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Abstract 31 

The roles of macroinvertebrate and microbial communities in stream ecosystems are recognized 32 

to be important to energy flow and nutrient cycling. While the linkages of these major groups of 33 

aquatic organisms has not been thoroughly investigated, determining how they interact is 34 

particularly important for understanding the mechanisms and potential evolutionary relationships 35 

that contribute to ecosystem processes, such as organic matter decomposition. We evaluated the 36 

microbiomes of several aquatic macroinvertebrate species differing in trophic ecology and 37 

belonging to different functional feeding groups at two sites along an Italian Alpine river with 38 

different elevation and environmental characteristics, one located above the tree-line and the 39 

other in a forested environment. We found that the internal microbial communities of the 40 

different insect species significantly varied in taxonomic and functional composition and could 41 

be used to classify samples to both species and environment. We demonstrated that functional 42 

differences existed between the microbiota of different macroinvertebrate species with variable 43 

feeding behaviors, and that species differences were more important, in this context, than 44 

environmental or habitat conditions. These results provide new information on how the 45 

microbiomes of macroinvertebrates may potentially be influenced by their hosts and habitat 46 

conditions in Alpine streams. 47 

  48 
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Introduction 49 

There has been limited study of entire microbial communities associated with aquatic 50 

macroinvertebrates, and this is especially true in high altitude and high gradient mountain streams. 51 

Evidence from other systems suggests that the internal microbial communities, or microbiota, of 52 

insects and other invertebrates have important functional effects on both their biology and ecology 53 

(Douglas 2015; Henry et al., 2015; Moran & Telang 1998). These studies also show that the 54 

internal microbiomes may have co-evolved with certain species (e.g., ants) (Hooper et al., 2012; 55 

Moran & Telang 1998; Russell et al., 2009), providing important functional roles to the fitness and 56 

dispersal of many species. In addition, research has shown that the microbes of decaying organic 57 

matter (Benbow et al., 2019), in the form of plant (Cummins et al., 1973; Eggert & Wallace 2007; 58 

Moore et al., 2004) and animal (Pechal & Benbow 2016; Pechal et al., 2013) detritus, are acquired 59 

through feeding activities and may be transferred through insect developmental stages (e.g., larvae 60 

to pupae to adults) (Hocking & Reimchen 2006; Pechal et al., 2019; Weatherbee et al., 2017). In 61 

freshwater ecosystems microbial communities contribute to the decomposition of autochthonous 62 

and allochthonous organic matter (Baldy et al., 1995; Webster & Benfield 1986), and are known 63 

to vary along the watershed continuum (Savio et al., 2015), likely responding to riparian forest 64 

conditions, hydrological regimes and biotic interactions (Besemer et al., 2013; Widder et al., 2014) 65 

in ways that mediate the quality and quantity of organic matter that is transported downstream. 66 

However, how the internal microbial communities of aquatic macroinvertebrates contribute to 67 

these processes remains largely unknown.  68 

 69 

Organic matter subsidies vary in quantity and typology along the length of watersheds 70 

(Cummins 1974; Vannote et al., 1980), and are intimately linked to the structure and diversity of 71 
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riparian and basin vegetation. Small order streams draining forested watersheds have significantly 72 

higher allochthonous organic matter inputs (i.e., litterfall) than streams draining unforested areas 73 

(Golladay 1997; Tank et al., 2010). Since the formulation of the River Continuum Concept 74 

(Vannote et al., 1980), stream ecology has adopted, modified and refined (Sedell et al., 1989; 75 

Statzner & Higler 1985; Winterbourn et al., 1981) a theoretic framework in which terrestrial and 76 

aquatic ecosystems are intrinsically linked so that biological, physical, and chemical changes can 77 

be predicted along a longitudinal gradient. Under this framework, mountainous lotic systems 78 

assume great interest in understanding how organic matter is processed at the upper elevations of 79 

high gradient watersheds which harbor unique sets of ecological processes and specialized taxa 80 

(Ward & Saltz 1994). 81 

 82 

Mountainous, low-order streams are distinctive systems characterized by cold, highly 83 

oxygenated and turbulent water, steep gradients, coarse substrata, low channel stability and limited 84 

nutrient availability (Hieber et al., 2005). Among these systems, the tree line defines separate areas 85 

of the riparian zone with different limiting factors for plant growth and thus species composition 86 

