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Abstract: Climate change increases extreme whether events such as floods, hailstorms, or storms,
which can affect agriculture, causing damages and economic loss within the agro-food sector. Optical
remote sensing data have been successfully used in damage detections. Cloud conditions limit their
potential, especially while monitoring floods or storms that are usually related to cloudy situations.
Conversely, data from the Polarimetric Synthetic Aperture Radar (PolSAR) are operational in all-
weather conditions and are sensitive to the geometrical properties of crops. Apple orchards play a key
role in the Italian agriculture sector, presenting a cultivation system that is very sensitive to high-wind
events. In this work, the H-α-A polarimetric decomposition technique was adopted to map damaged
apple orchards with reference to a stormy event that had occurred in the study area (NW Italy) on 12
August 2020. The results showed that damaged orchards have higher H (entropy) and α (alpha angle)
values compared with undamaged ones taken as reference (Mann–Whitney one-tailed test U = 14,514,
p < 0.001; U = 16604, p < 0.001 for H and α, respectively). By contrast, A (anisotropy) values were
significantly lower for damaged orchards (Mann–Whitney one-tailed test U = 8616, p < 0.001). Based
on this evidence, the authors generated a map of potentially storm-damaged orchards, assigning a
probability value to each of them. This map is intended to support local funding restoration policies
by insurance companies and local administrations.

Keywords: Sentinel-1; apple orchard damage; polarimetric decomposition; entropy; anisotropy;
alpha angle; storm damage mapping; economic loss; insurance support

1. Introduction

Climate change and related natural disasters affect several sectors [1]. Agriculture is
one of the most vulnerable [2,3]. Between 2005 and 2015, the impact of natural disasters on
the agricultural sector was estimated to be 96 billion dollars in damaged, or completely lost,
crops [4]. Climate change-related effects (e.g., temperature and precipitation increasing in
terms of level, time, and variability) are expected to reduce the yield and quality of many
crops, especially cereals and fodder cereals [5].

Storms and hail also can cause serious damage to crops [6]. Hurricanes can cause
much damage, with grass lodging, uprooting of orchards, and falling trees [7,8]. These
critical events, potentially highly impacting farmers’ income, must be carefully accounted
for in the context of risk management in agriculture.

Fruits and vegetables represent (year 2018) about 14% of the total value of European
(EU) agricultural production [9,10]. These crops are very important for many EU member
states, in particular for Mediterranean countries such as Spain, Italy, and France. Italy is
one of the main European leaders in the apple sector [11]. Consequently, the yield loss
risks concerning the fruit and vegetable sector must be minimized. Major threats concern
diseases, insects, and natural disasters such as hail, drought, frost, and storms.
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Apple cultivation is very intensive today, with a plant density around 2000 plants
per hectare [12]. Such density allows a very high yearly production (about 45 tons per
hectare) [13], which is obtained by a row-based cultivation strategy where young plants
begin to be productive after the third year. The adoption of low-vigor rootstocks enables
an increase in planting density and rapid fruiting. Unfortunately, this kind of cultivation
determines a very underdeveloped root system, not enough to guarantee plant stability
under unfavorable conditions. The situation is more critical during extreme weather events,
especially when there are many weighty fruits, i.e., before harvesting [14,15]. Steel cables
anchored to concrete or wooden poles are used to improve row stability.

Within this context, when a stormy event occurs, it is important to assess the spatial
level and extent of damage to start remedial actions and minimize crop loss. Farmers
are interested in damage estimation especially when a refund is due by insurance com-
panies [16,17]. In this case, damage is assessed through on-the-spot checks by an expert
surveyor from the insurance company, who determines the extent, type, and quality of
damage. Such an approach depends on a high level of subjectivity related to the expert’s
skill and experience. Moreover, these operations require a lot of time and are expensive,
especially where large areas have been affected by the event.

In this operative context concerning crop damage analysis, a more objective monitor-
ing could play a key role, providing more robust forecasts about potential yield or yield
losses. Many agricultural stakeholders, such as farmers, consortia, agronomists, insurance
companies, and local administrations, require a continuous monitoring of crops over large
spatial extents.

A method based on free Earth Observation (EO) data can certainly represent an
effective support [18] and the consequent technological transfer desirable [19–24].

In particular, optical remote sensing data have been successfully used in several
operational frameworks, as proved by many works [25–32]; unfortunately, cloud conditions
limit the nominal temporal resolution of this type of data, especially while monitoring
natural disasters (e.g., floods or storms) that ordinarily occur when clouds are present. Data
from synthetic aperture radar (SAR) systems can operate during all-weather conditions,
and, while exploring agronomical issues, they can be used to analyze the moisture and
geometrical conditions of crops [33–35]. In particular, dual-polarimetric SAR acquisitions
from Copernicus Sentinel-1 mission (S1) provide unique opportunities to disseminate
operational monitoring for several application communities [36,37]. Dual-pol acquisition
mode has a larger swath and a lower data volume compared with full-pol acquisitions, thus
improving data collection and processing for operational activities [38,39]. Polarimetric
data can provide information about polarization amplitude and phase, allowing scattering
mechanism definition (i.e., single-bounce, double-bounce, or volume scattering) induced by
target properties. SAR polarimetry (PolSAR) is a technique that analyzes SAR polarization
with respect to the vector of polarized electromagnetic waves. When a signal passes
through a medium, the refraction index changes, or when it strikes an object, it is reflected;
the so-called backscattering matrix [40] contains information about the reflectivity, shape,
and orientation of the reflecting target. An important improvement in the extraction of
physical information from the ordinary coherent backscattering matrix was achieved
by Cloude and Pottier [41,42], who proposed the composition of system vectors. Most
studies have assessed the sensitivity of polarimetric indicators derived from the C-band
space-borne SAR to derive crop parameters [43]. The PolSAR technique was successfully
applied to monitor crop growth and give estimates of yield. For example, Betberder [44]
analyzed temporal trends of polarimetric indicators, proving their high potential to detect
crop growth changes. Valcarce [45] used polarimetric data time series for land-cover
classification, adopting a decision tree classification algorithm performing high crop class
detection accuracies. Mercier and Qi [46,47] used PolSAR to support/integrate vegetation
phenology monitoring based on optical data.

