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It is known that fructose may contribute to myocardial vulnerability to
ischemia/reperfusion (I/R) injury. D-tagatose is a fructose isomer with less caloric
value and used as low-calorie sweetener. Here we compared the metabolic impact
of fructose or D-tagatose enriched diets on potential exacerbation of myocardial I/R
injury. Wistar rats were randomizedly allocated in the experimental groups and fed
with one of the following diets: control (CTRL), 30% fructose-enriched (FRU 30%) or
30% D-tagatose-enriched (TAG 30%). After 24 weeks of dietary manipulation, rats
underwent myocardial injury caused by 30 min ligature of the left anterior descending
(LAD) coronary artery followed by 24 h′ reperfusion. Fructose consumption resulted in
body weight increase (49%) as well as altered glucose, insulin and lipid profiles. These
effects were associated with increased I/R-induced myocardial damage, oxidative
stress (36.5%) and inflammation marker expression. TAG 30%-fed rats showed lower
oxidative stress (21%) and inflammation in comparison with FRU-fed rats. Besides,
TAG diet significantly reduced plasmatic inflammatory cytokines and GDF8 expression
(50%), while increased myocardial endothelial nitric oxide synthase (eNOS) expression
(59%). Overall, we demonstrated that D-tagatose represents an interesting sugar
alternative when compared to its isomer fructose with reduced deleterious impact not
only on the metabolic profile but also on the related heart susceptibility to I/R injury.

Keywords: fructose, myocardial ischemia, inflammation, oxidative stress, D-tagatose

INTRODUCTION

The dramatic rise in the prevalence of metabolic disorders has occurred in parallel with
an escalation in dietary sugar consumption. Indeed, the consumption of added sweeteners
containing fructose has increased dramatically in the last 40 years (Newens and Walton, 2016;
Taskinen et al., 2019), and clinical trials as well as experimental studies suggest that high
fructose intake is an important causative factor of metabolic derangements associated with an
excessive inflammatory response and oxidative stress (Mellor et al., 2010). Accordingly, fructose
consumption has been associated to higher prevalence of obesity, type 2 diabetes mellitus (T2DM),
and cardiovascular-related complications (Hu and Malik, 2010; Lim et al., 2010; Rizkalla, 2010;
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DiNicolantonio et al., 2015). Cardiovascular diseases (CVD) are
the most prevalent cause of morbidity and mortality in T2DM
patients (Henning, 2018), and ischemic heart disease is one of
the most common cause of death in T2DM patients. There is
substantial evidence that exposure to excessive fructose intake
has detrimental effects on multiple cardiometabolic risk factors
such as insulin resistance, intrahepatic lipid accumulation and
hypertriglyceridemia (Taskinen et al., 2019).

To achieve the best results in preventing nutrition-related
CVD maintaining a normal endothelial function, innovative
strategies, aimed to replace conventional sugars with new low
caloric sweeteners, have gained increasing attention. One of the
most promising alternative sugar is D-tagatose, a rare natural
ketohexose commonly produced from microbial bioconversion
of D-galactose. D-tagatose is an isomer of fructose and its
sweetness is equivalent to 90% that of sucrose, with low caloric
intake (<1.5 kcal/g, 33% of the calorie of sucrose), minimal
glycemic effect (Noronha et al., 2018) and growth promoting
effects on beneficial gut bacteria (Roy et al., 2018). Since its
classification as a generally recognized safe product (GRAS) by
the Food and Drug Administration (FDA) in 2001, it has been
used as a nutritional sweetener (Levin, 2002) to control glycemia
(Guerrero-Wyss et al., 2018).

Preliminary animal studies showed the ability of D-tagatose
to lower blood glucose and lipoprotein levels, generating great
interest in the scientific community (Yadav et al., 2018). D-
tagatose acts as a “sugar blocker” by preventing lipid formation
from carbohydrates without stimulation of pancreatic beta
cells for insulin production and secretion (Mooradian, 2019).
Besides, it has been shown to increase high-density lipoprotein
(HDL) levels (Donner et al., 2010). Results obtained in T2DM
patients reported that supplementation with D-tagatose resulted
in lower fasting blood glucose and HbA1c, and lower LDL
and total cholesterol (TC; Ensor et al., 2015). The molecular
mechanisms underlying the beneficial and healthy effects
of D-tagatose are not completely understood. Recently, we
reported a significant reduction of the metabolic abnormalities
in mice chronically fed with D-tagatose when compared to
fructose (Collotta et al., 2018). These differences were due,
at least in part, to the lower chemical reactivity of D-
tagatose when compared to its isomer fructose, resulting in
lower local accumulation of advanced glycation end-products
(AGEs), a heterogeneous group of compounds with multiple
biological effects that can contribute to the development
and progression of ex novo lipogenesis and inflammation
(Cepas et al., 2020). As we previously documented (Mastrocola
et al., 2013, 2018; Collotta et al., 2018), slight differences
in dietary sugars may significantly affect the evolution of
metabolic diseases. Despite the close link between metabolic
derangements and development of cardiovascular injuries, so
far, no experimental data are available on the potential impact
of the reduced susceptibility to metabolic derangements evoked
by D-tagatose when compared to fructose on exacerbation
of myocardial infarction. Thus, this study aims to extend
our investigation from the metabolic to the cardiometabolic
context, showing if and how chronic D-tagatose feeding resulted
in a reduced risk of exacerbation of the injury evoked by