(Figure 1A). This abrupt change in riparian conditions is important (but largely uninvestigated in 87 

Alpine regions) in influencing solar radiation and quantity and quality of terrestrial organic matter 88 

subsidies. For example, below the tree line most energy inputs are derived from allochthonous 89 

non-living coarse particulate organic matter (CPOM), mainly terrestrial leaves (Tank et al., 2010), 90 

while above catchments have scarce terrestrial vegetation, and consequently reduced input of 91 

allochthonous organic matter. Aquatic macroinvertebrate communities are known to respond both 92 

taxonomically and functionally to changes in allochthonous CPOM from the riparian forests 93 

(Cummins & Klug 1979; Doretto et al., 2016; Merritt & Cummins 2006; Vannote et al., 1980). 94 
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 95 

One approach to investigate the linkages between allochthonous subsidies and associated 96 

biotic processing has been to evaluate functional groups of aquatic macroinvertebrates that process 97 

and consume organic matter differently (Cummins 2016; Cummins & Klug 1979; Merritt & 98 

Cummins 2006; Straka et al., 2012). Aquatic macroinvertebrates use a range of feeding strategies 99 

to obtain nutrients, and as such, display morphological and behavioral traits which can be used to 100 

classify their feeding behaviors into broad groups. These groups range from shredders, which feed 101 

directly on allochthonous inputs such as leaf materials (and microbes associated with these 102 

resources), to scrapers, which feed predominantly on microbial biofilms present on substrates, and 103 

predators. It has been shown that the gut bacterial communities of aquatic macroinvertebrates 104 

change in response to different food sources, with most studies using culture-based survey 105 

approaches (Kaufman et al., 2000; Lawson et al., 1984); however, more comprehensive 106 

descriptions of how the entire gut microbial community, using recent genomic sequencing 107 

technologies, responds to changes in allochthonous CPOM inputs has been less studied (Pechal & 108 

Benbow 2016; Yun et al., 2014). 109 

 110 

The overall goal of this study was to describe the internal microbiota of aquatic 111 

macroinvertebrate species at two elevations associated with distinct environmental characteristics 112 

(mainly related to elevation and the presence or absence of riparian forest cover) along an Alpine 113 

stream in Italy. We predicted that the internal microbiota of aquatic insects would differ, in part 114 

based on their elevational locations, with lower microbial diversity at the higher elevation site 115 

receiving less diverse CPOM, but that this difference would be mediated by individual species 116 

differences. 117 
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 118 

Materials and Methods 119 

 120 

Study Location 121 

Aquatic insects were collected at two sampling locations along the Po River, the longest 122 

Italian lotic system, which originates from a spring below the northwest side of the Monviso 123 

mountain, in the Cottian Alps of north-western Italy (Figure 1B). Pian della Regina (Alpine prairie) 124 

was the high elevation location at 1750 m above sea level (m.a.s.l.) and above the tree line of the 125 

drainage basin. Here the stream was an open system flowing across a plain of glacial origin, 126 

characterized by extensive Alpine meadows pointed by large erratic boulders and very few, 127 

scattered Larix decidua Mill., 1768. Riparian vegetation was composed almost exclusively of 128 

herbaceous species, Poaeceae and Ericaceae. Within stream substrata were homogeneous and 129 

composed mainly by coarse elements (approximately 50% boulders, 40 % cobbles, 10% 130 

gravel/sand) (Figure 2A). Ostana (Forest) was the downstream, lower elevation location (971 131 

m.a.s.l.) with forested riparian zones and slopes dominated by a mixed broadleaf forest containing 132 

Fagus sylvatica, Acer sp., Fraxinus excelsior, and Alnus glutinosa. Within stream substrata was 133 

similar to the Alpine prairie location and composed mainly of coarse elements (approximately 134 

30% boulders, 50% cobble, 20% gravel/sand) (Figure 2B). These locations were selected by a 135 

priori knowledge of the aquatic macroinvertebrate taxa previously reported (Doretto et al., 2017; 136 

Fenoglio et al., 2015) where we could sample species belonging to different functional groups.  137 

