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Introduction 

Life course epidemiology seeks to understand the influence of several exposures across the life 

course, including in fetal life, on later health or disease risk. 1 Large-scale birth cohort studies 

provide a unique opportunity to model early life exposures in relation to later life outcomes. The 

implementation of life course models presents many methodological challenges for both the design 

and analysis of epidemiological studies. 2 The primary goal of an analytical epidemiologic study is 

to obtain a valid and precise estimate of the effect of an exposure on an outcome. However, the 

internal validity of an estimate of a causal effect can be compromised by bias arising from 

confounding. Although confounding occurs in experimental research, it is a considerably more 

important issue in observational studies. Besides the general concept, some specific sources of 

confounding, including confounding by indication, confounding pattern altered by baseline 

selection, time-varying confounding and mediator–outcome confounding, are worth discussing in 

the context of life course epidemiology. Moreover, in this context, it is becoming increasingly 

common to combine individual-level data from several birth cohort studies in a meta-analysis, 

which offers advantages over the traditional aggregate data meta-analysis. 3 However, it remains 

unclear how the confounding should be addressed when data from different studies are centrally 

analyzed. 

In this study, we first use directed acyclic graphs (DAGs) to briefly introduce the general concept of 

confounding. We then describe, provide examples and discuss specific sources of confounding that 

may play a relevant role in birth cohort studies: (i) confounding by indication, (ii) impact of 

baseline selection on confounding, (iii) time-varying confounding and (iv) mediator–outcome 



confounding. Finally, we discuss the issue of addressing confounding in the context of individual 

participant data meta-analyses. 

 

Confounding 

Confounding may be referred to as a ‘mixing of effects’ in which the effect of the exposure of 

interest on a given outcome is mixed with the effects of other factors resulting in a distortion of the 

true effect. 4 Confounding factors can overestimate or underestimate an effect, depending on the 

direction of their associations with exposure and outcome. The magnitude of confounding is of 

much greater importance than its mere presence or absence since it can hide a causal effect, falsely 

demonstrate an association where no causal association exists or even change the apparent direction 

of the effect estimate. Traditionally, for a variable to be a confounder, it must have three necessary 

(but not sufficient) characteristics: (1) it is a risk factor for the outcome conditional on the exposure; 

(2) it is associated with the exposure; and (3) it is not affected by the exposure or the outcome, in 

particular, it cannot be an intermediate step in the causal path between the exposure and the 

outcome. 4 Under the increasingly used graphical criteria, a confounder might be defined as a 

variable that should be used to block an otherwise open backdoor path. A backdoor path is a path 

from the exposure to the outcome that starts with an arrow pointing to the exposure. A collider is a 

variable which at least two arrows point to. A backdoor path is marginally blocked when contains a 

collider or is conditionally blocked when contains a non-collider on which it is conditioned 

(adjusted). Adjusting for a collider opens a path that was naturally blocked. 4 , 5 Two potential 

scenarios are illustrated in Fig. 1, where E 1 and E 2 are the exposures of interest, Y the outcome and 

C a common cause of E 1 and Y. The DAG in Fig. 1 shows two backdoor paths from E 1 to Y (E 1–

C–Y and E 1–E 2–Y), which are both marginally open (i.e., are not blocked before conditioning). 

Therefore, in order to estimate the effect of E 1 on Y, the analysis should condition on C and E 2. On 

the other hand, to estimate the effect of E 2 on Y the analysis does not need to condition on C or E 1 

because there are no backdoor paths from E 2 to Y (i.e., no paths from E 2 to Y starting with an arrow 

pointing to E 2). 

The traditional and graphical criteria for confounding usually lead to the same set of covariates for 

adjustment, and they both rely on external knowledge. For example, considering Fig. 1, both criteria 

indicate that C is a confounder of the effect of E 1 on Y. However, there are cases in which the 

traditional and the DAGs criteria disagree, and when that happens, it is the traditional criteria that 

fail, assuming that the graphical approach depicts correctly the underlying causal relationships 

among variables. A classical example, the so-called M-diagram, 5 is illustrated in Fig. 2, where E is 



the exposure, Y the outcome, U 1 a common cause of E and C and U 2 a common cause of C and Y. 