Only few works referring to PolSAR application in crop damage analysis are present in
the literature [48,49], denoting a lack of scientific production about this issue. Nevertheless,
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hailstorms and storms are known to change vegetation structure, resulting in lodging or
tree uprooting/breaking. Therefore, this peculiar effect changes polarimetric response and
could be used to detect and characterize tree structure [50]. In general, it can be said that
decomposition techniques offer a new insight into PolSAR data for describing vegetation
structural proprieties [51].

The polarimetric decomposition technique decomposes the signal into its individual
scattering components, permitting identification of the dominant scattering type [42,52];
this information is related to the target structural properties [18,53,54]. Various decompo-
sition techniques have been proposed, and Lee and Cloude provided a comprehensive
review about this topic [42,55]. Model-based [56] and eigenvector-based [41] algorithms
have been preferred by many researchers [51]. According to Ji and his collaborators [57], the
Cloude–Pottier H-α-A decomposition seems to be the most promising approach. It is based
on second-order statistics extracted by a set of neighbor pixels that are used to calculate
the local entropy H and the α angle (related to average scattering mechanisms). These are
used to define a Cartesian space, H-α, that is linearly divided into nine zones describing
the main scattering mechanisms. Recently, eigenvector decomposition has been widely
applied in several applications [55,58–61]. The method was originally developed for quad-
polarization data. Nevertheless, it was also adapted to work with dual-pol data [57,62,63],
and consequently, it can be successfully used to retrieve polarimetric information also from
S1 data that are unable to collect quad-pol data.

In this work, the applicability of the H-α-A polarimetric decomposition technique to
the detection and mapping of damages from storms affecting fruit orchards was tested. In
particular, the proposed case study refers to the stormy event that occurred in Northwest
Italy on 12 August 2020. Consequently, a map of potentially damaged orchards was
generated with the aim of supporting insurance companies and local administrations to
address their funding restoration policies.

2. Materials and Methods
2.1. Study Area

On 12 August 2020, an exceptional storm affected the Northwest of Italy. In particular,
the storm uprooted many apple orchards in the province of Cuneo (Piemonte region, NW
Italy). Moreover, it occurred in a critical period of the year, when the main fruits (apples,
pears, and peaches) were still to be harvested (Figure 1). Because in this period the farmers
are focused on harvesting, no early recovery efforts were performed in the damaged fields.
Therefore, the majority of the uprooted trees were not removed until October.

Figure 1. An apple orchard (cultivar “Gala”) with hail nets uprooted by the storm on 12 August 2020.
At the bottom, many mature apples can be noted, suggesting the economic loss caused by the storm.

The study area includes four municipalities: Saluzzo, Verzuolo, Manta, and Lagnasco
(Figure 2). The area of interest (AOI) is sized about 132.23 km2. It plays a crucial economic
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role in Piemonte fruit production. In fact, this zone is suitable for this cultivation: the
loose soil without water stagnation, sunny and dry atmosphere, and strong temperature
difference between day and night allow the correct ripening and coloring of fruits. Apples
represent the primary crop in Manta. Since August is a droughty period in the AOI, no
significative previous precipitations had occurred before the event; 1.2 mm had cumulated
in the previous week, as reported by the regional environmental agency (www.arpa.
piemonte.it). Therefore, the authors supposed that moisture-related conditions cannot
significantly affect the SAR signal.

Figure 2. Italian regions (light gray) and the Piemonte region (dark gray). (Red) The AOI includes the Saluzzo, Manta,
Lagnasco, and Verzuolo municipalities (reference frame: WGS84 UTM32N).

2.2. Data and Data Collection
2.2.1. Sentinel-1 Data

Sentinel-1 is currently one of the largest space-borne missions providing free and
openly accessible SAR data. The S1 mission relies on a constellation of two satellites
(Sentinel-1A and Sentinel-1B) operating in the C-band (5.54 cm wavelength). The main
acquisition mode over land is the Interferometric Wide (IW) swath, recording approxi-
mately 250 km in length at 5 × 20 m spatial resolution in a single look. Ordinarily, S1
records data in a dual pole mode (VV and VH), where electromagnetic waves are polarized
vertically (V) for transmission and horizontally/vertically for reception. The data are
recorded as complex values (I/Q components) and in SAR geometry (range and azimuth).
A descending single-look complex (SLC) IW image (relative orbit no. 139), acquired af-
ter the storm (14 August 2020), was obtained from the Copernicus Open Access Hub
(https://scihub.copernicus.eu/dhus/#/home, accessed: 20 December 2020).

2.2.2. Cadastral Data

A cadastral map coupled with farmers’ applications for EU Common Agricultural
Policy (CAP) incentives was used in this work to classify the orchards in the AOI. The
correspondent map (hereafter called orchard map (OM)) was consequently generated. The
damaged orchards were analyzed at cadastral parcel level. The cadastral map was obtained
for free from the regional geoportal in vector format georeferenced in the WGS84 UTM zone
32N reference frame and updated in 2018 (nominal scale was 1:2000). Databases containing
farmers’ applications for EU CAP incentives of 2019 were used to map orchard types in the
AOI (2020 data are not yet available). Every year, farmers support their activities with CAP

www.arpa.piemonte.it
www.arpa.piemonte.it
https://scihub.copernicus.eu/dhus/#/home
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incentives. These data were obtained for free from the regional public information system
for agriculture. CAP applications contain the cadastral parcel code and the declaration of
the most relevant crops as communicated by farmers. In this way, it is possible to couple
the cadastral map with crop type information at parcel level by an ordinary join operation
available in the Geographical Information System (GIS) software. In this work, 2040 (about
1136 ha) apple orchards were selected from the joined data to test the procedure.