 138 

Sample Collections 139 
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At each location, selected aquatic insect taxa were collected on a single occasion, to 140 

minimize temporal variation in gut contents and environmental variables. On 23 November 2017, 141 

a season in which biodiversity and invertebrate abundance are generally highest in these 142 

ecosystems (Doretto et al., 2017; Fenoglio et al., 2015), benthic insects were hand collected by 143 

visually searching and turning over stream substrata. Five species that belong to the four most 144 

important functional feeding groups in mountain systems were collected: for scrapers the mayfly 145 

Epeorus alpicola (Eaton, 1871) (Ephemeroptera: Heptageniidae) belongs to the scraper FFG, and 146 

for shredders the crane fly Tipula (Tipulidae) maxima Poda, 1761 (Diptera; Tipulidae) belongs to 147 

the . shredder FFG. However, we could not find the same species of predator at both locations, so 148 

two species of Systellognathan Plecoptera were used for microbiome characterizations: 149 

Dictyogenus alpinus (Pictet, 1841) (Perlodidae) for the forested location and Perla grandis 150 

Rambur, 1842 (Perlidae) for the Alpine prairie location. No filterer species were collected at the 151 

alpine prairie location, while Hydropsyche sp. (Trichoptera: Hydropsychidae) were collected at 152 

the forested location. 153 

 154 

All specimens were immediately preserved in 95% molecular grade ethanol within sealed 155 

glass vials for laboratory identification under a stereomicroscope using regional dichotomous keys 156 

(Belfiore 1983; Fochetti & Tiernod e Figueroa 2008; Moretti 1983; Rivosecchi 1984) and then 157 

weighed. This preservation approach was based on our previous success with describing the 158 

microbiomes of aquatic and terrestrial macroinvertebrates (Benbow et al., 2017; Pechal & Benbow 159 

2016; Pechal et al., 2019; Receveur et al., 2018; Weatherbee et al., 2017). At the time of sampling, 160 

physical and chemical parameters were measured using multiparametric probes (physio-chemical 161 

properties [Quanta, Hydrolab] current [Mod RHCM, Idromar]) as well as organic matter and 162 
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nutrients according to Italian standard methods of the Agenzia per la Protezione dell’Ambiente e 163 

per i servizi Tecnici - Istituto di Ricerca sulle Acque Consiglio Nazionale delle Ricerche (APAT-164 

IRSA 2003). 165 

 166 

Nucleic Acid Isolation and Bioinformatic Data Processing 167 

To limit the influence of microbes present on the external surfaces of the insects, after 168 

preservation and immediately prior to nucleic acid isolation, all samples were surface 169 

decontaminated using a 10% hypochlorite wash followed by a triple rinse in sterile water as 170 

previously described (Ridley et al., 2012), and as we have done in previous work with aquatic 171 

macroinvertebrates (Pechal & Benbow 2016; Receveur et al., 2018). Following surface 172 

decontamination, samples were homogenized using sterile pestles as previously described (Pechal 173 

& Benbow 2016; Receveur et al., 2018). Briefly, DNA extraction was performed using the Blood 174 

and Tissue DNA kit (Qiagen®) with the addition of lysozyme (15 mg ml-1, Invitrogen) during the 175 

lysis step before being quantified fluorometrically using a Qubit 2.0 (Grand Island, NY, USA) and 176 

a dsDNA High Sensitivity Assay Kit (Invitrogen). All DNA preparations were stored at -20°C 177 

until library preparation. Library preparation and sequencing (2 x 250 bp paired-end reads) was 178 

performed by the Michigan State University Research Technology Support Facility on an Illumina 179 

MiSeq platform following previously described methods (Caporaso et al., 2011). Variable region 180 

4 (V4) of the 16S rRNA gene was amplified using indexed primers 515f and 806r (5′- 181 

GTGCCAGCMGCCGCGGTAA -3′, 5′- GGACTACHVGGGTWTCTAAT -3′) as described 182 

previously (Caporaso et al., 2011; Claesson et al., 2010; Kozich et al., 2013). Demultiplexing and 183 

base calling were performed using Bcl2fastq (v 2.19.1, Illumina) and RTA (v 1.18.54, Illumina). 184 

ha formattato: Inglese (Regno Unito)

ha formattato: Inglese (Regno Unito)
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The raw sequencing reads were quality filtered using QIIME 2 (v 2018.11) using default 185 

settings (Bolyen et al., 2018). DADA2 was used to filter samples and remove low quality reads as 186 

well as chimeric sequences and other artifacts commonly present in Illumina data (Callahan et al., 187 

