect to the Lebesgue measure. Let us make a few
comments about the perspectives and related open problems.

6.1. Regularity propagation for inelastic Boltzmann in one dimension.
The numerical simulations performed in section 5 seem to confirm that many of the
known results given for inelastic Boltzmann in higher dimensions should extend to
inelastic Boltzmann in one dimension, at least under suitable conditions. More specif-
ically, rigorous results about propagation of Lebesgue and Sobolev norms and expo-
nential attenuation of discontinuities for the time evolution problem should hold.
Similarly, the study of optimal regularity for the stationary problem is an interesting
aspect of the equation which is unknown.

6.2. Alternative approach à la Fournier–Laurençot. Exploiting the anal-
ogy between (1.8) and the self-similar Smoluchowski equation, one may wonder if the
approach performed by Fournier and Laurençot in [22] can be adapted to (1.9). We
recall that the approach in [22] consists in finding a suitable discrete approximation of
the steady problem for which a discrete steady solution can be constructed. If such a
discrete solution exhibits all the desired properties (positivity, uniform upper bounds,
and suitable lower bounds) uniformly with respect to the discretization parameter,
then one can pass to the limit to obtain the desired steady solution to (1.9). Such
an approach fully exploits the 1-D feature of the problem. Besides, it does not resort
to the evolution equation (1.8), a fact that makes it very elegant. The main contrast
with respect to [22] lies in the fact that no estimates for moments of negative order
seem available for our problem. Moreover, Smoluchowski’s equation is such that the
collision-like operator sends mass to infinity while the drift term brings it back to
zero. The model (1.9) has the opposite behavior: the collision tends to concentrate
mass in zero while the drift term sends it to infinity.

6.3. Uniqueness and stability of the self-similar profile. Now that the
existence of a steady solution to (1.9) has been settled, the next challenge is to prove
that such a self-similar profile is unique and that it attracts solutions to (1.8) as
s → ∞ or, at least, to find conditions for this to hold. This is certainly the case
in the simulations performed in section 5, which show, in addition, an exponential
rate of attraction. For the 3-D inelastic Boltzmann equation, such a result has been
proven in [30] in the so-called weakly inelastic regime (a perturbation of the elastic
problem). Since the 1-D Boltzmann equation is meaningless for elastic interactions
a perturbative approach seems inadequate. Once a uniqueness theory is at hand, it
would be desirable to obtain rate of convergence; see, for instance, [4]. This would
render a more complete picture of the large-time behavior of the dissipative Boltzmann
equation on the line.

6.4. The rod alignment problem by Aranson and Tsimring. Aranson and
Tsimring in [5] have introduced the following model for rod alignment (the rods have
distinguishable beginnings and ends):
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1310 R. ALONSO, V. BAGLAND, Y. CHENG, AND B. LODS

(6.1)

∂tP (t, θ) =

∫ π

−π
P
(
t, θ− θ∗

2

)
P
(
t, θ+

θ∗
2

) ∣∣θ∗∣∣γ dθ∗−P (t, θ)

∫ π

−π
P (t, θ+ θ∗)

∣∣θ∗∣∣γ dθ∗

having initial condition P (0) = P0 and angle θ ∈ (−π, π). The authors introduced
the model for Maxwellian interactions γ = 0, yet the model is sound for any γ > 0.
We refer to [9, 17] for other variations of such a model. Here P (t, θ) is the time
distribution of rods having orientation θ ∈ [−π, π). Equation (6.1) models a system
of many discrete rods aligning by the pairwise irreversible law

(6.2)
(
θ − θ∗

2 , θ + θ∗
2 )→

(
θ, θ
)
.