an ischemic insult in comparison to the results obtained
with fructose feeding. We also investigated the potential
differences of the two fructose isomers in terms of activation of
oxidative stress and inflammatory cascades specifically involved
in the cardiac dysfunction following myocardial ischemia-
reperfusion (I/R) injury.

MATERIALS AND METHODS

Materials
D-tagatose was synthesized by Inalco RSM S.p.a, Research Center
(Montale, Pistoia, Italy), while fructose was acquired from Sigma-
Aldrich (St. Louis, MO, United States). Animal diets were
prepared by Sniff (Sniff Spezialdiäten, GmbH, Soest, Germany)
and had the following composition: control diet (CTRL) was
prepared 70% calories in carbohydrates (44.2% wheat flour,
14.9% dextrin and 11% sugar), 8.1% fat, 4.1% fiber, and 17.8%
protein. Fructose-enriched (FRU 30%) or D-tagatose-enriched
(TAG 30%) diets: 70% calories in carbohydrates [25.1% wheat
flour, 14.9% dextrin, and 30% sugars (fructose or tagatose,
respectively)], 10% fat, and 20% proteins.

Study Design
Male albino Wistar rats (8–10 weeks old) were purchased from
Charles River Laboratories (Wilmington, MA, United States).
At the University of Florence (Centre for Laboratory Animal
Housing and Experimentation), rats were housed in pairs with
food and tap water ad libitum and standardized conditions of
temperature, humidity and light. The experiments have been
performed in keeping with the Council Directive of the European
Community (2010/63/EU), with the Italian Legislative Decree
26 (13/03/2014), and the protocol has been approved by the
animal Ethical and Care Committee of the University of Florence
(Florence, Italy) and the Italian Health Ministry (Authorization
n 1189/2016-PR). Rats were allocated in three dietary regimen
groups for 24 weeks according to the method described by
(Collotta et al., 2018): a group fed with a control diet (CTRL
n = 14), a group fed with 30% fructose diet (FRU 30% group,
n = 14) and a group fed with 30% D-tagatose diet (TAG 30%
group, n = 14) (Figure 1).

FIGURE 1 | Flowchart of study design. The subgroups of animals represented
in red were subjected to left anterior descending (LAD) ligature and nitro-blue
tetrazolium (NBT) perfusion. The subgroups of animals subjected to
biochemical determinations are indicated in blue. ∗2 rats in fructose (FRU
30%) group died after 12 and 15 h of reperfusion.
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Surgical Procedure
A 22-gauge cannula (0.8 mm diameter, Venflon 2; BD
Biosciences, Franklin Lakes, NJ, United States) was inserted into
the trachea of anaesthetized rats (ketamine, Lobotor, Acme S.r.l.,
80 mg kg−1 b.w., plus xylazine, Dechra Veterinary Products S.r.l.,
10 mg Kg−1 b.w., ip) and air ventilation was performed using
a Palmer pump (Ugo Basile, Comerio, Italy) at a rate of 40–
45 stroke per minute and a volume of 4 ml/stroke. To prevent
hypothermia, a water warmed surgical bed (Kent Scientific
Corporation, Torrington, CT, United States) was used during
surgical procedures. Then, rats underwent thoracotomy at the
fifth left intercostal space, the pericardium was opened, and a
loose 00-braided silk suture was placed around the left anterior
descending (LAD) coronary artery, 1–2 mm below its origin. In
order to simplify the removal of the suture at the end of the
ischemia, a small silicon ring was inserted in the silk thread below
the knot. Then, to minimize heart displacement, the chest was
closed by a silk suture, leaving the ends of the coronary suture
threads emerging from the surgical wound. Ischemia (30 min)
was induced by tightening the threads of the coronary suture,
whereas, reperfusion (24 h) was obtained by reopening the chest
and cutting the ligature around the coronary artery (Collino et al.,
2012). Survival time was recorded in all animals. Two rats (2/14)
died after 12 and 15 h of reperfusion in the FRU 30% group.