2016). After singletons and amplicon sequencing variants with an abundance lower than 0.0005% 188 

were removed, a Naïve Bayes classifier was trained using the region amplified by the primers 189 

(515f, 806r, 250 bp) and the Greengenes database (v 13.8) at a 99% confidence level before being 190 

used to assign taxonomy using default settings in QIIME 2 (Bokulich et al., 2018). Reads mapped 191 

to mitochondria or chloroplast were removed. A rooted phylogenetic tree, created using all 192 

remaining sequence variants and default settings in QIIME 2, FastTree (v 2)(Price et al., 2010), 193 

and MAFFT (v 7)(Katoh & Standley 2013) was used in calculating a phylogenetic diversity metric 194 

[Faith’s phylogenetic diversity (Faith’s PD)]. Both Faith’s PD and Shannon diversity were 195 

calculated using defaults settings in QIIME 2 (Faith & Baker 2006). To evaluate the functional 196 

community differences, PICRUSt 2 (https://github.com/picrust/picrust2) (Langille et al., 2013) 197 

was used to assign filtered sequencing reads to functional orthologs [Kyoto Encyclopedia of Genes 198 

and Genomes (KEGG) orthologs (KO)] using the mp hidden-state prediction method (Louca & 199 

Doebeli 2017). Sequences files for this study have been deposited in the NCBI database under the 200 

accession number PRJNA547724. 201 

 202 

Statistical Analyses 203 

Differences in macroinvertebrate mass between sampling location met the assumptions of 204 

normality and were tested with t-tests in R (v 3.5.2) (2013). Differences in the relative abundance 205 

of bacterial taxa between groups at the phylum and family level were tested using Kruskal-Wallis 206 

and Mann-Whitney tests in R with FDR corrections to account for multiple comparisons. To 207 

https://github.com/picrust/picrust2
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identify taxa which were differentially abundant at the genus level and test how well a model was 208 

able to classify samples to group (species or location), a machine learning algorithm (Random 209 

Forest) was used. Rather than test for differential abundances in all genera present (> 100), only 210 

the top indicators for each comparison were evaluated to limit the potential for spurious 211 

conclusions. The importance of an indicator in a Random Forest model is determined by how much 212 

removing that taxon from a model decreases the overall accuracy. The ten most important genus 213 

level indicators (determined by mean decrease GINI score and mean decrease accuracy) used by 214 

the models to classify samples to group were tested for differences using Kruskal-Wallis and 215 

Mann-Whitney tests in R. The random forest model was implemented using default settings in the 216 

RandomForest package (1000 trees, v 4.6-14) (Liaw & Wiener 2002). Alpha diversity metrics 217 

(Faith’s PD and Shannon diversity) were compared using Kruskal-Wallis tests with a FDR 218 

correction for multiple comparisons. Beta diversity and dispersion (taxonomic and functional) 219 

were compared between site and species using PERmutational Multivariate Analysis Of Variance 220 

(PERMANOVA, Jaccard distance, 999 iterations) tests implemented in the vegan package (v 2.5-221 

4) (Oksanen et al., 2015). Differences in beta diversity were visualized using Principle Coordinate 222 

Analysis (PCoA) plots and shown with ellipses representing 95% CIs for the mean of each group. 223 

Data were visualized using a combination of ggplot2, ggpubr, and phyloseq packages (Kassambara 224 