In this DAG, C meets the three traditional criteria for a confounder since C is related to E and Y (by 

sharing a cause, U 1 and U 2, respectively), and it is not affected by E or Y. Based on the assumed 

causal structure, there is a backdoor path from E to Y that is blocked at C since C is a collider. Thus, 

no adjustment for C should be made; if C is adjusted for, the path becomes open and could only be 

blocked by conditioning on either U 1 or U 2. In the absence of data on U 1 and U 2, adjustment for 

C would introduce bias where none was present and lead to a potential spurious association between 

E and Y. An example of such scenario is a study that aims to evaluate the effect of breastfeeding (E) 

on later child’s obesity (Y), where maternal education (U 1) is related to both breastfeeding and 

maternal obesity (C) and mother’s genetic obesity risk (U 2) is related to both maternal obesity and 

child’s obesity (assuming that maternal education does not affect child’s obesity). Under these 

circumstances, maternal obesity would be identified as a confounder based on the traditional criteria 

but as a collider based on the graphical criteria. This reinforces why the traditional criteria might 

fail under some circumstances: every confounder must satisfy the traditional criteria but some non-

confounders satisfy them as well. 4 

 

Specific sources of confounding 

Confounding by indication 

Confounding by indication is a potentially severe form of confounding that arises when the 

indication for the treatment under study is a cause, or a consequence of a cause, of the outcome of 

interest. 6 , 7 For example, stage could confound a study on treatment for a given disease and overall 

mortality, or history of gastric problems could confound a study on use of anti-inflammatory drugs 

and gastric ulcer. 7 The latter example could also be labeled as confounding by contraindication. 8  

In birth cohort research, confounding by indication may arise either for the child indication for the 

treatment or for maternal indication for the treatment during pregnancy or the periconceptional 

period. Figure 3a depicts a simple example of confounding by indication occurring when the child 

prognostic or risk factors for the disease of interest affect his/her likelihood of receiving the 

treatment. For example, in studies on exposure to antibiotics in infancy and asthma or lung function 

at school age, infant respiratory infections induce exposure to antibiotics and may increase the risk 

of asthma later in life. 9 To estimate the causal effect of antibiotics on asthma, it would be necessary 

to control for confounding by indication due to respiratory infections. One option would be to 

simply adjust for respiratory infections and another option would be to consider only exposure to 



antibiotics used for non-respiratory infections, thus breaking at least in part the indication pathway. 

Several other analytical options and design approaches are available. 10 , 11  

The mechanism inducing confounding by indication is slightly more complex when the study 

focuses on exposure to a maternal treatment in pregnancy and a child health outcome. There is 

confounding by indication if the maternal characteristics that induce the treatment are associated 

with the child prognostic or risk factors for the disease under study. This usually happens through a 

backdoor path (Fig. 3b). For example, in a study on maternal use of antibiotics during pregnancy 

and asthma at school age, maternal respiratory tract infections during pregnancy could act as 

confounders by indication. Maternal respiratory infections induce the use of antibiotics and may be 

associated with the risk of child asthma, assuming that the increased maternal susceptibility to 

respiratory infections is associated with a similar child increased susceptibility to respiratory 

infections or asthma – the shared transmitted susceptibility is thus the reason for the open backdoor 

path. 12 In some instances, the maternal characteristics that induce the treatment directly affect child 

health, and the mechanism underlying confounding by indication becomes more similar to that 

depicted in Fig. 3a. For example, in a study of maternal use of antidepressant drugs in pregnancy 

and the risk of cardiac malformation, maternal conditions indicating for the use of antidepressants, 

including depression, sleep disorders, other mental health disorders, could cause cardiac 

malformations, for example, through their induced lifestyles (e.g., smoking). To control for 

confounding by indication in this scenario, in a large register-based study, analyses were restricted 

to mothers with a depression diagnosis and further stratified on a propensity score for the predicted 

probability of treatment. 13  

In case of child indication for the treatment, the terminology confounding by indication might be 

incorrectly used to indicate reverse causation or protopathic bias, 14 which occurs when the early 

manifestations of the outcome of interest induce the treatment. 8 , 15 In this scenario, the disease, 

through its symptoms, affects the medication and not vice-versa and thus the underlying causal 

mechanism is different from that of confounding (Fig. 4). It is of interest that this potential 

confusion between confounding by indication and reverse causation is less likely to occur when the 

exposure of interest is the maternal treatment in pregnancy, as in Fig. 3b: the indication for maternal 

treatment depends on maternal factors, and early manifestations of the child outcome cannot 

precede the exposure and introduce bias through reverse causation. 