2.2.3. Ground Dataset

A ground survey was conducted to gather the field data needed to calibrate and
validate the PolSAR-based mapping procedure. In total, 72 apple orchards were surveyed
(about 3.5% of the apple orchards in the AOI) during a ground campaign aimed at labeling
damaged (22) and undamaged (50) fields. Specifically, the surveyed fields have an average
size of about 0.92 ha, fitting well with the S1 geometrical resolution. In fact, about 40 S1
pixels can characterize each field. In particular, a visual assessment aimed at recognizing
the following conditions was performed: if the majority of the trees were uprooted, the field
was labeled as damaged; otherwise, it was labeled undamaged, and the related cadastral
parcel was selected from the OM layer.

The dataset was split in a training (60%) and a test set (40%) by random selection
from the surveyed parcels. In total, 13 damaged fields (hereafter called DTFs) and 28
undamaged ones (hereafter called UTFs) were assigned to the training set. Conversely, 10
damaged fields (hereafter called DVFs) and 21 undamaged ones (hereafter called UVFs)
were assigned to the test set. The training and test set parcels are shown in Figure 3.

Figure 3. Parcels belonging to the training and test sets. Colors (see legend) define the state of the
surveyed parcel (damaged/undamaged). Reference frame is WGS84 UTM 32N.

This dataset was provided by local farmers. The authors found that the supplied
sample includes 72 fields corresponding to about 3.5% of the apple orchards in the AOI.
The authors had just the opportunity of comparing the sample size with the expected total
number of apple orchards in the AOI (about 2050). The authors are aware that this sample
size does not perfectly fit statical requirements. Nevertheless, it well represents ordinary
availability of ground data from farmers when working with actual data not directly
managed by scientists. This situation well represents a common operational condition
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when working with technology transfer issues, especially in the agronomic sector. In fact,
the most of data from farmers, generally, rely on their autonomous collections and decision
of making them public. Moreover, the private property of parcels is an objective limiting
factor for all the analyses, since free access is not guaranteed. With these premises, we
proceed to process the data.

A preliminary economic assessment was also performed since the storm occurred
close to the apple harvesting period, determining a significant problem for local apple yield
in 2020. This was obtained considering, for damaged parcels, a potential yield equal to the
average one in the Piemonte region (31 t·ha−1) and a reference unitary price of 380 €·t−1.
These values were obtained from the Italian Statistics Institute (ISTAT) [64].

2.3. Data Processing
2.3.1. Polarimetric Decomposition

The available S1 IW SLC image was processed to compute the polarimetric decom-
position parameters. The adopted workflow is shown in Figure 4 and proposed by [65].
The target polarimetric analysis is ordinarily performed starting from the coherency ma-
trix [66,67] or from the 2×2 covariance matrix (C2). Preprocessing steps were managed
using the ESA SNAP v. 7.0.0 software [68].

Figure 4. The adopted workflow. All steps were managed in SNAP ESA v. 7.0.

First, the precise orbit state vector data were downloaded from the ESA archive
(https://qc.sentinel1.eo.esa.int/, accessed: 20 December 2020) and applied to refine the
satellite position. Precise orbit files are delivered within 20 days after data acquisition and
provide accurate satellite position and velocity information. Using the TOPS split module,
1 sub-swath and 2 bursts were selected based on AOI coverage. A radiometric calibration
was applied and the result saved in a complex-valued format needed to compute C2. TOPS
deburst was applied by merging different bursts into a single SLC image. A spatial subset
was then generated covering the AOI. The subset was multi-looked by 4 × 1 (range and
azimuth direction, respectively) to generate squared pixels. The resulting multi-looked
image, with a geometrical resolution equal to 15 m, was used to generate the local C2 at
pixel level. With respect to quad polarization, dual-polarimetric SAR sensors generate a
matrix showing the half of the totally occurring scattering components involved in fully
polarimetric imagery [69]. In particular, the covariance matrix for dual polarization (e.g.,
Sentinel-1) is often calculated with reference to a second-order scattering information [18]
generated from the spatial averaging of the scattering vector k = [SVV, SVH]T as expressed
in Equation (1):

C2 =

[
C11 C12

C21 C22

]
=

[
〈|SVV |〉 〈SVHSVV

∗〉
〈SVHSVV

∗〉 〈|SVH |〉

]
(1)

https://qc.sentinel1.eo.esa.int/
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where ∗ denotes the complex conjugate and 〈 〉 the local mean value in a 5 × 5 moving
window. Each C2 element (C11, C22, <(C12), and =(C12)) is stored individually and succes-
sively refined by Lee filtering (5 × 5 kernel size) to minimize speckle-related noise. H-α-A
polarimetric decomposition was obtained by eigenvector computation as proposed by
different authors [57,62,63]. The modified formula for dual-pol data, as proposed by [66],
is reported in Equations (2) and (3).

〈C2〉 = [U]

[
λ1 0
0 λ2

]
[U]∗T = λ1u1u1

∗T + λ2u2u2
∗T (2)

[U] =

[
U11 U12
U21 U22

]
= [u1 u2] =

[
cos α − sin αe−jδ

sin αejδ cos α

]
(3)

where λ1 ≥ λ2 ≥ 0 are the local eigenvalues, [U] is the orthogonal unitary matrix, * and T
represents the complex conjugate and transpose matrices, respectively. The angles α and δ

define the orientation and size of the polarization ellipse of the recorded signal [62]. The
eigenvector dual-pol decomposition results in three roll-invariant parameters: polarimetric
scattering entropy (H), mean scattering angle (α), and scattering anisotropy (A).

H was calculated from Equation (4):

H = −
2

∑
i=1

(− Pi log2 Pi) (4)

where
Pi =

λi
λ1 + λ2

H defines scatter randomness; it can vary between 0 and 1 and is related to the number
of dominant scattering mechanisms, being proportional to the degree of depolarization [70].
H = 0 means that the coherency matrix shows only one eigenvalue and, therefore, the
relative orientation of the correspondent pixel elements is quite simplified (e.g., single-
bounce reflection).

Anisotropy A (Equation (5)) provides additional information about H in terms of the
difference between scattering mechanisms.