2017; McMurdie & Holmes 2013; Wickham 2016) with all code used in analysis available at 225 

https://github.com/BenbowLab/AlpineStreamMicrobiome. 226 

 227 

Results 228 

 229 

Stream Conditions and Macroinvertebrate Communities 230 

https://github.com/BenbowLab/AlpineStreamMicrobiome
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The forest sampling location had a lower mean temperature (10.5 vs 12.8 °C), higher 231 

conductivity (132 vs 98 μS cm-1) and lower dissolved oxygen (9.38 vs 10.2 mg L-1) than the Alpine 232 

prairie location while other parameters measured were similar (Table S1). A total of 26 samples 233 

were used for sequencing analysis (Table 1). No Hydropsyche sp. were collected at the Alpine 234 

prairie. Only P. grandis was collected from the Alpine prairie location while D. alpinus was 235 

collected from forested location (provided in the results but no group with less than three 236 

individuals was included in statistical analyses). The average mass of E. alpicola was nearly 237 

double (22.7  3.86 [SE] mg vs 11.6   4.0 mg) at the forest location (t =4.22, P < 0.001), while 238 

there was not a significant difference in T. maxima mass between locations (t = 1.81, P = 0.21; 239 

Figure 3A). 240 

 241 

Internal Microbial communities 242 

From the 26 samples used for sequencing, a total of 809,647 reads were obtained after 243 

filtering, representing 2,420 amplicon sequence variants. To limit bias due to differing read sizes, 244 

samples were rarefied to 3,000 reads per sample (Figure S1). The three most abundant phyla across 245 

all samples were Proteobacteria (51.9%  [SE] 4.3), Bacteroidetes (17.5%  2.8), and Firmicutes 246 

(13.3%  3.4), representing 83% of the total communities. As no statistically significant 247 

differences in relative taxa abundance due to environment (i.e., location) were observed at the 248 

phylum or family level between samples of the same species (Kruskal-Wallis, P > 0.05, Figure 249 

3B), the two locations were combined to investigate what taxonomic differences between E. 250 

alpicola and T. maxima were conserved at both sites. The relative abundances of Proteobacteria, 251 

Tenericutes, and Planctomycetes were significantly higher in E. alpicola than T. maxima while 252 

Bacteroidetes and Firmicutes were significantly more abundant in T. maxima (KW, P > 0.05, 253 
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Figure 3C, Table S2) At the family level, there were 13 bacterial  families (greater than 1% of total 254 

abundance) that were differentially abundant between E. alpicola and T. maxima  (KW, P < 0.05, 255 

Figure 3D, Figure S2, Table S3). 256 

To identify important genera that were differentially abundant, rather than testing for 257 

differences in every genus (N = 170), a random forest modeling approach was used to determine 258 

the top ten indicators of each group, which would then be tested further. Modeling was able to 259 

correctly classify which location a sample came from, regardless of species, with an Out Of Bag 260 

(OOB) error rate of 3.85% at the genus level (one sample from the Alpine prairie site misclassified 261 

as forest). The ten most important genera for classification (determined by Mean Decrease Gini 262 

score and Mean Decrease Accuracy) were then tested using Kruskal-Wallis tests to determine if 263 

they were differentially abundant between locations. None of the top ten indicators using either 264 

ranking method were significantly different between locations (KW, P > 0.05, Table S4, Figure 265 

S3, Figure S4).  266 

To determine if modeling could predict species, regardless of location, and identify 267 

differentially abundant genera, samples from the two locations were combined and tested similarly 268 

as above. The random forest model was able to predict species (P. grandis not included in model, 269 

N = 2) with an error rate of 8.33% (two Hydropsyche sp. misclassified). All of the top ten predictors 270 

using both ranking methods were significantly different among species (KW, P < 0.001, Figure 271 

S5, Table S5, Table S6) with multiple comparisons (Mann-Whitney, FDR correction, P < 0.05) 272 

shown in Figure 4. 273 

 274 

Bacterial community diversity 275 



 

 13 

Forest E. alpicola bacterial communities were more phylogenetically diverse (9.05  [SE] 276 

0.7, Faith’s PD: KW, χ2 = 6, P = 0.014) than E. alpicola from the Alpine location (4.73  0.26), 277 

while Shannon diversity was not significantly different between locations (KW, χ2 = 2.94, P = 278 

0.086). For T. maxima, diversity was not different between locations for either alpha diversity 279 

metric (KW, P > 0.05). Comparing species at the forest location, T. maxima and Hydropsyche sp. 280 

displayed similar levels of bacterial diversity while having significantly higher Shannon (Mann-281 

Whitney, P < 0.05) and phylogenetic diversity (MW, P < 0.05) than E. alpicola (Figure 5A, Figure 282 