Let us explain the interaction law (6.2). We start by fixing a horizontal frame and
picking two interacting rods with orientation θ1, θ2 ∈ [−π, π). Define θ∗ ∈ [−π, π) as
the angle between the ends of the rods. Bisect the rods and define θ ∈ [−π, π) as
the angle between the horizontal frame and the bisecting line. Thus, we can express
the rods’ orientation, up to modulo 2π, by the relation θ1 = θ − θ∗

2 and θ2 = θ + θ∗
2

with respect to the horizontal frame. After interaction, both rods will align with the
bisection angle θ. This law produces the alignment of rods; we refer to [5, 9] for an
interesting discussion and simulations. The law (6.2) can be written in terms of the
rod orientations θ1, θ2 ∈ [−π, π) as

(6.3)
(
θ1, θ2

)
→

{ (
θ1+θ2

2 , θ1+θ2
2

)
,

∣∣θ1 − θ2

∣∣ 6 π,(
θ1+θ2

2 + π, θ1+θ2
2 + π

)
,
∣∣θ1 − θ2

∣∣ > π.

Note that in the case
∣∣θ1 − θ2

∣∣ > π the addition of π is needed since we choose the
alignment to occur in the direction of the bisecting angle associated to the ends of the
rods (as opposed to the beginnings of the rods). The interaction law (6.3) is discon-
tinuous; thus intuitively we understand that model (6.1) will not have conservation
of momentum because there is a choice of alignment direction. Let us fix this by
considering an initial datum P0 with compact support in (−π/2, π/2):

SuppP0 ⊂ (−π/2, π/2) .

Such a property is conserved by the dynamic of (6.1) and it corresponds to a system
of rods where a rod’s beginning and end are indistinguishable; thus we can always
assign an angle θ ∈ (−π/2, π/2) to each rod. For such a model, the weak formulation
is very similar to that of (1.1) except for the fact that all integrals are considered now
over the finite interval (−π/2, π/2). For this reason, the decay of the moments of the
solution P (t) to (6.1) is identical to that of (1.1). Consequently, this translates into
the convergence of P (t) toward a Dirac mass centered at 0 as t→∞ in the Wasserstein
metric. The question is to understand the model after self-similar rescaling where the
support of solutions is no longer fixed and given by

(
−V (t)π/2, V (t)π/2

)
→ (−∞,∞)

as t → ∞. Thus, it is natural to expect that the self-similar solution to (6.1) will
converge toward the steady solution to (1.9).

6.5. Extension to other collision-like problems. It seems that the present
approach is robust enough to be applied to various contexts. In particular, the ar-
gument may be helpful to tackle notoriously difficult questions, such as the existence
of a stationary self-similar solution to the Smoluchowski equation with ballistic ker-
nel interactions. It may be possible, also, to give a more natural treatment of the
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stationary inelastic Boltzmann equation in the framework of probability measures.
The difficulty will be to find a dynamical stable set in order to apply the dynamical
fixed point and a suitable regularization theory for the stationary equation of the
particular problem.

Appendix A. Cauchy theory in both the L1-context and the measure
setting. In this appendix, we give a detailed proof of the existence and stability
estimates of section 2.2 yielding to Theorem 1.4. We fix here γ > 0 and set γ∗ =
max(γ, 2). We begin with an existence and uniqueness result for the Cauchy problem
(1.1) in the special case in which the initial datum µ0 is absolutely continuous with
respect to the Lebesgue measure, i.e.,

µ0(dx) = f0(x)dx .

Theorem A.1. Fix δ > 0. Let a nonnegative f0 ∈ L1
γ∗+γ+δ(R) be given with

f0 6= 0. Setting µ0(dx) = f0(x)dx, there exists a unique family (ft)t>0 ⊂ L1
γ∗+γ+δ(R)

such that µt(dx) = ft(x)dx is a weak measure solution to (1.1) associated to µ0.
Moreover, ∫

R
ft(x)dx =

∫
R
f0(x)dx,

∫
R
xft(x)dx =

∫
R
xf0(x)dx,

and

∫
R
|x|2ft(x)dx 6

∫
R
|x|2f0(x)dx ∀ t > 0 .

(A.1)

In addition to this, if one assumes that

f0 ∈
⋂
k>0

L1
k(R) ,

then (ft)t>0 ⊂
⋂
k>0 L

1
k(R).