A =
λ1 − λ2

λ1 + λ2
(5)

The anisotropy quantifies the relative strength between first and second dominant
scattering mechanisms. It is strictly related to the degree of signal polarization [18,71,72].
According to Mandal [18], the state of polarization of an electromagnetic (EM) wave is
characterized in terms of the degree of polarization (0 ≤ A ≤ 1). The latter is defined as
the ratio between the average intensity of the polarized portion of the signal and its total
intensity [73]. A = 1 and A = 0 for a completely polarized and completely unpolarized
wave, respectively. The unpolarized part of the received wave, (1 − A), is assumed to
represent the volume scattering component from the distributed targets [74].

Average scattering mechanisms (i.e., surface, double-bounce, and volume scatter-
ing) can be identified with respect to the α parameter, which is computed according to
Equation (6):

α =
2

∑
i=1

Pi cos−1

 |λ1 + λ2|
√

2
√
|λ1|2 + |λ2|2

 (6)

The α angles close to 0◦ denote a diffuse surface scattering, α close to 45◦ means
dipole scattering (caused by volumes), and α close to 90◦ means double-bounce scattering
mechanisms.
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With these premises, the raster layer mapping local H, α, and A values was computed
from the pre-processed SLC image. It was projected onto the WGS84 UTM 32N refer-
ence frame, applying the range–Doppler terrain correction. The adopted digital terrain
model (DTM) needed for this step was the one freely obtainable from the Piemonte region
geoportal [75]. It is supplied with a 5 m grid size and a height accuracy of ±0.30 m and
was generated in 2011. The nearest-neighbor resampling method was adopted during the
range–Doppler terrain correction.

2.3.2. Testing H-α-A Values after the Storm

To assess how the storm changed the orchards’ polarimetric behavior, a preliminary
analysis was performed with reference to the training set. In particular, DTF and UTF pixels
distributions were compared using the Mann–Whitney (MW) nonparametric test (one-
tailed) [76]. The MW null hypothesis is that DTFs and UTFs have an identical distribution.
The one-sided alternative “greater” was set, assuming that the DTF cumulated frequency
distribution was expected to have shifted to the right of the UTF one (i.e., DTFs were
greater than UTFs) [77].

The authors preliminary explored the polarimetric indices’ behavior using reference
ground data. In particular, the frequency distributions were perceptively assessed using
boxplots (see Section 3.1). The median value of distribution highlights a shift between
damaged and undamaged fields. Therefore, to test these perceptive differences, the authors
performed one tail test since the direction of changes is a priori known.

Three MW tests were performed to test if the DTF distributions of the H-α-A pixels
within the parcels were statistically different from the UTF ones. All statistical analyses
were performed using R software v. 3.6.3 [78]; conversely, spatial analysis was done using
SAGA GIS 7.0 [79].

2.3.3. Detection of Damaged Orchards

The main goal of this work was to test the capability of the PolSAR technique to
recognize damaged orchards. For this task, UTFs were assumed as representatives of the
state of undamaged orchards. Samples were sized about 23 ha and represented about
2% of OM. In spite of this small sample size, the UTFs preliminarily resulted in a good
dataset, whose reliability was confirmed by ground surveys. With these premises, the
H-α-A distributions within UTFs were used to represent the reference distributions of the
undamaged orchards. All H-α-A distributions from the AOI mapped parcels were tested
against undamaged ones by the MW test, checking the following conditions: (i) parcel H
distribution was greater than that of the UTFs; (ii) parcel α distribution was greater than
that of the UTFs; (iii) parcel A distribution was lower than that of the UTFs. The resulting
MW U-statistic and related p-value were then mapped for each orchard parcel. Moreover,
the compound probability (CP) [80] was also calculated according to Equation (7) using
R software v. 3.6.3. CP represents the probability that the previously mentioned three
conditions were simultaneously satisfied.

CP = (1− pH)(1− pα)(1− pA) (7)

where pH is the p-value resulting from the MW test under condition (i), pα is the p-value
resulting from the MW test under condition (ii), and pA is the p-value resulting from the
MW test under condition (iii). The resulting CP was then mapped for all OM parcels,
representing its compound probability to have been damaged by the storm. A threshold
value of CP able to separate damaged fields from undamaged ones has to be necessarily
selected by final users, e.g., the insurance company or local public administration, according
to their specific policies and strategies. Nevertheless, a possible solution is proposed here,
relying on the standard error of the mean (SEM) of the CP distributions of the DTFs and
UTFs. The estimated threshold value was used to generate the map of damaged orchards
(DM): parcels showing a CP value lower than the threshold was classified as “undamaged,”
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otherwise as “damaged.” The DMs were then tested against the previously mentioned test
set and the correspondent confusion matrix calculated to assess the accuracy of detection.

3. Results
3.1. H-α-A Analysis

The statistical distributions of H-α-A were computed with reference to DTFs and
UTFs (Figure 5).

Figure 5. Boxplots of H-α-A distributions for UTFs and DTFs. The boxplot values are from bottom to
top, respectively, 5th, 25th, 50th—cross is mean value—75th, and 95th percentiles. (a) Entropy pixel
distribution; (b) alpha angle pixel distribution; (c) anisotropy pixel distribution.

The MW test results (Table 1) show that the H and α distributions of DTFs presented
values significantly greater than UTFs; conversely, the A distribution of the DTFs was
lower than that of the UTFs.

Table 1. MW test results obtained by comparing the H-α-A pixel distributions of DTFs and UTFs.

U p-Value

H 14,514 0.000159
α 16,604 3.83×10−10

A 8616 0.000161

3.2. Damaged Orchards’ Mapping

Based on the assumption that a storm can change the polarimetric behavior of orchards
according to previously mentioned dynamics, a map of CP representing the parcel proba-
bility of being recognized as damaged was generated using the UTF dataset as reference
(Figure 6).