 Treatments are prescribed with the intended aim of changing the natural history of a disease and 

prevent unfavorable outcomes (e.g., patients with respiratory infectious diseases are prescribed 

antibiotics to prevent death). 6 Treatments prescribed in a clinically appropriate manner are thus 



used more frequently by individuals with a high risk of having the outcome. For this reason, 

confounding by indication is particularly challenging, that is, the indication is strongly associated 

with both the treatment and the outcome. When it comes to side effects of the treatment, or the so-

called unintended effects, especially when they are unknown or occur in the long term, the 

association between the indication and the outcome is expected to be weaker as the treatment is not 

prescribed specifically to prevent that outcome. 6 Let us consider an example of intended and 

unintended effects of use of antibiotics in pregnancy. Genitourinary infections in pregnancy are a 

strong indication for use of antibiotics and are strongly associated with the risk of adverse birth 

outcomes among the untreated women. An observational study on the use of antibiotics in 

pregnancy and adverse birth outcomes could find a positive association due to confounding by 

indication. In a study of use of antibiotics in pregnancy and child obesity, genitourinary infections 

would still be a strong indication for use of antibiotics, but their association with the outcome of 

interest (child obesity) among the untreated women would be much weaker. Confounding by 

indication could still introduce bias, but the magnitude of the bias would be smaller. Thus, 

confounding by indication is typically less problematic when the outcome of interest regards an 

unintended than an intended effect of the treatment. This has obvious positive implications for the 

validity of birth cohort research, which typically focuses on unintended long-term effects. 

 

Impact of baseline selection on confounding 

In birth cohort studies, participants can be either selected according to some prespecified criteria 

(intentional selection) and/or self-selected because of low baseline response rates or recruitment of 

volunteers (unintentional selection). It is widely acknowledged that baseline selection might alter 

the confounding pattern present in the general population, 16 – 20 but there is still lack of clarity on 

the potential underlying mechanisms and on the consequences in terms of validity of the study 

results. 

Baseline selection in birth cohorts, as well as in any cohort study, by definition cannot be affected 

by the outcome of interest. In this context, the confounding pattern of the general population can be 

altered if both the exposure of interest and another risk factor for the outcome are associated – 

either directly or through some other variables – with the probability of selection into the study. 

Some potential scenarios are illustrated in Fig. 5, where E indicates the exposure of interest, R a risk 

factor for the outcome Y, S an indicator of selection into the cohort and U is another unmeasured 

variable. Clearly modified/alternative versions of scenarios depicted in Fig. 5 exist and these 

scenarios are not mutually exclusive. Moreover, in the graphs for simplicity, we focus only on 



unintentional selection, but the same line of reasoning can be applied to the other selection 

mechanism. 

In the first situation (Fig. 5a), the exposure and the risk factor are associated in the general 

population because they share a common cause U and both affect the probability of being a 

volunteer. As a consequence, R is a confounder of the E–Y relationship, but among the study 

subjects, the E–R association is altered due to implicit conditioning on volunteering, which in Fig. 

5a is a collider. Under this mechanism, baseline selection can either induce or attenuate the 

confounding effect of R depending on the strength and direction of the relationships involved (E-

Volunteering, R-Volunteering, U–E, U–R). 21 , 22 An example of such scenario could be a study that 

aims to evaluate the effect of maternal consumption of antidepressant during pregnancy (E) on child 

neurodevelopment (Y), where both consumption of antidepressant and smoking during pregnancy 

(R) – a risk factor for the outcome of interest – are likely to decrease the probability of volunteering 

into the study. In the general population, we can assume that these two variables are positively 

associated due to the inverse association of maternal education (U) with both maternal consumption 

of antidepressant and smoking during pregnancy and therefore we can assume that positive 

confounding is present. As both smoking and consumption of antidepressant affect baseline 

selection in the same direction, we expect that among study participants a spurious negative 

association is induced between these two variables, thus attenuating the confounding present in the 

general population. An example with the same underlying mechanisms but with enlarged 

confounding bias due to baseline selection might be a study where parity (E) and smoking (R) 

negatively affect participation and are negatively associated in the general population due to 

maternal age (U), which is positively associated with parity and negatively with smoking during 

pregnancy. 