Proof. We follow the approach of some unpublished notes by Bressan [16]. For
K > 0 and δ > 0, we introduce

ΩK,δ =

{
0 6 f ∈ L1(R),

∫
R
f(x) dx =

∫
R
f0(x) dx,

∫
R
f(x)|x|γ∗+γ+δdx 6 K

}
,

where we recall that γ∗ := max(γ, 2). We consider ΩK,δ as a subset of L1
γ∗(R) recalling

the notation 〈x〉 =
√

1 + x2 with x ∈ R. For f ∈ ΩK,δ, a change of variables in the
collision operator leads to

‖Q(f, f)‖L1
γ∗

6
∫
R

∫
R
f(x)f(y)|x− y|γ〈bx+ ay〉γ∗dxdy

+

∫
R

∫
R
f(x)f(y)|x− y|γ〈x〉γ∗dxdy .

Now, for any x, y ∈ R,

|x− y|γ 6 Cγ〈x〉γ〈y〉γ , 〈ay + bx〉 6
√

2〈x〉〈y〉 ,

with Cγ = 2γ/2 so that

‖Q(f, f)‖L1
γ∗

6 Cγ+γ∗

(
mγ+γ∗(f)

)2
+ Cγmγ+γ∗(f)mγ(f),

where mk(f) :=
∫
R f(x)〈x〉kdx for any k > 0. Now, for any 0 < k < γ∗ + γ + δ one

has
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(A.2)

mk(f) 6 mγ∗+γ+δ(f) 6 2
γ∗+γ+δ

2 −1

∫
R
f(x)(1+|x|γ∗+γ+δ)dx 6 2

γ∗+γ+δ
2 −1(‖f0‖L1 +K)

from which we deduce that there exists C > 0 such that

‖Q(f, f)‖L1
γ∗

6 C (‖f0‖L1 +K)
2
.

Consequently, Q(f, f) ∈ L1
γ∗(R). Let us now prove that the restriction to ΩK,δ of the

mapping f 7→ Q(f, f) ∈ L1
γ∗(R) is Hölder continuous. For f, g ∈ ΩK,δ,

‖Q(f, f)−Q(g, g)‖L1
γ∗

6
∫
R

∫
R
|(f − g)(x)|f(y)|x− y|γ〈bx+ ay〉γ∗dxdy

+

∫
R

∫
R
g(x)|(f − g)(y)||x− y|γ〈bx+ ay〉γ∗dxdy

+

∫
R

∫
R
|(f − g)(x)|f(y)|x− y|γ〈x〉γ∗dxdy +

∫
R

∫
R
g(x)|(f − g)(y)||x− y|γ〈x〉γ∗dx dy.

Proceeding as previously, one notices that

‖Q(f, f)−Q(g, g)‖L1
γ∗

6 Cγ+γ∗‖g‖L1
γ+γ∗
‖f − g‖L1

γ

+ Cγ+γ∗

(
‖f‖L1

γ+γ∗
+ ‖g‖L1

γ+γ∗
+ ‖f‖L1

γ

)∫
R
|(f − g)(x)| 〈x〉γ∗+γdx;

thus, by (A.2), there exists C > 0 such that

‖Q(f, f)−Q(g, g)‖L1
γ∗

6 C (‖f0‖L1 +K)

(
‖f − g‖L1

γ
+

∫
R
|(f − g)(x)| 〈x〉γ∗+γdx

)
.

Thanks to the Hölder inequality, we have∫
R
|(f − g)(x)| 〈x〉γ∗+γdx

6

(∫
R
|(f − g)(x)| 〈x〉γ∗+γ+δdx

) γ
γ+δ

(∫
R
|(f − g)(x)| 〈x〉γ∗dx

) δ
γ+δ

6 (2
γ∗+γ+δ

2 (‖f0‖L1 +K))
γ
γ+δ ‖f − g‖

δ
γ+δ

L1
γ∗
.