Blood and Tissue Sampling
Tissues and tail vein blood were collected at the end of
reperfusion. Rats were euthanized and whole blood was collected.
Samples were centrifuged (1,200 × g, 4◦C, 15 min). Plasma
and serum were separated and then stored at −80◦C for the
following analysis. Hearts, liver and kidneys were harvested,
divided into aliquots and stored at −80◦C for biochemical
determinations or fixed in 4% paraformaldehyde for subsequent
histopathological analysis. A hearth isolated from a Naïve rat was
used as morphological reference.

Assessment of the Size of the Infarct
After 24 h, the animals were anesthetized again. In a subgroup
of animals from each experimental group (8 rats for CTRL and
TAG 30% groups, and 7 rats for FRU 30% group), the heart
was quickly removed and frozen for successively biochemical
determinations; while another subgroup (6 rats for CTRL and
TAG 30% groups, and 5 rats for FRU 30% group) was submitted
to the re-occlusion of LAD coronary artery and 0.25% Evans
blue dye was injected into the coronary system in vivo for the
measurement of the at risk area (AAR) (Masini et al., 2002).
After, the heart was quickly removed from the thorax, a cannula
was introduced into the aorta and the hearts were attached to
a Langendorff apparatus and perfused with 10 ml of 1% nitro-
blue tetrazolium (NBT) dissolved in a modified Tyrode solution,
pH 7.4, at a constant pressure of 40 cm of water at 37◦C for
20 min. The hearts were detached from the cannula, weighed,
and the ventricles cut from the apex to the base into 2 mm slices.
A superimposed acetate sheet was used to trace the bound areas
of the unstained area on the upside surface of each slice and the
encircled area was measured by computer-assisted morphometry.

The total volume of the damaged myocardium was determined,
as previously described (Masini et al., 2002).

L-Hydroxyproline Assay
The L-hydroxyproline content indicates collagen deposition,
which is utilized to assess tissue damage. Samples from frozen
cardiac tissue were previously lyophilized for 48 h and then
thoroughly homogenized in distilled water. The samples were
gently mixed with 12 M hydrochloric acid and hydrolyzed
by autoclaving at 120◦C for 40 min. After evaporation the
samples were reconstituted in 2 ml of distilled water. Each
sample was oxidized adding 1 ml of chloramine-T for 20 min
at room temperature. Chloramine T was neutralized with 1 ml
of 3.0 M perchloric acid. The samples were mixed with 1 ml
of p-dimethylaminobenzaldehyde and incubated at 65◦C for
20 min and then cooled at room temperature afterward. The
absorbance was measured at 550 nm and the L-Hydroxyproline
concentration was measured using a standard curve and
expressed as µg/mg of protein (Lucarini et al., 2017). Total
protein levels were measured using BCA Protein Assay (Thermo
Fisher Scientific, Waltham, MA, United States).

Histopathological Analysis
The paraffin-embedded tissue sections (6 µm) of heart tissue
were stained with AZAN staining method. In order to minimize
artifactual differences in the staining process, all sections were
stained in a single session. A digital camera connected to a light
microscope equipped with a× 40 objective was used to randomly
take photomicrographs of the histological slides.

Plasmatic Metabolic Parameters
Rats were fasted overnight and blood samples were collected from
the tail vein to measure the blood glucose level using a Glucocard
MX Blood Glucose Meter (A. Menarini Diagnostic, Florence,
Italy). Serum concentrations of total cholesterol (TC), high-
density lipoprotein cholesterol (HDL), and triglycerides (TG)
were enzymatically measured with specific reagent kits (Bayer,
Pittsburgh, PA, United States), using an automatic chemistry
analyzer (ADVIA 1650; Bayer, Osaka, Japan). Serum low-density
lipoprotein cholesterol (LDL-C) concentrations were quantified
by the Friedwald equation, subtracting the HDL-C from the TC
concentration (Friedewald et al., 1972).

Serum insulin levels were assayed with Rat/Mouse Insulin
ELISA kit (Millipore Merck, Darmstardt, Germany); the amount
of insulin is measured spectrophotometrically, by interpolation
of absorbance from a reference curve with reference standards of
known concentrations of rat insulin. The insulin resistance index
was calculated using the homeostasis model assessment (HOMA)
index with the following formula:

Homa− IR = glucose concentration (mg/dL)

× insulin (µU/mL)/405 (Matthews et al., 1985).