With reference to CP, a threshold value was estimated to separate damaged fields
from undamaged ones based on the SEM of CP statistic distributions of the DTFs and UTFs
(Figure 7b). The DTFs showed a CP mean and SEM value of 0.715 and 0.125, respectively;
consequently, one can assume that the CP mean value of all damaged orchards reasonably
falls in the range 0.715 ± 0.125, about 0.6 being the lower boundary. A threshold equal to
0.6 was therefore selected to generate the DM binary classification (Figure 7a).

A total of 217 ha (430 orchards) of potentially damaged apple orchards were detected
in the AOI. According to the OM layer, 19% of the apple orchards were damaged after
the event.
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Figure 6. A CP map of apple orchards in the AOI (Reference frame: WGS84 UTM32N).

Figure 7. (a) DM binary classification of the OM in the AOI (reference frame is WGS84 UTM 32N);
(b) bar chart representing mean and 1 SEM of the CP for DTFs and UTFs.

The DM was validated with respect to the test set, and the correspondent confusion
matrix computed (Table 2). Classification accuracy is defined here as the one for binary
classification of imbalanced data [81–83] since, in the test set, the number of undamaged
fields was significantly greater than that of damaged fields. The resulting precision and
specificity were pretty high (0.80 and 0.71, respectively), while balanced accuracy was
found to be 0.75. Overall accuracy was 0.74, while F1 score (harmonic mean of the precision
and recall) and G-mean (geometric mean of sensitivity and precision) were both about 0.67.
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Table 2. Metrics derived from the confusion matrix of the DM with respect to the test set. True
positives (TPs): number of damaged elements predicted as damaged; false positives (FPs): number
of undamaged elements predicted as damaged; false negatives (FNs): number of damaged ele-
ments predicted as undamaged; true negatives (TNs): number of undamaged elements predicted as
undamaged.

Classification
Damaged Undamaged

Reference
Damaged 8 2

Undamaged 6 15

Accuracies

Measure Value Formula

Sensitivity 0.80 TPR = TP/ (TP + FN)
Specificity 0.71 SPC = TN/ (FP + TN)
Precision 0.57 PPV = TP/ (TP + FP)

Negative Predictive Value 0.88 NPV = TN/ (TN + FN)
False Positive Rate 0.28 FPR = FP/ (FP + TN)

False Discovery Rate 0.42 FDR = FP/ (FP + TP)
False Negative Rate 0.20 FNR = FN/ (FN + TP)

Overall Accuracy 0.74 OA = (TP + TN) / (TP + TN + FP + FN)
F1 Score 0.66 F1 = 2TP/ (2TP + FP + FN)

Balanced Accuracy 0.75 BA = TPR + TNR/2
G-Mean 0.67 G-mean= sqrt (TPR *PPV)

Furthermore, it is worth stressing that the storm occurred close to the harvesting
period, determining a significant problem for local apple yield in 2020. With reference to
the AOI, a preliminary estimate of economic loss was computed to be about €2,500,000.
Reported estimates could certainly vary according to the apple orchards’ age, apple variety,
plant density, agronomic management, and local soil properties. Nevertheless, these esti-
mates constituted a preliminary assessment of storm damage that occurred on 12 August
2020. Future validation is expected to test these economic deductions.

4. Discussions

Concerning the damaged orchards’ H-α-A distributions (Figure 5 and Table 1), higher
values of H and α in the damaged parcels could be attributed to the changes in vegetation
structure (Figure 8). In fact, the inter-row spaces of the damaged orchards, after the storm,
were completely covered with the crowns of the broken or uprooted plants, which deter-
mined a different scattering geometry. Pre-event plant row geometry was characterized by
a regular pattern, which drastically changed to a more disordered one, where the fallen
crown elements increased the H values. Since the pre-event scattering mechanism was
determined by regularly aligned and spaced plants (rows) alternating with bare soil/grass
(inter-rows), it determined intermediate α values. After the storm, it can be assumed that
the scattering mechanism was strongly influenced by crown volume, inducing an increase
in the α values. Conversely, A appeared to reduce after the event. This could be possibly
related to a reduction in the eigenvalue difference λ1 − λ2 related to the slightly different
scattering mechanism after the storm. The volumetric mechanism appeared to be the
prevailing one in the damaged parcels, as proved by the H increase. Since the canopy
causes a strong depolarization of the SAR signal, the degree of depolarization (i.e., 1-A)
tends to increase with crown closure [18]. Given these interpretation keys, the results
obtained seem to support the idea that, after a relevant event able to significantly change
vegetation structure, the orchards’ polarimetric behavior significantly changes. Based on
the collected reference data, damaged orchards tend to show (i) higher values of H and
α due to the increased contribution of the volume scattering mechanism, and (ii) lower
A values, possibly due to the inter-row closure generated by broken/fallen trees, which
increase signal depolarization.
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Figure 8. A sketch representing orchard condition before (a) and after (b) the storm. In (a) the pattern row/inter-row is well
defined; (b) after the storm, apple tree uprooting occurred, altering the row/inter-row pattern, and crowns covering the
ground increased volumetric scattering.

Concerning the mapping of damaged orchards, the results reported in Table 2 suggest
that polarimetric decomposition of S1 data is an effective approach to map orchards
affected by a storm, especially during cloudy weather situations. Nevertheless, it is worth
stressing that some limitations still persist while working with dual-pol decomposition.
In comparison to quad polarization, dual-pol SAR sensors collect half of the scattering
matrix components involved in fully polarimetric imagery. Therefore, dual-pol derived
products may vary from the classical Wishart distribution. In fact, [57] highlighted that
entropy/alpha decomposition using one co-polarization and one cross-polarization does
not adequately extract scattering mechanisms in the H-α plane. Nevertheless, Cloude [62]
proved how these differences result similarly to the conventional quad-pol one while
working with vegetation. In spite of these differences, many operative frameworks were
proposed proving how information lost during the dual-pol acquisition can be compensated
for enhancing image swath and satellite revisit frequency. Moreover, often quad-pol SAR
data are not available free of charge and not readily available for operative purposes. S1
is currently one of the largest space-borne missions providing free and open-access SAR
data having high temporal resolution, fitting well with vegetation dynamics monitoring
requirement.