Combining the previous two inequalities, we deduce that the mapping f 7→ Q(f, f)
is uniformly Hölder continuous on L1

γ∗(R) when restricted to ΩK,δ. Let us look for a
one-sided Lipschitz condition. For f, g ∈ L1

γ∗(R), we introduce

[
f, g
]
− = lim

s→0−

‖f + sg‖L1
γ∗
− ‖f‖L1

γ∗

s
.

The dominated convergence theorem implies that[
f, g
]
− 6

∫
R

sign(f(x))g(x)〈x〉γ∗ dx .

Our aim is to show that there exists a constant L > 0 such that for any f, g ∈ ΩK,δ,[
f − g,Q(f, f)−Q(g, g)

]
− 6 L‖f − g‖L1

γ∗
.
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But, ∫
R

sign
(
(f−g)(x)

)(
Q(f, f)−Q(g, g)

)
(x)〈x〉γ∗ dx

6
1

2

∫
R

∫
R
|(f − g)(x− ay)| (f + g)(x+ by)|y|γ〈x〉γ∗ dx dy

+
1

2

∫
R

∫
R

(f + g)(x− ay) |(f − g)(x+ by)| |y|γ 〈x〉γ∗ dx dy

+
1

2

∫
R

∫
R
|(f − g)(x+ y)| (f + g)(x)|y|γ〈x〉γ∗ dxdy

− 1

2

∫
R

∫
R
|(f − g)(x)|(f + g)(x+ y)|y|γ〈x〉γ∗ dxdy .

Thus, changing variables leads to

[
f−g, Q(f, f)−Q(g, g)

]
−

6
1

2

∫
R

∫
R
|(f − g)(x)|(f + g)(y)|x− y|γ

(
〈ax+ by〉γ∗ + 〈bx+ ay〉γ∗ + 〈y〉γ∗

)
dxdy

− 1

2

∫
R

∫
R
|(f − g)(x)|(f + g)(y)|x− y|γ 〈x〉γ∗ dxdy .

(A.3)

Now, since γ∗ > 2 the mapping x 7→ 〈x〉γ∗ is convex over R; thus, for any x, y ∈ R
(recall that a+ b = 1)

〈ax+ by〉γ∗ + 〈bx+ ay〉γ∗−〈x〉γ∗ − 〈y〉γ∗ = 〈ax+ by〉γ∗ − a〈x〉γ∗ − b〈y〉γ∗

+ 〈bx+ ay〉γ∗ − b〈x〉γ∗ − a〈y〉γ∗ 6 0 .

Therefore,[
f − g,Q(f, f)−Q(g, g)

]
− 6

∫
R

∫
R
|(f − g)(x)|(f + g)(y)|x− y|γ〈y〉γ∗ dxdy

6 L‖f − g‖L1
γ
6 L‖f − g‖L1

γ∗
, with L = 2

γ∗+γ+δ
2 Cγ(‖f0‖L1 +K) .

Next, let us look for a subtangent condition. Given f ∈ ΩK,δ and h > 0, one notices
that

f(x)+hQ(f, f)(x) = h

∫
R
f(x−ay)f(x+by)|y|γdy+f(x)

(
1− h

∫
R
f(x+ y)|y|γdy

)
.

In particular, what prevents f +hQ(f, f) from being a.e. nonnegative is the influence
of large x in the last convolution integral. To overcome this difficulty, for any R > 0,
we introduce the truncation fR(x) = f(x)χ{|x|<R}. Then, since f > fR one deduces
from the above identity that

f(x) + hQ(fR, fR)(x) > h

∫
R
fR(x− ay)fR(x+ by)|y|γdy

+ fR(x)

(
1− h

∫
R
fR(x+ y)|y|γdy

)
a.e. x ∈ R .

(A.4)

Now,∫
R
fR(x+ y)|y|γdy =

∫
R
fR(y)|x− y|γdy 6 max(2γ−1, 1)

∫
R
f(y) (|x|γ + |y|γ) dy
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1314 R. ALONSO, V. BAGLAND, Y. CHENG, AND B. LODS

and using Young’s inequality, one sees that there exists some positive constant C0 > 0
depending only on K, δ, γ, and ‖f0‖L1 , but not on R, such that∫

R
fR(x+ y)|y|γdy 6 C0(1 + |x|γ) for any x ∈ R , R > 0 and f ∈ ΩK,δ .