In the second situation (Fig. 5b), the exposure and the risk factor still affect the likelihood of being a 

volunteer but are now independent in the general population. Restricting on S induces an 

association between E and R, making R a confounder among the study subjects. This is a type of 

collider bias that has been described extensively in the epidemiological literature 5 , 16 – 18 , 21 , 22 and 

that has been quantified also by simulation studies. 21 An example of such scenario might be a study 

in which we want to evaluate the effect of maternal education (E) on reproductive outcomes (Y), 

where both maternal education and occurrence of previous miscarriages (R) affect the probability of 

participating into the study (S). Assuming that these two variables are independent in the time and 

place in which the study is conducted, when analyzing the birth cohort data, previous miscarriages 

become a confounder for the association between maternal education and reproductive outcomes. 



Another special and relevant case is the one depicted in Fig. 5c, where the risk factor R is a 

confounder in the general population because it shares the common cause U with the exposure of 

interest E and the common cause is the factor influencing volunteering. Under this scenario, 

although there might be exceptions, 23 typically the confounding bias present in the general 

population due to the E–U–R–Y backdoor path would be attenuated in the selected cohort because 

conditioning on S would imply a partial conditioning on U. This might be the case of a study on the 

effect of alcohol consumption during pregnancy (E) on child neurodevelopment (Y) with maternal 

education (U) influencing participation as well as alcohol consumption and maternal pre-pregnancy 

body mass index (BMI) (R), which we assume not to affect volunteering. 

In all these scenarios, both in the general population and in the selected cohort, conditioning on R 

would block the backdoor path from E to Y and enhance valid scientific inference for the exposure–

outcome effect. When R is unknown or unmeasured, confounding might be present both in the 

general population and in the selected birth cohort or in only one of the two depending on the 

underlying mechanisms involved, as baseline selection might induce but also reduce the 

confounding present in the general population. The bottom line is that the confounding pattern in 

the birth cohort may differ from that of the corresponding general population, both in terms of 

amount and direction of bias and in terms of relevant variables, we need to control for to minimize 

confounding, and efforts should be made to collect information on all known or potential relevant 

risk factors for the outcome of interest. 

 

Time-varying confounding 

If the aim of a study is to estimate the causal effect of a time-varying exposure, that is, measured at 

different times for each subject, on an outcome, it is likely that time-varying confounders are 

present, that is, factors which change over time and confound the time-varying exposure–outcome 

causal relationship. The time-varying confounder affects the future exposure and predicts the 

outcome conditional on the past exposure. A simplified scenario with measured time-varying 

confounders and without further unmeasured and/or time-fixed confounders is represented in Fig. 6. 

The time-varying exposure is indicated by E t , t=0 , … , T, the time-varying confounder is indicated 

by L t , t=0, … , T, with L t occurring immediately before E t , and Y is the outcome of interest 

measured at a later time t>T. Let E t , t=0, 3, 6, 12, represents the breastfeeding measured at 24 h 

after birth, 3, 6 and 12 months, L t , t=0, 3, 6, 12, the infant’s weight at the same times and Y the 

infant’s wheezing at 18 months. Here, the infant’s weight can affect the current breastfeeding status 

and, at the same time, may be affected by the infant’s earlier breastfeeding status. Infant’s weight is 



both a confounder and a mediator of the relationship between breastfeeding and the risk of infant’s 

wheezing. In this framework, traditional modeling strategies cannot be used. Controlling only for 

infant’s weight measured at baseline (L 0) would produce a biased estimate of the causal effect of 

breastfeeding (E t , t=0, 3, 6, 12) on the risk of wheezing (Y) because it would ignore the fact that 

the breastfeeding over the first year of life (E t , t=3, 6, 12) depends on infants’ weight (L t , t=3, 6, 

12), which, in turn, affects the risk of wheezing independently from breastfeeding. However, also 

controlling for time-varying measurements of infant’s weight (L t , t=0, 3, 6, 12) affected by prior 

breastfeeding would give a biased estimate of the causal effect of interest because breastfeeding (E t 
, t=0, 3, 6, 12) acts partly through the effect of infant’s weight (L t , t=3, 6, 12) on the outcome (Y). 
24 Furthermore, in the presence of an unmeasured confounder of the time-varying confounders and 

the outcome association, controlling for time-varying measurements of the exposure would 

introduce a further source of collider bias 5 due to the induced spurious association between the 

exposure and the unmeasured confounder and consequently between the exposure and the outcome. 