Future developments are expected to test if pre- and post-H-α-A differences can be
used to semi-automatically detect significance changes. It is worth highlighting that the
majority of apple orchards in the study area are covered by plastic nets to protect the
trees against hail. Probably, plastic nets can influence the complex permittivity of the
analyzed volume and therefore affect the polarimetric response of the observed uprooted
trees. Since in the study area, a few fields do not have hail nets, the authors did not survey
such orchards, and therefore no assessment looking for the effects of nets on polarimetric
response was performed. A specific research should be addressed to assess how plastic
hail nets can affect backscattered signal.

5. Conclusions

In this work, a preliminary assessment about the polarimetric behavior of orchards
after a storm was performed. The analysis was aimed at proposing a first methodological
approach to detect orchard damage by a storm based on the PolSAR decomposition
technique using S1 data. The joint adoption of free accessible S1 data, institutional free
auxiliary data (a cadastral map and farmers’ CAP application database), and open software
(SNAP) constituted a peculiar trait of the proposed approach. It moves in the direction
of technological transfer, aiming at making SAR data/techniques an operational tool for
agronomic applications, with special concern about weather-related damages to crops,
which could be of interest to insurance companies or public administrations. The results
proved that storm damages significantly increase the H and α parameters. By contrast, the
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A parameter tends to be lower in the damaged orchards. This phenomenon is possibly
related to the changes affecting vegetation structure in the damaged fields, where the
crowns and branches of fallen/broken plants fill the inter-row space, changing the regular
pattern ordinarily characterizing apple orchards. Based on this evidence, the authors
proposed a methodology to map possibly damaged orchards that relies on the knowledge
about the behavior of witness (and neighboring) undamaged orchards. The method
permitted the mapping of the probability that an orchard is damaged or not, constituting
a new free tool able to improve orchard monitoring after a calamitous event by regional
agencies and insurance companies. It is worth reminding that only apple orchards were
considered for this case study. Future developments are expected to test the effectiveness
of this method in other orchard types, as pear or peach, which are very diffuse in the AOI.
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37. Kanjir, U.; DJurić, N.; Veljanovski, T. Sentinel-2 Based Temporal Detection of Agricultural Land Use Anomalies in Support of
Common Agricultural Policy Monitoring. ISPRS Int. J. Geo Inf. 2018, 7, 405. [CrossRef]

38. Lee, J.-S.; Grunes, M.R.; Pottier, E. Quantitative Comparison of Classification Capability: Fully Polarimetric versus Dual and
Single-Polarization SAR. IEEE Trans. Geosci. Remote Sens. 2001, 39, 2343–2351.

39. Ainsworth, T.L.; Kelly, J.P.; Lee, J.-S. Classification Comparisons between Dual-Pol, Compact Polarimetric and Quad-Pol SAR
Imagery. ISPRS J. Photogramm. Remote Sens. 2009, 64, 464–471. [CrossRef]

http://doi.org/10.1016/j.scienta.2018.03.031
http://doi.org/10.1016/j.ejrs.2018.09.001
http://doi.org/10.1016/j.reseneeco.2009.10.004
http://doi.org/10.1016/j.rse.2020.111954
http://doi.org/10.12899/asr-2018
http://doi.org/10.1080/15481603.2020.1798600
http://doi.org/10.3390/agronomy11010110
http://doi.org/10.1080/10106049.2011.562309
http://doi.org/10.1016/j.agrformet.2015.02.021
http://doi.org/10.1016/j.agrformet.2015.03.007
http://doi.org/10.1016/j.agrformet.2012.04.011
http://doi.org/10.1016/j.rse.2005.03.015
http://doi.org/10.1016/j.eja.2018.09.006
http://doi.org/10.1080/01431160500377188
http://doi.org/10.3390/rs12213542
http://doi.org/10.1109/TAP.1975.1140999
http://doi.org/10.3390/ijgi7100405
http://doi.org/10.1016/j.isprsjprs.2008.12.008


Remote Sens. 2021, 13, 1030 15 of 16

40. Boerner, W.-M.; Mott, H.; Luneburg, E. Polarimetry in Remote Sensing: Basic and Applied Concepts. In Proceedings of the
IGARSS’97, 1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings, Remote Sensing-A Scientific
Vision for Sustainable Development Singapore, 3–8 August 1997; Volume 3, pp. 1401–1403.

41. Cloude, S.R.; Pottier, E. An Entropy Based Classification Scheme for Land Applications of Polarimetric SAR. IEEE Trans. Geosci.
Remote Sens. 1997, 35, 68–78. [CrossRef]

42. Cloude, S.R.; Pottier, E. A Review of Target Decomposition Theorems in Radar Polarimetry. IEEE Trans. Geosci. Remote Sens. 1996,
34, 498–518. [CrossRef]

43. Nasirzadehdizaji, R.; Balik Sanli, F.; Abdikan, S.; Cakir, Z.; Sekertekin, A.; Ustuner, M. Sensitivity Analysis of Multi-Temporal
Sentinel-1 SAR Parameters to Crop Height and Canopy Coverage. Appl. Sci. 2019, 9, 655. [CrossRef]

44. Betbeder, J.; Fieuzal, R.; Philippets, Y.; Ferro-Famil, L.; Baup, F. Contribution of Multitemporal Polarimetric Synthetic Aperture
Radar Data for Monitoring Winter Wheat and Rapeseed Crops. J. Appl. Remote Sens. 2016, 10, 026020. [CrossRef]

45. Valcarce-Diñeiro, R.; Arias-Pérez, B.; Lopez-Sanchez, J.M.; Sánchez, N. Multi-Temporal Dual-and Quad-Polarimetric Synthetic
Aperture Radar Data for Crop-Type Mapping. Remote Sens. 2019, 11, 1518. [CrossRef]

46. Mercier, A.; Betbeder, J.; Baudry, J.; Le Roux, V.; Spicher, F.; Lacoux, J.; Roger, D.; Hubert-Moy, L. Evaluation of Sentinel-1 & 2
Time Series for Predicting Wheat and Rapeseed Phenological Stages. ISPRS J. Photogramm. Remote Sens. 2020, 163, 231–256.