5B). A similar pattern was observed at the prairie location with T. maxima and D. alpinus having 283 

significantly higher diversity than E. alpicola according to both metrics (MW, P < 0.05). 284 

Differences in beta diversity was visualized using PCoA plots and compared with 285 

PERMANOVA tests using Jaccard distance. Species, location, as well as their interaction impacted 286 

beta diversity, with species having the strongest effect (PERMANOVA, P < 0.01, Table 2, Figure 287 

5C). As the interaction between location and species significantly influenced beta diversity, the 288 

effects of species were investigated separately for each location. At both the forest (E. Alpicola, T. 289 

maxima, and Hydropsyche sp.) and prairie (E. alpicola T. maxima, and D. alpinus) locations, all 290 

species within a location had significantly different microbial communities from each other 291 

(PERMANOVA, P < 0.05).  292 

 293 

Functional community composition  294 

Due to the reliance on high-quality gene annotations for predicting individual functional 295 

pathways, which are lacking for many poorly characterized environmental sample types (Langille 296 

et al., 2013; Radivojac et al., 2013), predicted functional differences between location and species 297 

were explored using community diversity metrics rather than individual pathway abundances. 298 
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While species had a significant effect (PERMANOVA, F = 4.81, P > 0.001) on functional 299 

community diversity and accounted for 41% of the variation present (R2), location did not have a 300 

significant effect (P > 0.05, Table 3). As there was not a significant effect of location, samples 301 

from both locations were combined to determine how community functional diversity differed 302 

between species When pairwise comparisons were run between insect species (P. grandis not 303 

tested, N = 2), all had significantly different functional communities (PERMANOVA, P < 0.05, 304 

Table S7).  305 

 306 

Discussion 307 

In this study, we examined how the internal microbiota of aquatic macroinvertebrates 308 

differed among species belonging to different functional feeding groups in two Alpine stream 309 

habitats with different riparian conditions. While macroinvertebrate-microbe interactions have 310 

long been recognized as an essential component of understanding food web interactions in aquatic 311 

systems (Cummins & Klug 1979; Kaufman et al., 2000), this study represents the first comparisons 312 

among the internal microbial communities of macroinvertebrate species using high throughput 313 

genomic sequencing in Alpine stream communities. Two other recent studies using high 314 

throughput sequencing to compare the microbiota of aquatic macroinvertebrate functional groups 315 

occurred in Midwest streams (USA) (Ayayee et al., 2018), and associated with salmon 316 

decomposition (Pechal & Benbow 2016) in Alaska (USA).  317 

While macroinvertebrate feeding groups differ in their predominant method of feeding, most 318 

aquatic species are omnivorous and readily uptake food from a variety of sources (e.g., scrapers 319 

ingesting particulate organic matter or eukaryotes during feeding on surfaces) though their ability 320 

to digest certain foods can vary due to multiple factors, including differences in their internal 321 
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microbiota (Pechal and Benbow 2016), pH, and oxygen conditions (Cummins and Klug 1979). 322 

For example, it has been shown that crane flies (shredder, Diptera: Tipulidae) require microbial 323 

conditioning of leaf surfaces for development and use gut bacteria to help break down ingested 324 

food (Klug & Kotarski 1980; Lawson & Klug 1989). While in terrestrial systems, the functional 325 

roles of microbes are widely documented (e.g., nitrogen fixation or cellulose degradation) (Alonso-326 

Pernas et al., 2017; Alonso-Pernas et al., 2018; Ayayee et al., 2018; Gupta et al., 2012), in aquatic 327 

systems comparatively little research exists, but it is hypothesized that there are similar 328 

relationships (Ayayee et al., 2018). Although we chose not to examine individual functional 329 

pathways due to limitations of using gene amplicon data for this purpose in understudied systems 330 

(Langille 2018; Langille et al., 2013; Radivojac et al., 2013), we found that the internal bacterial 331 

functional diversity was distinctly different between species, with species explaining close to half 332 

(41%) of the variation present. As macroinvertebrates from different feeding groups ingest and 333 

process predominantly distinct forms of organic matter (Ayayee et al., 2018; Cummins & Klug 334 