Hence, there is the need for using alternative methods based on counterfactuals, 25 , 26 such as 

inverse probability weighting, 26 – 28 G-formula computation 26 , 29 , 30 and g-estimation, 26 , 29 , 31 

that adjust for confounding without blocking the effect of the exposure on the confounder. 

 

Mediator–outcome confounding 

Mediation analyses are traditionally performed by regressing the outcome on the exposure with and 

without the mediator. 32 One common example is the adjustment for gestational age or weight at 

birth in studies aiming to assess the effect of maternal prenatal exposures on offspring outcomes. 

The estimate is interpreted as a total effect of the exposure on the outcome in the model unadjusted 

for the mediator and as a direct effect in the model adjusted for the mediator (i.e., the effect that is 

not mediated by the mediator included in the model). The difference between total and direct effects 

is the indirect effect (i.e., the effect that acts through the mediator included in the model). This 

traditional approach to mediation analyses may produce flawed conclusions due to four main 

sources of potential bias: (i) misclassification of the mediator, 33 – 36 (ii) the presence of exposure–

mediator or exposure–confounders interaction and non-linearities, 37 (iii) collider bias 5 , 38 might 

occur when adjusting for a mediator in the presence of unmeasured mediator–outcome confounding 
37 and (iv) a direct effect cannot be estimated if a variable that lies on the direct path between the 

exposure and the outcome confounds the mediator–outcome effect. 37 Mediation approaches using 

counterfactual theory to estimate controlled and natural effects and approaches to sensitivity 

analyses have been developed, which address some of these limitations. These methods are beyond 



the scope of this review and have already been described elsewhere. 37 , 39 Here, we will discuss 

further the issue of mediator–outcome confounding and the special case when mediator–outcome 

confounding is affected by the exposure. 

Suppose that we are interested in estimating the causal effect of an exposure on the outcome for a 

given level of the mediator (the controlled direct effect). 37 , 40 , 41 In this context, not only we need 

to assume no unmeasured confounding of the exposure–outcome association but also we should 

assume absence of unmeasured confounding of the mediator–outcome association. We indicate the 

exposure by E, the mediator by M, the outcome by Y, the set of measured confounders of the E–Y 

association by C 1 and the unmeasured confounder of the M–Y association by U (Fig. 7a). An 

example of this scenario could be maternal BMI (E), breastfeeding duration (>6 months v. �6 

months) (M) and obesity at school age (Y), where U indicates the occurrence of infant’s infections 

in the first 6 months of life. The question of interest is how much of the effect of maternal BMI on 

the obesity at school age is mediated by breastfeeding duration, or in other words, the question is 

what would be the remaining effect of maternal BMI on the obesity at school age if all women 

breastfed for at least 6 months. As previously described, a common approach to address this 

question is to condition on breastfeeding duration (M), by stratifying the analyses on it or 

controlling for it in a regression model. However, conditioning on breastfeeding duration (a 

collider) (M) would induce a spurious association between maternal BMI (E) and occurrence of 

infant’s infections in the first 6 months of life (U), 42 , 43 opening the backdoor path maternal BMI–

infant’s infections–obesity (E–U–Y), thus inducing a bias in the effect of interest. Hence, when 

estimating the controlled direct effect of an exposure on an outcome, traditional multivariable 

methods can be used if all confounders of mediator–outcome association are measured and are 

included in the analyses. Sensitivity analyses have been proposed 44 in order to quantify the bias in 

the presence of unmeasured/unknown mediator–outcome confounders. Suppose now that measured 

M–Y confounders (C 2) are affected by E (Fig. 7b), in which C 2 could be infant’s growth. 