47. Qi, Z.; Yeh, A.G.-O.; Li, X. A Crop Phenology Knowledge-Based Approach for Monthly Monitoring of Construction Land
Expansion Using Polarimetric Synthetic Aperture Radar Imagery. ISPRS J. Photogramm. Remote Sens. 2017, 133, 1–17. [CrossRef]

48. Zhao, L.; Yang, J.; Li, P.; Shi, L.; Zhang, L. Characterizing Lodging Damage in Wheat and Canola Using Radarsat-2 Polarimetric
SAR Data. Remote Sens. Lett. 2017, 8, 667–675. [CrossRef]

49. Yang, H.; Chen, E.; Li, Z.; Zhao, C.; Yang, G.; Pignatti, S.; Casa, R.; Zhao, L. Wheat Lodging Monitoring Using Polarimetric Index
from RADARSAT-2 Data. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 157–166. [CrossRef]

50. Dickinson, C.; Siqueira, P.; Clewley, D.; Lucas, R. Classification of Forest Composition Using Polarimetric Decomposition in
Multiple Landscapes. Remote Sens. Environ. 2013, 131, 206–214. [CrossRef]

51. Trisasongko, B.H. The Use of Polarimetric SAR Data for Forest Disturbance Monitoring. Sens. Imaging 2010, 11, 1–13. [CrossRef]
52. Le Toan, T.; Beaudoin, A.; Riom, J.; Guyon, D. Relating Forest Biomass to SAR Data. IEEE Trans. Geosci. Remote Sens. 1992, 30,

403–411. [CrossRef]
53. Ruiz, J.S.; Ordonez, Y.F.; McNairn, H. Corn Monitoring and Crop Yield Using Optical and Microwave Remote Sensing. Geosci.

Remote Sens. 2008, 10, 405–420.
54. Mandal, D.; Kumar, V.; Lopez-Sanchez, J.M.; Bhattacharya, A.; McNairn, H.; Rao, Y.S. Crop Biophysical Parameter Retrieval from

Sentinel-1 SAR Data with a Multi-Target Inversion of Water Cloud Model. Int. J. Remote Sens. 2020, 41, 5503–5524. [CrossRef]
55. Lee, J.-S.; Grunes, M.R.; Ainsworth, T.L.; Du, L.-J.; Schuler, D.L.; Cloude, S.R. Unsupervised Classification Using Polarimetric

Decomposition and the Complex Wishart Classifier. IEEE Trans. Geosci. Remote Sens. 1999, 37, 2249–2258.
56. Freeman, A.; Durden, S.L. A Three-Component Scattering Model for Polarimetric SAR Data. IEEE Trans. Geosci. Remote Sens.

1998, 36, 963–973. [CrossRef]
57. Ji, K.; Wu, Y. Scattering Mechanism Extraction by a Modified Cloude-Pottier Decomposition for Dual Polarization SAR. Remote

Sens. 2015, 7, 7447. [CrossRef]
58. McNairn, H.; Shang, J.; Jiao, X.; Champagne, C. The Contribution of ALOS PALSAR Multipolarization and Polarimetric Data to

Crop Classification. IEEE Trans. Geosci. Remote Sens. 2009, 47, 3981–3992. [CrossRef]
59. Lopez-Sanchez, J.M.; Cloude, S.R.; Ballester-Berman, J.D. Rice Phenology Monitoring by Means of SAR Polarimetry at X-Band.

IEEE Trans. Geosci. Remote Sens. 2011, 50, 2695–2709. [CrossRef]
60. Ramsey III, E.; Rangoonwala, A.; Suzuoki, Y.; Jones, C.E. Oil Detection in a Coastal Marsh with Polarimetric Synthetic Aperture

Radar (SAR). Remote Sens. 2011, 3, 2630. [CrossRef]
61. Yonezawa, C.; Watanabe, M.; Saito, G. Polarimetric Decomposition Analysis of ALOS PALSAR Observation Data before and after

a Landslide Event. Remote Sens. 2012, 4, 2314. [CrossRef]
62. Cloude, S.R. The Dual Polarisation Entropy/Alpha Decomposition. In Proceedings of the 3rd International Workshop on Science

and Applications of SAR Polarimetry and Polarimetric Interferometry, Noordwijk, The Netherlands, 2007; pp. 22–26.
63. Ghods, S.; Shojaedini, S.V.; Maghsoudi, Y. A Modified H- α Classification Method for Dcp Compact Polarimetric Mode by

Reconstructing Quad h and α Parameters from Dual Ones. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2233–2241.
[CrossRef]

64. ISTAT ISTAT Data. Available online: http://dati.istat.it/ (accessed on 13 November 2020).
65. Mandal, D.; Vaka, D.S.; Bhogapurapu, N.R.; Vanama, V.S.K.; Kumar, V.; Rao, Y.S.; Bhattacharya, A. Sentinel-1 SLC Preprocessing

Workflow for Polarimetric Applications: A Generic Practice for Generating Dual-Pol Covariance Matrix Elements in SNAP S-1
Toolbox. 2019. Available online: https://www.preprints.org/manuscript/201911.0393/v1 (accessed on 9 February 2021).