Cytokines Determination
The quantitative determination of the interleukin-6 (IL-6),
interleukin-1β (IL-1β), and tumor necrosis factor (TNF)-α was
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performed by a bead-based multiplex immunoassay, following
the manufacturer protocol (EDM Millipore Corporation,
Billerica, MA, United States). Briefly, plasma samples were
added to antibody-conjugated beads directed against the
cytokines listed above in a 96-well filter plate. After a 30-min
incubation, the plate was washed, and biotinylated anti-cytokine
antibody solution was added for overnight incubation. Following
incubation with streptavidin-conjugated PE each well was
analyzed with the Bioplex 200 system. Cytokine quantification
was performed using standard curves obtained by using cytokine
standards that underwent the same protocol as the plasma
samples. Values are indicated as mean ± SD for each group and
expressed as pg/mL.

Malonyldialdehyde Determination
Malonyldialdehyde (MDA), an end-product of lipid peroxidation
of cell membrane caused by oxygen derived free radicals, was
determined by measurement of the chromogen obtained from
the reaction of MDA with 2-thiobarbituric acid. Approximately
100 mg of tissue were homogenized with 1 ml of Tris HCl
buffer (50 mmol/L) containing 180 mM KCl and 10 mM
EDTA, final pH 7.4, using a tissue homogenizer (Ing. Terzano,
Milan, Italy). Then 0.5 ml of 2-thiobarbituric acid (1% w/v)
in 50 mM NaOH and 0.5 ml HCl (25% in water) were added
to the sample. The mixture was then heated in boiling water
for 10 min. The chromogen was extracted with 3 ml of 1-
butanol and the organic phase separated by centrifugation
and spectrophotometrically quantified at 532 nm wavelength.
Values are expressed as nanomoles of thiobarbituric acid-
reactive substances (MDA equivalents) per milligram of protein,
using a standard curve of 1,1,3,3-tetramethoxypropane (Bani
et al., 1998). Total protein concentration was measured using
Micro BCA Protein Assay (Thermo Fisher Scientific, Waltham,
MA, United States).

8-Hydroxy-2′-Deoxyguanosine
Determination
DNA isolation from cardiac tissue homogenates was performed
as previously described (Collotta et al., 2018). Frozen samples
were homogenized in 1 ml of 10 mM PBS, pH 7.4, sonicated
on ice for 1 min, added with 1 ml of 10 mM Tris HCl
buffer, pH8, containing 10 mM EDTA, 10 mM NaCl, 0.5%
SDS, and incubated for 1 h at 37◦C with 20 µg/ml RNase 1
(Sigma-Aldrich, St. Louis, MO, United States). The samples were
then incubated overnight at 37◦C with100 µg/ml proteinase
K (Sigma-Aldrich, St. Louis, MO, United States). The DNA
extraction was performed with chloroform/isoamyl alcohol
(10:2, v/v). The extracted DNA was precipitated from the
aqueous phase with ammonium acetate, solubilized in 200 µl
of 20 mM acetate buffer, pH 5.3, and denatured at 90◦C
for 3 min. The extract was supplemented with 10 IU of P1
nuclease (Sigma-Aldrich, St. Louis, MO, United States) in 10
µl, and incubated for 1 h at 37◦C with 5 IU of alkaline
phosphatase (Sigma-Aldrich, St. Louis, MO, United States)
in 0.4 M phosphate buffer, pH 8.8. The samples were
filtered with an Amicon Micropure-EZ filter (Amicon, MA,

United States). The 8-Hydroxy-2′-Deoxyguanosine (8-OHdG)
concentration was measured in 50 µl of each sample by
using the Highly Sensitive 8-OHdG Check ELISA kit (JalCA,
Shizuoka, Japan). The results were expressed as ng of 8-
OHdG/ng of total DNA.

Western Blot Analysis
A radioimmunoprecipitation assay (RIPA) buffer enriched
in protease inhibitors was used for tissue homogenization.
Homogenates were centrifuged at 14,000 × g for 10 min
and total protein levels were measured in the collected
supernatants using BCA Protein Assay (Thermo Fisher
Scientific, Waltham, MA, United States). Fifty µg of proteins
were separated by SDS-PAGE and electro-transferred on
PVDF membranes, which were then incubated with the
following rabbit monoclonal antibodies: anti-COX-2 and
anti- endothelial nitric oxide synthase (eNOS) (1:500, Santa
Cruz Biotechnology, Santa Cruz, CA, United States), anti-
GDF8 (1:1,000, Biorbyt Ltd., Cambridge, United Kingdom),
followed by incubation with appropriated HRP-conjugated
secondary antibodies. The loading transfer of equal amounts
of proteins was checked by reblotting the membrane with
anti-β-actin antibody (1:50,00; Sigma-Aldrich, St. Louis,
MO, United States). Bands were visualized by enhanced
chemiluminescence (ECL; Thermo Fisher Scientific, Waltham,
MA, United States) and quantified by densitometric analysis
with the ImageJ software.