Therefore, recalling that fR is supported on {|x| < R}, one deduces from (A.4) that

f(x) + hQ(fR, fR)(x) > 0 for a.e. x ∈ R ∀ 0 < h < hR :=
1

C0(1 +Rγ)
.

Moreover, since Q preserves the mass,∫
R

(
f(x) + hQ(fR, fR)(x)

)
dx =

∫
R
f(x)dx =

∫
R
f0(x)dx .

Finally, using (2.7) it follows that, for any R > 0,∫
R
Q(fR, fR)(x)|x|γ+γ∗+δdx

6 −1

2

(
1− aγ+γ∗+δ − bγ+γ∗+δ

) ∫
R

∫
R
fR(x)fR(y)|x− y|2γ+γ∗+δdxdy 6 0 .

Consequently,∫
R

(
f(x) + hQ(fR, fR)(x)

)
|x|γ+γ∗+δdx 6

∫
R
f(x)|x|γ+γ∗+δdx 6 K ∀R > 0 .

We have thus shown that, for any R > 0 and any 0 < h < hR, one has f+hQ(fR, fR) ∈
ΩK,δ. In particular, for any R > 0 and any 0 < h < hR one has

dist(f + hQ(f, f),ΩK,δ) 6 ‖f + hQ(f, f)− (f + hQ(fR, fR)‖L1
γ∗

= h ‖Q(f, f)−Q(fR, fR)‖L1
γ∗
.

Now, for f ∈ ΩK,δ, one can make ‖Q(f, f)−Q(fR, fR)‖L1
γ∗

arbitrarily small provided
R > 0 is large enough; thus, the subtangent condition

lim inf
h→0+

h−1dist (f + hQ(f, f),ΩK,δ) = 0

holds true.
Using the Hölder continuity, the subtangent condition, and [28, Theorem VI.2.2]

we have conditions (C1)–(C3) in [28, p. 229]. Adding the one-sided Lipschitz condi-
tion, we can apply [28, Theorem VI.4.3] and deduce the existence and the uniqueness
of a global solution f to (1.1) such that f(t) ∈ ΩK,δ for every t > 0. Moreover, (A.1)
holds; thus, it follows from (2.7) that for every k > γ∗ and every t > 0,∫

R
f(t, x) |x|kdx 6

∫
R
f0(x) |x|kdx .

This implies, together with the conservation of the mass, that f(t) ∈ L1
k(R) for any

t > 0 and any k ∈ R. Finally, it is easily checked that the family (µt)t>0 defined by
µt(dx) = f(t, x)dx for any t > 0 is a weak measure solution to (1.1).
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Proof of Proposition 2.10. Let T > 0 be fixed. For any φ ∈ Lip1(R) and t ∈ [0, T ]
define

Wφ(t) :=

∫
R
φ(x)µt(dx)−

∫
R
φ(x)νt(dx) .

We will also use in the proof the notation

W (t) = dKR(µt, νt) = sup
φ∈Lip1(R)

Wφ(t)

and recall that

W (t) =

∫
R2

|x− y|πt(dx,dy) for some πt ∈ Π(µt, νt) .

Let now φ ∈ Lip1(R) be fixed. One has

d

dt
Wφ(t) =

1

2

∫
R2

|x− y|γ∆φ(x, y)µt(dx)µt(dy)

− 1

2

∫
R2

|v − w|γ∆φ(v, w)νt(dv)νt(dw)

=

∫
R2

πt(dx, dv)

∫
R2

[
|x− y|γ∆0φ(x, y)− |v − w|γ∆0φ(v, w)

]
πt(dy,dw),

(A.5)

where ∆0φ(x, y) = φ(ax+ by)− φ(x) for any (x, y) ∈ R2. Now,

|x− y|γ∆0φ(x, y)− |v − w|γ∆0φ(v, w)

=
(
|x− y|γ − |v − w|γ

)
∆0φ(x, y) + |v − w|γ

(
∆0φ(x, y)−∆0φ(v, w)

)
,

(A.6)

and, recalling that the Lipschitz constant of φ is at most one, the second term readily
yields ∣∣∣∆0φ(x, y)−∆0φ(v, w)

∣∣∣ =
∣∣∣φ(ax+ by)− φ(av + bw)− φ(x) + φ(v)

∣∣∣
6 (1 + a)|x− v|+ b|y − w| .