1979), it would be expected that their gut community assemblages would be adapted to different 335 

functional roles, similar to terrestrial insects (Larsen et al., 2016; Mason et al., 2016). While further 336 

research will be needed to elucidate exactly what functional roles these bacteria play, we 337 

demonstrated both structural and functional differences among microbial communities of 338 

macroinvertebrate species with different feeding behaviors.  339 

We observed several differentially abundant bacterial taxa and were able to successfully 340 

classify internal communities to both species and site with a high degree of accuracy. At all 341 

taxonomic levels (phylum, family, and genus) there were significantly different abundances 342 

between species, but no significant effects of location. In contrast to previous studies (Ayayee et 343 

al., 2018; Pechal & Benbow 2016), which observed that predatory feeding groups had lower 344 
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phylogenetic diversity than grazers/scrapers and filterers, we observed that the predatory D. 345 

alpinus had higher diversity than E. Alpicola (scraper), regardless of location. Predators 346 

(Perlodidae: D. alpinus) showed similar levels of bacterial diversity (Shannon and Faith’s PD) to 347 

species belonging to both filter (Hydropsychidae: Hydropsyche sp.) and shredder (Tipulidae: T. 348 

maxima) groups while species of belonging to the scraper groups (Heptageniidae: E. alpicola) had 349 

lower diversity than all others (then others?). The lower phylogenetic diversity of E. alpicola 350 

microbiota at the upstream prairie site, may be related to the lower diversity of benthic 351 

microorganisms that has been shown in the upper sections of Alpine rivers compared with 352 

downstream reaches (Falasco & Bona 2011). These results highlight that additional studies are 353 

needed to identify factors that shape macroinvertebrate gut microbial communities and how they 354 

relate to ecosystem function in Alpine stream habitats. 355 

While we expected the diversity of microbial communities within T. maxima (shredder) to be 356 

higher at the forested site due to the presence of more heterogenous allochthonous and 357 

autochthonous resources below Alpine tree lines (Wilhelm et al., 2015), we observed no significant 358 

differences in alpha diversity or taxa composition (phylum, family or genus level), suggesting the 359 

shredder species we sampled at these sites may be acquiring gut communities with limited 360 

colonization from microbes associated with their food. Though location significantly impacted the 361 

beta diversity of the taxonomic bacterial communities, it had a smaller effect than species. When 362 

comparing bacterial community function, location no longer had significant impacts on diversity, 363 

suggesting that although taxonomic differences exist between sites, the taxa present may be 364 

playing similar functional roles within the insect guts, analogous to functional redundancy in other 365 

systems (Rosenfeld 2002). 366 
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Although differences in beta diversity were observed between sites, there were surprisingly no 367 

other significant taxonomic or functional differences between site for either E. alpicola (scraper) 368 

or T. maxima (shredder). As solar radiation and the presence of riparian vegetation significantly 369 

alters the taxonomic composition and function of biofilm communities (Wagner et al., 2015; 370 

Wilhelm et al., 2015), it would be expected to see differences between species of scrapers at the 371 

two sites that use biofilms as a predominant food source, if their microbiota simply reflected their 372 

diet. That no differences in taxonomic composition or functional diversity were observed between 373 

our scraper or shredder species at the two sites suggests their gut microbiota may be a result of 374 

selective colonization by taxa and not simply a reflection of their food. This similarity of microbial 375 

communities within insect species from different locations has previously been reported and may 376 

be a result of similar nutritional components and microbial species sorting due to similarities in 377 

the gut environment (e.g. morphology, pH, and oxygen conditions) (Anderson & Cargill 1987; 378 

Ayayee et al., 2018; Pechal & Benbow 2016).  379 

Conclusions 380 

Under the theoretical framework of the River Continuum Concept (RCC) and its derivatives (Junk 381 

et al., 1989; Vannote et al., 1980; Ward & Stanford 1995) high gradient, low order mountain 382 

streams provide a unique opportunity to investigate the impact of watershed conditions on 383 

microbial community assembly within macroinvertebrate species. While the tree line represents a 384 

drastic change in riparian conditions, we observed limited effects on internal microbial community 385 

structure and function, compared to the effects of macroinvertebrate species from different feeding 386 

groups. While there were site-specific differences in taxonomic diversity, these changes were not 387 

reflected in community function suggesting although different communities are present at the two 388 