Statistical Analysis
Data are expressed as mean ± SD and statistical analysis
(one-way ANOVA followed by Bonferroni multiple comparison
test) were performed using GraphPad Prism 6 (GraphPad
Software, San Diego, CA, United States), p < 0.05 was
considered significant.

RESULTS

Comparative Analysis of the Impact of
Two Sugar-Enriched Diets on Metabolic
Parameters
Rats chronically fed with FRU 30% diet for 24 weeks
gain significantly more weight than CTRL rats (Figure 2).
Interestingly, body weight gain recorded in rats exposed to TAG
30% was significantly lower than observed in FRU 30% diet-
fed rats. Consumption of the fructose-enriched diet resulted in
increased glycaemia, insulin level, serum TC, triglycerides and
LDL-cholesterol, associated with a significant decrease in HDL-
cholesterol levels. Abdominal fat was increased in FRU 30% diet
fed rats. Similarly, rats exposed to FRU 30% diet had significantly
elevated insulin resistance index compared with either the CTRL
or TAG 30% group. On the contrary, the level of the glucose,
the lipid profiles recorded in the blood, the abdominal fats, the
insulin level and the insulin resistance index of rats chronically
exposed to D-tagatose were not significantly different from those
recorded in the control group (p > 0.05) (Table 1).
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FIGURE 2 | Body weight gain in rats fed with controls (CTRL), D-tagatose
(TAG 30%) and fructose (FRU 30%) groups for 24 weeks. Data are
means ± SD for 14 animals per group. *p < 0.05 vs. CTRL, #p < 0.05 vs.
FRU 30%.

TABLE 1 | Effects of fructose (FRU 30%) and tagatose (TAG 30%) enriched diets
in comparison to a standard diet (CTRL) on glucose and lipid metabolism.

CTRL (n = 14) FRU 30%
(n = 12)

TAG 30%
(n = 14)

Glucose (mg/dL) 101.3 ± 4.32 286.2 ± 8.8* 114.5 ± 3.1#

Total Cholesterol (mg/dL) 53.36 ± 2.85 75.02 ± 3.51* 58.1 ± 4.8#

HDL (mg/dL) 33.91 ± 2.7 15.9 ± 3.1* 31.8 ± 2.4#

LDL (mg/dL) 17.02 ± 2.1 46.35 ± 2.9* 24.1 ± 3.7#

Triglyceride (mg/dL) 61.6 ± 1.9 195.8 ± 4.9* 107.86 ± 8.4#

Abdominal fat/body weight (%) 6.2 ± 1.6 11.3 ± 2.0* 8.6 ± 1.2#

Insulin (µU/mL) 3.63 ± 0.92 7.59 ± 1.81* 3.9 ± 0.84#

Insulin Resistance Index 0.91 ± 0.26 5.36 ± 1.4* 1.10 ± 0.26#

*p < 0.05 vs. CTRL; #p < 0.05 vs. FRU 30%.

Effect of D-Tagatose on Infarct Size and
Collagen Tissue Levels in Rats Exposed
to Myocardial Ischemic Injury
Chronic D-tagatose consumption improved the survival at the
end of 24-h reperfusion. In fact, no animal died in this group
as well as in the control group, while 2 rats (2/14) died after
12 and 15 h of reperfusion in the FRU 30% group. As shown
by computer-assisted morphometric analysis (Figure 3A), the
heart of rats fed with FRU 30% showed an infarct volume
significantly higher than that recorded in the heart of CTRL
animals. Although the extension of myocardial damage in
TAG 30%-fed rats was slight greater than observed in the
CTRL group it did not reached statistical significance. Most
importantly, it was significantly lower in comparison with FRU
30%-fed rats.

The levels of hydroxyproline content were significantly
increased in heart tissue from FRU 30% rats when compared to
those recorded in CTRL group. In contrast, chronic exposure
to the TAG 30% diet did not significantly increase (p > 0.05)
hydroxyproline level in comparison to CTRL diet (Figure 3B).

The histopathological analysis revealed that the heart tissue
of rats chronically fed with FRU 30% diet and subjected to
I/R show a damaged structure of myofibrils and muscle fibers,
surrounded by deposition of connective tissue (Figure 4C); while
the morphology of heart tissue of rats fed with TAG 30% diet
and subjected to I/R was comparable to heart tissue of rats fed
with CTRL diet and subjected to I/R (Figures 4B,D). Figure 4A
showed the heart tissue of a naive rat.