(A.7)

For the first term in (A.6), we use the identity A = min{A,B}+ (A−B)+, valid for
any A,B > 0, to obtain the estimate∣∣Aγ −Bγ |A =

∣∣Aγ −Bγ |(min{A,B}+ (A−B)+

)
6
∣∣Aγ −Bγ | min{A,B}+

∣∣Aγ −Bγ | ∣∣A−B|
6 (1 + γ) max{A,B}γ

∣∣A−B∣∣ .
The last inequality follows noticing that

∣∣Aγ − Bγ | min{A,B} 6 γmax{A,B}γ
∣∣A −

B
∣∣ . Since

∣∣∆0φ(x, y)
∣∣ 6 b|x − y| we can choose A = |x − y| and B = |v − w| to

conclude that

(
|x− y|γ − |v − w|γ

)
∆0φ(x, y) 6 b(1 + γ) max{|x− y|, |v − w|}γ

∣∣|x− y| − |v − w|∣∣
6 b(1 + γ) max{|x− y|, |v − w|}γ

(
|x− v|+ |y − w|

)
.

(A.8)
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1316 R. ALONSO, V. BAGLAND, Y. CHENG, AND B. LODS

Gathering the estimates (A.6), (A.7), and (A.8) in (A.5) and using symmetry of the
expression, it follows that d

dtWφ(t) 6 3(1 + γ)H(t), where we introduced

H(t) :=

∫
R2

πt(dx, dv)

∫
R2

(
|x|γ + |y|γ + |v|γ + |w|γ

)
|x− v|πt(dy,dw) .(A.9)

Expand H(t) = H1(t) +H2(t), where

H1(t) : =

∫
R2

πt(dx, dv)

∫
R2

(
|y|γ + |w|γ

)
|x− v|πt(dy,dw) ,

H2(t) : =

∫
R2

(
|x|γ + |v|γ

)
|x− v|πt(dx,dv) .

Notice that

H1(t) =

∫
R2

(
|y|γ + |w|γ

)
πt(dy,dw)

∫
R2

|x− v|πt(dx, dv)

= W (t)

∫
R
|x|γ(µt + νt)(dx) 6 CW (t) .

(A.10)

The last inequality follows because the weak measure solutions µt and νt have the
γ-moment uniformly bounded in t ∈ [0, T ], and additionally, πt ∈ Π(µt, νt) achieves
the Kantorovich–Rubinstein distance. We estimate now H2(t) as in [23, Corollary
2.3]. Namely, for any t ∈ [0, T ] and any r > 0, one has∫
R2

(
|x|γ + |v|γ

)
|x− v|πt(dx, dv) 6 2rγ

∫
R2

|x− v|πt(dx,dv)

+

∫
min(|x|,|v|)>r

(
|x|γ + |v|γ

)
|x− v|πt(dx, dv)

= 2rγW (t) +

∫
min(|x|,|v|)>r

(
|x|γ + |v|γ

)
|x− v|πt(dx,dv)

since πt ∈ Π(µt, νt) achieves the Kantorovich–Rubinstein distance. Setting now Rε
such that (

|x|γ + |v|γ
)
|x− v|

(
exp

(
ε|x|γ

2

)
+ exp

(
ε|v|γ

2

))
6 Rε (exp(ε|x|γ) + exp(ε|v|γ)) ∀ (x, v) ∈ R2 ,

it follows that

H2(t) 6 2rγW (t) +Rε CT (ε) exp

(
−εr

γ

2

)
.