66. Lee, J.-S.; Pottier, E. Polarimetric Radar Imaging: From Basics to Applications; CRC Press: Boca Raton, FL, USA, 2017.
67. Shan, Z.; Wang, C.; Zhang, H.; Chen, J. H-Alpha Decomposition and Alternative Parameters for Dual Polarization SAR Data. In

Proceedings of the PIERS Proceedings, SuZhou, China, 12–16 September 2011.
68. Veci, L.; Prats-Iraola, P.; Scheiber, R.; Collard, F.; Fomferra, N.; Engdahl, M. The Sentinel-1 Toolbox. In Proceedings of the IEEE

International Geoscience and Remote Sensing Symposium (IGARSS), Quebec City, QC, Canada, 13–18 July 2014; pp. 1–3.

http://doi.org/10.1109/36.551935
http://doi.org/10.1109/36.485127
http://doi.org/10.3390/app9040655
http://doi.org/10.1117/1.JRS.10.026020
http://doi.org/10.3390/rs11131518
http://doi.org/10.1016/j.isprsjprs.2017.09.009
http://doi.org/10.1080/2150704X.2017.1312028
http://doi.org/10.1016/j.jag.2014.08.010
http://doi.org/10.1016/j.rse.2012.12.013
http://doi.org/10.1007/s11220-010-0048-8
http://doi.org/10.1109/36.134089
http://doi.org/10.1080/01431161.2020.1734261
http://doi.org/10.1109/36.673687
http://doi.org/10.3390/rs70607447
http://doi.org/10.1109/TGRS.2009.2026052
http://doi.org/10.1109/TGRS.2011.2176740
http://doi.org/10.3390/rs3122630
http://doi.org/10.3390/rs4082314
http://doi.org/10.1109/JSTARS.2016.2570427
http://dati.istat.it/
https://www.preprints.org/manuscript/201911.0393/v1


Remote Sens. 2021, 13, 1030 16 of 16

69. Ainsworth, T.L.; Kelly, J.; Lee, J.-S. Polarimetric Analysis of Dual Polarimetric SAR Imagery. In Proceedings of the 7th European
Conference on Synthetic Aperture Radar; VDE, Friedrichshafen, Germany, 2–5 June 2008; 2008; pp. 1–4.

70. Crabbe, R.A.; Lamb, D.W.; Edwards, C.; Andersson, K.; Schneider, D. A Preliminary Investigation of the Potential of Sentinel-1
Radar to Estimate Pasture Biomass in a Grazed Pasture Landscape. Remote Sens. 2019, 11, 872. [CrossRef]

71. Chang, J.; Shoshany, M. Radar Polarization and Ecological Pattern Properties across Mediterranean-to-Arid Transition Zone.
Remote Sens. Environ. 2017, 200, 368–377. [CrossRef]

72. Chang, J.G.; Shoshany, M.; Oh, Y. Polarimetric Radar Vegetation Index for Biomass Estimation in Desert Fringe Ecosystems. IEEE
Trans. Geosci. Remote Sens. 2018, 56, 7102–7108. [CrossRef]

73. Cloude, S. Polarisation: Applications in Remote Sensing; Oxford University Press: Oxford, UK, 2009.
74. Raney, R.K.; Cahill, J.T.; Patterson, G.W.; Bussey, D.B.J. The M-Chi Decomposition of Hybrid Dual-Polarimetric Radar Data with

Application to Lunar Craters. J. Geophys. Res. Planets 2012, 117. [CrossRef]
75. Borgogno Mondino, E.; Fissore, V.; Lessio, A.; Motta, R. Are the New Gridded DSM/DTMs of the Piemonte Region (Italy) Proper

for Forestry? A Fast and Simple Approach for a Posteriori Metric Assessment. iFor. Biogeosci. For. 2016, 9, 901–909. [CrossRef]
76. Nachar, N. The Mann-Whitney U: A Test for Assessing Whether Two Independent Samples Come from the Same Distribution.

Tutor. Quant. Methods Psychol. 2008, 4, 13–20. [CrossRef]
77. Hollander, M.; Wolfe, D.A.; Chicken, E. Nonparametric Statistical Methods; John Wiley & Sons: Hoboken, NJ, USA, 2013; Volume 751.
78. R Development Core Team, R. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing:

Vienna, Austria, 2013.
79. Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Böhner, J. System for Automated

Geoscientific Analyses (SAGA) v. 2.1. 4. Geosci. Model Dev. Discuss. 2015, 8, 1991–2007. [CrossRef]
80. Wallis, W.A. Compounding Probabilities from Independent Significance Tests. Econom. J. Econom. Soc. 1942, 10, 229–248.

[CrossRef]
81. Zliobaite, I. On the Relation between Accuracy and Fairness in Binary Classification. arXiv 2015, arXiv:1505.05723.
82. Akosa, J. Predictive Accuracy: A Misleading Performance Measure for Highly Imbalanced Data. Available online:

https://www.semanticscholar.org/paper/Predictive-Accuracy-%3A-A-Misleading-Performance-for-Akosa/8eff162ba8
87b6ed3091d5b6aa1a89e23342cb5c (accessed on 9 February 2021).

83. Guo, X.; Yin, Y.; Dong, C.; Yang, G.; Zhou, G. On the Class Imbalance Problem. In Proceedings of the 2008 Fourth International
Conference on Natural Computation; IEEE: Jinan, China, 2008; Volume 4, pp. 192–201.

http://doi.org/10.3390/rs11070872
http://doi.org/10.1016/j.rse.2017.08.032
http://doi.org/10.1109/TGRS.2018.2848285
http://doi.org/10.1029/2011JE003986
http://doi.org/10.3832/ifor1992-009
http://doi.org/10.20982/tqmp.04.1.p013
http://doi.org/10.5194/gmd-8-1991-2015
http://doi.org/10.2307/1905466
https://www.semanticscholar.org/paper/Predictive-Accuracy-%3A-A-Misleading-Performance-for-Akosa/8eff162ba887b6ed3091d5b6aa1a89e23342cb5c
https://www.semanticscholar.org/paper/Predictive-Accuracy-%3A-A-Misleading-Performance-for-Akosa/8eff162ba887b6ed3091d5b6aa1a89e23342cb5c

	Introduction 
	Materials and Methods 
	Study Area 
	Data and Data Collection 
	Sentinel-1 Data 
	Cadastral Data 
	Ground Dataset 

	Data Processing 
	Polarimetric Decomposition 
	Testing H–A Values after the Storm 
	Detection of Damaged Orchards 


	Results 
	H–A Analysis 
	Damaged Orchards’ Mapping 

	Discussions 
	Conclusions 
	References