Exposure to Fructose- or
D-Tagatose-Rich Diets Differently Affects
Myocardial Markers of Oxidative Stress
As shown in Figure 5, the oxidative stress markers 8-hydroxy-
d-guanosine (8-OHdG, Figure 5A) and MDA (Figure 5B)
recorded in the hearts exposed to I/R injury were significantly
increased in rats fed with FRU 30% rich diet in comparison
to animals fed with CTRL diet. In contrast, TAG 30%
rich diet did not exacerbate I/R injury-induced myocardial
oxidative derangements.

Different Impact of Fructose- and
D-Tagatose-Rich Diets on Systemic
Cytokines Production
As shown in Figure 6, the systemic increase of IL-6, IL-1β, and
TNF-α detected in rats exposed to I/R injury following 24 weeks
of diet was significantly higher in the blood of animals fed the
FRU 30%-enriched diet respect to the levels observed in the
CTRL groups. On the other hand, no significant alteration in the
expression of pro-inflammatory cytokines following I/R-injury
were observed in plasma of animals previously fed with TAG
30%-diet, and they were not significantly different from those
recorded in the control group (p > 0.05).

Fructose- or D-Tagatose-Rich Diets
Differently Affect Local Expression of
Inflammatory Markers
Western blot analysis clearly demonstrates a significant increase
of COX-2 expression levels in heart (Figure 7A), liver
(Figure 7B), and kidney (Figure 7C) tissues of rats chronically
fed with FRU 30% compared to CTRL animals. On the contrary,
when compared to FRU 30%-fed rats, TAG 30% supplementation
caused a less increase in COX-2 expression, with values similar to
those recorded in the CTRL group when COX-2 was measured
in heart tissue.

Since nitric oxide synthase (NOS) and COX systems are
primarily expressed in endothelial cells and regulate the vascular
function, we measured the expression of eNOS in cardiac tissue.
Our results show a significant decrease of eNOS expression in
heart tissue of FRU 30%-fed rats compared to CTRL group.
In contrast, the chronic exposure to D-tagatose improved
endothelial dysfunction by normalizing eNOS expression in the
hearth tissues (Figure 8).

It is reported that the expression of GDF8 is increased
in cardiac diseases (George et al., 2010) and after myocardial
infarction is up-regulated in cardiomyocytes surrounded the
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FIGURE 3 | Impact of chronic sugar exposure on myocardial damage. (A) Extension of myocardial infarct size. The extension of infarcted left ventricular myocardium
was evaluated on hearts stained with nitro-blue tetrazolium (NBT) after left anterior descending (LAD) occlusion. Data are means ± SD for 6 (CTRL and TAG 30%
groups) and 5 (FRU 30% group) animals per group. (B) Hydroxyproline content in heart tissue homogenates. Data are means ± SD for four samples per group;
*p < 0.05 vs. CTRL; #p < 0.05 vs. TAG 30%.

FIGURE 4 | Representative images of AZAN-stained histological sections of heart tissue samples. (A) Naïve. (B) Ischemia/reperfusion CTRL group.
(C) Ischemia/reperfusion FRU 30% group. (D) Ischemia/reperfusion TAG 30% group. 40× magnification.

infarcted area (Sharma et al., 1999). Our results clearly indicate
that GDF8 expression is significantly increased in heart tissue
from FRU 30%-fed rats in comparison to TAG 30%-fed and
CTRL animals (Figure 9).

DISCUSSION

Most recent data on sugar consumption from nationally
representative dietary surveys across the world show that total
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FIGURE 5 | Impact of fructose- or D-tagatose-rich diets on oxidative stress markers. (A) 8-hydroxy-2′-deoxyguanosine (8-OHdG) and (B) malonyldialdehyde (MDA),
were measured in heart of rats fed with CTRL, FRU 30% or TAG 30%. Values are represented as means ± SD of 8 (CTRL and TAG 30%) and 7 (FRU 30%) animals
per group; *p < 0.05 vs. CTRL; #p < 0.05 vs. TAG 30%.

FIGURE 6 | Impact of sugar feeding on systemic concentrations of cytokines. Plasmatic concentrations of interleukin-6 (IL-6) (A), interleukin-1β (IL-1β) (B), and
tumor necrosis factor-α (TNF-α) (C) were measured in rats fed with CTRL, FRU 30% or TAG 30%. Data are means ± SD for 14 (CTRL and TAG 30%) and 12 (FRU
30%) animals per group; *p < 0.05 vs. CTRL; #p < 0.05 vs. TAG 30%.