Choosing
rγ = |2 logW (t)/ε|

we obtain

(A.11) H2(t) 6
4

ε
W (t) | logW (t)|+Rε CT (ε)W (t) .

Estimates (A.10) and (A.11) imply that

(A.12)
d

dt
Wφ(t) 6 KεCT (ε)W (t)

(
1 + |logW (t)|

)
with a constant Kε > 0 depending only on γ and ε > 0. Integrating (A.12) and taking
the supremum over φ ∈ Lip1(R) we get the conclusion.
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ONE-DIMENSIONAL DISSIPATIVE BOLTZMANN EQUATION 1317

Appendix B. Slowly increasing entropy bounds. We show in this appendix
that the entropy of the solution to (1.2) is increasing logarithmically in time, which
we believe is an interesting a priori estimate. For simplicity, we restrict ourselves to
the case a = b = 1/2.

Let f0 ∈ L1(R) be a nonnegative initial datum such that∫
R
f0(x)dx = 1,

∫
R
f0(x)xdx = 0,

and ∫
R

exp(ε|x|γ)f0(x)dx <∞

for some ε > 0, in such a way that there exists a unique solution (ft)t>0 ⊂ L1(R) to
(1.2) with

f(t, x) > 0 for a. e. x ∈ R,
∫
R
f(t, x)dx = 1 ∀t > 0.

Set

H(f(t)) =

∫
R
f(t, x) log f(t, x)dx ∀t > 0

and assume that H(f0) <∞. Recall that Mk(t) =
∫
R f(t, x)|x|kdx for any k > 0. We

have first the following proposition.

Proposition B.1. Assume that γ > 1. Then, there exists Cγ > 0 (depending
only on γ and not on f0) such that

H(f(t)) 6 H(f0) +
2γ+1

Cγe
log

(
1 + Cγ

√
M2γ(0)t

)
∀t > 0.

Proof. Since

d

dt
H(f(t)) =

∫
R
Q(f(t, x), f(t, x)) log f(t, x)dx ∀t > 0

the proof consists simply in estimating this last integral. We forget about the depen-
dence with respect to t to simplify notation and set

I :=

∫
R
Q(f, f) log f(x)dx.

Applying (1.3) to ψ(x) = log f(x) we get

I =

∫
R

∫
R
f(x)f(y)

∣∣x− y∣∣γ log

(
f
(
x+y

2

)√
f(x)f(y)

)
dxdy.

Set

Zγ =

∫
R

∫
R
f(x)f(y)

∣∣x− y∣∣γdxdy

so that µ(dx, dy) = 1
Zγ
f(x)f(y)

∣∣x− y∣∣γdxdy is a probability measure over R2. From

Jensen’s inequality we have

I 6 Zγ log

(∫
R2

f
(
x+y

2

)√
f(x)f(y)

µ(dx,dy)

)
.
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1318 R. ALONSO, V. BAGLAND, Y. CHENG, AND B. LODS

Setting now

1

J
:=

∫
R2

f
(
x+y

2

)√
f(x)f(y)

µ(dx,dy) =
1

Zγ

∫
R2

f

(
x+ y

2

)√
f(x)f(y)|x− y|γdxdy

we get easily that

I 6 −J log J

∫
R2

∫
R2

f

(
x+ y

2

)√
f(x)f(y)|x− y|γdxdy.

Since −s log s 6 1
e for any s > 0, we get

I 6
1

e

∫
R2

f

(
x+ y

2

)√
f(x)f(y)|x− y|γdxdy,

and estimating |x− y|γ 6 2γ−1 (|x|γ + |y|γ) and using symmetry we find

I 6
2γ

e

∫
R

√
f(x) |x|γdx

∫
R
f

(
x+ y

2

)√
f(y)dy.

Setting g(z) = f(z/2) and h(x) = |x|γ
√
f(x) we see that

I 6
2γ

e

∫
R
h(x)

(
g ∗
√
f
)

(x)dx,

where ∗ denotes the convolution product. A simple use of Young’s convolution in-
equality yields

I 6
2γ

e
‖h‖L2(R) ‖g ∗

√
f‖L2(R) 6

2γ

e
‖h‖L2(R) ‖g‖L1(R)

∥∥∥√f∥∥∥
L2(R)

.