locations, they provide similar functions. The observed dissimilarities between species of 389 
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belonging to different functional feeding groups, regardless of riparian conditions, agrees with 390 

previous research in suggesting that conditions within their digestive system allows for selective 391 

colonization of microbes, with distinct functional roles, and do not simply reflect their 392 

environment/diet (Ayayee et al., 2018). That large differences in CPOM inputs (e.g., leaf material) 393 

and light conditions did not lead to differences in individual taxa or functional changes was 394 

surprising, particularly for our shredder and scraper species as leaf material and autotrophic 395 

organisms represent their predominant food source. As algal and fungal communities comprise 396 

important roles in primary production and organic matter processing in stream systems (Cummins 397 

1974; Danger et al., 2013; Kuehn 2016) how these taxa differ between species and functional 398 

feeding guilds will require further investigation. While this study provides initial data on how 399 

species and habitat may be linked with gut bacterial communities in alpine systems, additional 400 

studies are needed to expand on this evidence and test multiple species of each functional feeding 401 

group in several catchments. Our study was limited to one species for each functional group 402 

(except for predators), making the distinction between the effect of species and functional group 403 

difficult to untangle. Larger, more comprehensive surveys and manipulation experiments are 404 

warranted to differentiate species and functional feeding group gut microbial community structure.  405 
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Figure Captions 419 

 420 

Fig. 1 a) Representative photo of tree line in Ostana. b) Study drainage basin in Italy showing the 421 

elevation/altitude for the higher elevation Alpine prairie location (Pian della Regina) and lower 422 

elevation forest location (Ostana). Altitude is displayed in meters above sea level. 423 

 424 

Fig. 2 Photos showing the riparian vegetation cover of a) high elevation Alpine prairie station 425 

(Pian della Regina) and b) lower elevation forested station (Ostana). 426 

 427 

Fig. 3 Internal bacterial communities of macroinvertebrate species: a) Differences in mass (mg) 428 

for E. alpicola and T. maxima at the two sites. Significance was determined by t-tests; b) Phylum 429 

level bacterial relative abundance between species; c) Differences in phylum level relative 430 

bacterial abundance between E. alpicola and T. maxima. Samples from the two sites were 431 

combined and only phyla with a relative abundance greater than 1% of the total relative 432 

abundance are shown. Samples were compared with Kruskal-Wallis tests with FDR correction; 433 

d) Differences in family level relative bacterial abundance between E. alpicola and T. maxima. 434 

Samples from the two locations were combined and only families which made up greater than 435 
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3% of the total relative abundance are shown, for lower abundance families see Figure S2. 436 

Significance between species were compared with Kruskal-Wallis tests and FDR correction. 437 

Error bars are SEM. 438 

 439 

 440 

Fig. 4 Top ten genus level predictors (determined by mean decrease GINI) for a random forest 441 

model predicting species (P. grandis was not included in the model, N = 2). Error bars are SEM. 442 

Significance between pairwise comparisons (Mann-Whitney, FDR correction) are denoted by 443 

lowercase letters 444 

 445 

Fig. 5 Differences in community diversity among macroinvertebrate species a) Differences in 446 

Faith’s phylogenetic diversity (Faith’s PD) between species. Comparisons between species were 447 

tested with Kruskal-Wallis tests with pairwise significance (Mann-Whitney) denoted by 448 

lowercase letters; b) Shannon diversity differences among species; c) PCoA plot (Jaccard 449 

distance) showing community differences due to taxonomic composition; d) PCoA plot (Jaccard) 450 

showing predicted functional differences in beta diversity among species. Ellipses represent 95% 451 

CI for the mean of each group. Legend is given in 5C. 452 

 453 

Table captions 454 

 455 

Table 1. Macroinvertebrate samples used for microbial sequencing. 456 

 457 
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Table 2. Differences in taxonomic beta diversity (Jaccard, PERANOVA) among 458 

macroinvertebrate species and location (P. grandis not included, N = 2). SS = Sums of Squares, 459 

MS= Mean Squares 460 

 461 

Table 3. Differences in predicted functional beta diversity (Jaccard, PERMANOVA) among 462 

macroinvertebrate species and location (P. grandis not included, N = 2). SS = Sums of Squares, 463 

MS= Mean Squares 464 

  465 
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