sugar intake as a percentage of energy ranges between 13.5
and 24.6% in adults of developed countries (Newens and
Walton, 2016) and clinical findings suggest that the increasing
consumption of fructose may be correlated with obesity and
metabolic syndrome, which are both able to induce cardiac
impairment (Heidemann et al., 2008; Stanhope, 2012). Indeed,
it has been hypothesized that a sugar-rich diet contributes
to cardiomyocytes metabolic alterations impairing an efficient
protective response and tissue recovery when heart is exposed
to stress, as an ischemic event (Gonsolin et al., 2007; Pulakat
et al., 2011). A study in rats has recently demonstrated that
sugar-induced obesity may significantly contribute to increased
propensity of the heart to malignant arrhythmias by interfering
with expression and activity of myocardial electrical coupling
protein, connexin-43, and protein kinase C signaling cascade
(Egan Benova et al., 2019). Here we show that chronic
feeding with a high fructose diet induced drastic metabolic
derangements, which were paralleled by worsening of the
outcomes of cardiac I/R injury, as demonstrated by drastic
increases in infarct size and markers of fibrosis, inflammation
and oxidative stress. Specifically, when compared to the heart
of control rats, heart of rats exposed to fructose showed a

robust increase in the oxidative stress markers 8-OHdG and
MDA. The fructose ability to form weak complexes with ferric
iron, as previously demonstrated (Paterna et al., 1998), may
significantly contribute to alter the intracellular production
of oxygen free radicals, therefore resulting in impairment of
oxidative stress markers. Similarly, heart of fructose-fed rats
showed over-expression of the pro-inflammatory enzyme COX-2
associated with decreased expression of eNOS isoform, suggestive
of reduced local production of NO and, thus, endothelial
dysfunction. COX-2 was maximally expressed not only in the
heart but also in the kidney and liver of rats chronically
fed with fructose, thus indicating a multi-organ inflammatory
response, confirmed by the robust increased concentrations of
pro-inflammatory cytokines in the blood of fructose-fed rats.
Interestingly, in hearts of fructose-fed rats, we also documented a
statistically significant increase in GDF8, which has been reported
to contribute to accelerate the progression of fibrosis and late
dysfunction in infarcted and remodeling hearts by promoting the
proliferation of fibroblasts and expression of extracellular matrix
proteins (Lim et al., 2018). Overall, these findings suggest that the
causal link between overconsumption of fructose and increased
myocardial susceptibility to I/R injury is due, at least in part, to
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FIGURE 7 | Impact of sugar feeding on myocardial, hepatic and renal expression of cyclooxygenase-2 (COX-2) enzyme isoform. Representative immunoblot and
densitometric analysis of the expression of COX-2 in heart (A), liver (B), and kidney (C) of rats fed with CTRL, FRU 30% or TAG 30%. Densitometric data are
reported as relative optical density (OD), corrected for the corresponding β-actin contents. Data are means ± SD for 8 (CTRL and TAG 30%) and 7 (FRU30%)
samples per group; *p < 0.05 vs. CTRL; #p < 0.05 vs. TAG 30%.

FIGURE 8 | Effects of sugar feeding on cardiac expression of endothelial nitric oxide synthase (eNOS). Representative immunoblots and relative densitometric
analysis of the expression of eNOS in heart samples of rats fed with CTRL, FRU 30% or TAG 30%. Densitometric data are reported as relative optical density (OD),
corrected for the corresponding β-actin contents. Data are means ± SD for 8 (CTRL and TAG 30%) and 7 (FRU 30%) animals per group; *p < 0.05 vs. CTRL.
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FIGURE 9 | Effects of sugar feeding on expression of Growth/Differentiation Factor 8 (GDF8). Representative immunoblots and relative densitometric analysis of the
expression of GDF8 in heart samples of rats fed with CTRL, FRU 30% or TAG 30%. Densitometric data are reported as relative optical density (OD), corrected for the
corresponding β-actin contents. Data are means ± SD for 8 (CTRL and TAG 30%) and 7 (FRU 30%)animals per group; *p < 0.05 vs. CTRL and
#p < 0.05 vs. TAG 30%.

an excessive inflammatory response associated with impairment
in the oxidant/antioxidant balance. Our data are in keeping
with previous findings showing that excessive intake of fructose
increases the cellular production of ROS (Jaiswal et al., 2015).
The increased levels of ROS in cardiac tissue following I/R has
been reported to contribute to reduced expression of cardiac NOS
(de Castro et al., 2015), thus impairing the ability of coronary
arteries to dilate, and thus, resulting in increased myocardial
susceptibility to I/R injury (Prakash et al., 2011). Besides, a
decreased NOS activity leads to an increased expression of COX-
2 and consequent production of pro-inflammatory mediators
(Meza et al., 2019).