Since

‖h‖L2(R) =

√(∫
R
f(x)|x|2γdx

)
=
√
M2γ(f), ‖g‖L1(R) = 2‖f‖L1(R) = 2

and ‖
√
f‖L2 = ‖f‖1/2L1 = 1 we finally obtain that

I 6
2γ+1

e

√
M2γ(f).

In other words,

(B.1)
d

dt
H(f(t)) 6

2γ+1

e

√
M2γ(t) ∀t > 0.

Using Theorem 3.5, (3.19b) (remember that γ > 1), we have

(B.2) M2γ(t) 6
M2γ(0)

(1 + Cγ
√
M2γ(0)t)2

,

where Cγ = 1
4

(
1− 21−2γ

)
. Plugging this into (B.1) one gets

d

dt
H(f(t)) 6

2γ+1

e

√
M2γ(0)

1 + Cγ
√
M2γ(0)t

∀t > 0,

which yields the result after integration.
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We can actually prove the optimality of the above upper bound using a gen-
eral comparison result between entropy and moments which can be tracked back to
Nash [31]. We state here the result in its general form in dimension n > 1 and give a
complete proof for completeness.

Proposition B.2. Let n > 1 and f ∈ L1(Rn) nonnegative to be given with∫
Rn f(x)dx = 1. For any k > 0, set

Mk(f) =

∫
Rn
f(x)|x|kdx and H(f) =

∫
Rn
f(x) log f(x)dx.

Then,

Mk(f) > C(k, n) exp

(
−k
n
H(f)

)
∀k > 1,

where C(k, n) = exp
(
−k − k

n log γ(k, n) + log n
)
, γ(k, n) = |Sn−1|

k Γ(nk ).

Proof. For any λ ∈ R, notice that

min
s>0

(s log s+ λs) = − exp(−λ− 1).

Applying this to s = f(x), λ = a|x|k + b (with a, b > 0 to be fixed later on) and
integrating over Rn one gets

H(f) + aMk(f) + b > − exp(−b− 1)

∫
Rn

exp(−a|x|k)dx.

One easily checks that∫
Rn

exp(−a|v|k)dv = a−
n
k

∫
Rn

exp(−|v|k)dv = a−
n
k γ(k, n)

with γ(k, n) = |Sn−1|
k Γ

(
n
k

)
. Therefore, for any k > 0, it holds that

H(f) + aMk(f) + b > − exp(−b− 1)γ(k, n) a−
n
k ∀a, b ∈ R.

One optimizes with respect to the parameters a, b choosing, for instance, a = n
Mk

and

b in such a way that exp(−b− 1)γ(k, n) a−
n
k = 1. This leads to

H(f) + n > −1− b = log

(
a
n
k

γ(k, n)

)
=
n

k
log a− log γ(k, n).

Since a = n
Mk(f) , we finally obtain

(B.3)
n

k
logMk(f) > −H(f)− n− log γ(k, n) +

n

k
log n,

which is the desired estimate.

We deduce from the above proposition that the upper bound provided by Propo-
sition B.1 is almost optimal.

Proposition B.3. For γ > 1, one has

H(f(t)) >
1

γ
log

(
1 + Cγ

√
M2γ(0)t

)
− 1− log 2− 1

2γ
log(M2γ(0)) ∀t > 0.
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Proof. We apply the estimate provided by Proposition B.2 to n = k = 1 and
f = f(t, x). We notice that γ(1, 1) = 2Γ(1) = 2 and obtain from (B.3)

logM1(t) > −H(f(t))− 1− log 2 ∀t > 0.

Using now the fact that M1(t) 6M2γ(t)
1
2γ together with (B.2) we get that

logM1(t) 6
1

2γ
log(M2γ(0))− 1

γ
log

(
1 + Cγ

√
M2γ(0)t

)
,

which, combined with the previous estimate, yields the result.
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