Controlling for infant’s growth (C 2) to account for the spurious association induced by 

conditioning on breastfeeding (M) would give a biased estimate of the controlled direct effect 

because, in this way, the path from maternal BMI (E) to obesity at school age (Y) that goes through 

infant’s growth (C 2) would be blocked. In these circumstances, controlled direct effects can be 

consistently estimated using alternative methods based on counterfactuals, such as the inverse 

probability weighting 27 , 28 and the G-formula computation, 29 , 30 , 45 that adjust for the effect of 

confounder on the M-Y association but not for the effect of exposure on the confounder. Further 

assumptions on absence of unmeasured/measured confounders are required when the aim is to 

estimate natural direct and indirect effects in a mediation analysis. 40 , 41  



 

Discussion 

In this study, we described and discussed sources of confounding in birth cohort studies, provided 

some examples and referred to the methods that have been developed to tackle them. In most 

instances, multiple sources of confounding coexist, and each study has its specific confounding 

pattern. It is easy to conclude that confounding is one of the main challenges to causal inference in 

life course epidemiology. It is particularly relevant in the context of individual participant data 

meta-analyses of birth cohort studies. 3 Individual participant data meta-analyses on environmental 

exposures and genetic associations have already been published as part of birth cohort 

collaborations, such as CHICOS (http://www.chicosproject.eu/the-project/management/), EGG 

(http://egg-consortium.org/) and ENRIECO (http://www.enrieco.org/). These meta-analyses are 

commonly undertaken using the same set of confounders among all participating cohorts. This 

might be problematic if potential different confounding patterns, caused by different confounding 

structures in the population and/or baseline selection, are present. However, considering cohort-

specific sets of covariates might be particularly difficult and time-consuming in an individual 

participant data meta-analysis comprising several cohorts. Also, adjustment for different covariates 

would complicate the use of one-stage models (i.e., individual level data from all studies are 

simultaneously analyzed in a multilevel model, taking into account clustering of participants within 

studies), limiting the analyses to two-stage models (i.e., individual-level data within a study are 

analyzed and subsequently, the results from each study are combined using conventional meta-

analytical methods). Although both approaches can suffer from estimation challenges, the use of 

one-stage methods has been recommended. 46 Measures of heterogeneity and inconsistency across 

studies in a meta-analysis have been developed, 47 and although a low value can support at least 

partly a little influence of confounding on the results, a high value is not necessarily indicative of 

different confounding patterns. Bias related to confounding might be indirectly evaluated by 

subgroup analyses of individual participant data (for instance, data from middle-income and high-

income cohorts may be analyzed separately). Two-stage models considering a specific set of 

covariates per cohort might also be performed. Further research should focus on the impact of 

cohort-specific confounding in individual participant data meta-analyses. 
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Figure 1 Directed acyclic graph representing confounding from E 1 to Y but not from E 2 to Y. E 1 
and E 2 are the exposures, Y the outcome and C the confounder of E 1–Y association. 

 

 

Figure 2 Directed acyclic graph under which the traditional criteria fail to identify a confounder. E 
is the exposure, Y the outcome, and U 1 and U 2 the unmeasured confounders of E–C and C–Y 



association, respectively, and C the confounder of E–Y association based on the traditional, but not 
graphical, criteria. 

 

 

Figure 3 Directed acyclic graphs representing confounding by indication for (a) child’s treatment 
and (b) maternal treatment in birth cohort research. 

 

 

Figure 4 Directed acyclic graph representing protophatic bias in birth cohort research: the treatment 
is a consequence and not a cause of the outcome under study. 

 

Figure 5 Directed acyclic graphs of a birth cohort where subjects volunteer to participate. (a) In the 
general population, the exposure of interest (E) and the outcome risk factor (R) are associated as 
they share the common cause (U) and they both affect baseline selection (S) through volunteering. 
(b) E and R are independent in the general population and both affect the probability of selection 



through volunteering. (c) In the general population, E and R are associated because of the common 
cause (U), which, in turn, affects volunteering. 

 

Figure 6 Directed acyclic graph representing time-varying confounding. Y is the outcome, E t the 
time-dependent exposure and L t the time-dependent confounder of the E t –Y association. 

 

Figure 7 Directed acyclic graphs representing mediator–outcome confounding. Y is the outcome, E 
the exposure, M the mediator, C 1 the confounders of E–Y association, U the unmeasured 
confounder of the M–Y association and C 2 the measured confounder of the M–Y association 
affected by E. 

 