We previously showed that chronic fructose feeding in mice
resulted in massive increase in markers of oxidative stress,
radical-induced DNA damage and inflammatory response in the
heart and these effects were not recorded when animals were
fed with D-tagatose diet (Collotta et al., 2018). Here we further
extended our previous findings in a different animal specie to the
comparative impact of the two sugar isomers on cardiovascular
risk associated with metabolic derangements. Specifically, we
demonstrated that D-tagatose does not exacerbate the I/R-
induced oxidative stress and related inflammatory response,
which were maximal in hearts of rats exposed to I/R after
chronic fructose feeding. As elevated expression of COX-2 in
cardiomyocytes has been associated with heart failure (Abbate
et al., 2004), the lack of significant effects on COX-2 expression
corroborates the evidence of reduced cardiac toxicity, even after
I/R injury, in D-tagatose diet when compared to fructose feeding.
The significant difference in expression levels of hydroxyproline,
whose measurements accurately reflect the amount of collagen in
the tissue, and GDF8, a reliable marker of clinical severity after
acute myocardial infarction (Meloux et al., 2019), which were
both maximally upregulated in the I/R heart of fructose-fed rats
and only slightly overexpressed in the presence of D-tagatose, is a
further evidence of the limited toxic impact of D-tagatose diet on
cardiac damage after I/R when compared to a fructose rich diet.

As far as we know, this paper represents the first observation
regarding different myocardial susceptibility following I/R injury
after chronic intake of two sugar isomers, fructose or D-tagatose.

Our data demonstrate that altering the content of a single
nutrient in a diet is enough to reduce the risk of diet-
induced metabolic derangements and related exacerbation of
cardiovascular injury. In contrast, a diet containing an equivalent
amount of D-tagatose had only slight effect on body weight,
systemic lipid and glucose profiles, as well as on insulin level
and insulin resistance index. These findings are in agreement
with previous findings showing that D-tagatose, as a carbohydrate
source, did not promote obesity and hyperglycemia and these
effects were associated with lower risk of hypercholesterolemia
and atherosclerosis, in comparison to sucrose, when tested
in low-density lipoprotein receptor deficient (LDLr−/−) mice
(Police et al., 2009). Overall, the results here reported strengthen
the evidence on health promoting effects of D-tagatose. In fact, D-
tagatose shows several beneficial properties besides its sweetness,
such as low glycemic index, reduced energy value, prebiotic and
antioxidant effects (Roy et al., 2018). Thus, thanks to is capability
to prevent the lifestyle related diseases, it can be used as a low
caloric bulk sweetener in a wide variety foods, health products,
beverages, and dietary supplements.

The experimental model here proposed allows us to compare
the impact of chronic exposure to the two fructose isomers on the
heart injury evoked by acute I/R challenge in a strictly controlled
environment, avoiding confounding factors. However, we are
aware of some limitations of the present study, including the
high content of dietary sugars, which are beyond average human
consumption, the lack of investigation on potential synergistic
effects of the fructose isomers with other relevant dietary
components, the impossibility to dissect causal relationships
between changes in cellular activation of redox and inflammatory
cascades evoked by sugar exposure and the specific heart cell
types mainly affected. We also did not consider the sugars’
impact on gut microbiota and integrity, being D-tagatose partially
fermented in the large intestine and used by gut microbiota
as substrate (Liang et al., 2019). Differences between the two
fructose isomers in terms of digestibility might contribute to
explain, at least in part, their different toxicological profiles.
The acute myocardial infarction model we used is generally
recognized to mimic human ischemic heart disease and it
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serves as an important tool to elucidate the molecular signaling
mechanisms and to study the consequence of a myocardial
infarction on cardiac pathophysiological function (Masini et al.,
2002; Bianchi et al., 2005; Collino et al., 2012). Nevertheless, the
beneficial impact of D-tagatose feeding here documented has to
be confirmed also in suitable models of chronic cardiovascular
injury to strengthen the perspective of the beneficial effects
of D-tagatose as sugar alternative in cardiometabolic settings.
Thus, future ad hoc studies, with implemented technologies, are
required to clarify these issues as well as to better elucidate its
safety profile.

CONCLUSION

In conclusion, here, we demonstrated for the first time that
chronic exposure to D-tagatose exerts less harmful effects
on myocardial susceptibility to I/R injury, when compared
to fructose, thus strengthening the rationale for the use
of D-tagatose as safer paradigm of sweeteners with limited
toxicological impact not only on metabolic disorders but
also on the related cardiovascular risks. Overconsumption
of sugar containing food and beverages contributes to the
development of obesity and diabetes epidemic. In 2016, the
World Health Organization reported in Western countries,
such as United States of America, 64.5% population was
overweight (Jacques et al., 2019) and over the last 10 years
the prevalence of obesity across the European continent has
in general been rising (Blundell et al., 2017). Furthermore, the
fructose-derivative sugar could have several advantages over the
most widely used simple carbohydrates, for reducing the risk
of CVD in western populations, including those with metabolic
derangements.
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