
20 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

The Chemical Approach to Typestate-Oriented Programming

Published version:

DOI:10.1145/3064849

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1640627 since 2021-09-17T15:52:01Z

The Chemical Approach to Typestate-Oriented Programming

SILVIA CRAFA, Università di Padova

LUCA PADOVANI, Università di Torino

We introduce a novel approach to typestate-oriented programming based on the chemical metaphor: state and operations on objects

are molecules of messages and state transformations are chemical reactions. This approach allows us to investigate typestate in an

inherently concurrent setting, whereby objects can be accessed and modied concurrently by several processes, each potentially

changing only part of their state. We introduce a simple behavioral type theory to express in a uniform way both the private and the

public interfaces of objects, to describe and enforce structured object protocols consisting of possibilities, prohibitions, and obligations,

and to control object sharing.

CCS Concepts: • Theory of computation → Process calculi; Type theory; Object oriented constructs; Type structures; Parallel
computing models; • Computing methodologies → Concurrent programming languages;

Additional Key Words and Phrases: Typestate, Concurrency, Behavioral Types, Join Calculus

ACM Reference format:
Silvia Crafa and Luca Padovani. 2017. The Chemical Approach to Typestate-Oriented Programming. ACM Trans. Program. Lang. Syst.

0, 0, Article 00 (2017), 45 pages.

DOI: 0000001.0000001

1 INTRODUCTION

In the object-oriented paradigm, the interface of an object describes the whole set of methods supported by the

object throughout its entire lifetime. However, the usage of the object is more precisely explained in terms of its

protocol (Beckman et al. 2011), describing the legal sequences of method calls, possibly depending on the object’s

internal state. Typical examples of objects with structured protocols are les, iterators, and locks: a le can be read or

written only after it has been opened; an iterator can be asked to access the next element of a collection only if such

element has been veried to exist; a lock should be released if (and only if) it was previously acquired. Usually, such

constraints on the legal sequences of method calls are only informally documented as comments along with method

descriptions; in this form, however, they cannot be used by the compiler to detect protocol violations.

DeLine and Fähndrich (2004) have adapted the concept of typestate (Strom and Yemini 1986), originally introduced

for imperative programs, to the object-oriented paradigm. Typestates are machine-understandable abstractions of

an object’s internal state that can be used (1) to identify the subset of elds and operations that are valid when the

object is in some given state and (2) to specify the eect of such operations on the state itself. For example, on a le in

state CLOSED the compiler would permit invocations of the open method and forbid invocations of the read method,

whereas on a le in state OPEN it would only permit invocations of read, write, and close methods and forbid open.

The rst author has been supported by the University of Padova under the PRAT projects BECOM and ANCORE. The second author has been supported

by ICT COST Action IC1201 BETTY, MIUR PRIN CINA, Ateneo/CSP Project SALT, and RS13MO12 DART.

Author’s addresses: Silvia Crafa, Università di Padova, Dipartimento di Matematica, Italy; Luca Padovani, Università di Torino, Dipartimento di Informatica,

Italy.

2017. Manuscript submitted to ACM

Manuscript submitted to ACM 1

2 Silvia Crafa and Luca Padovani

Furthermore, the type of open would be rened so as to specify that its invocation changes the state of the le from

CLOSED to OPEN.

Typestate-oriented programming (TSOP for short) (Aldrich et al. 2009; Garcia et al. 2014; Sunshine et al. 2011) goes

one step further and promotes typestates to a native feature of the programming language that encourages programmers

to design objects around their protocol. Languages supporting TSOP provide explicit constructs for dening state-

dependent object interfaces and implementations, for changing and possibly querying at runtime an object’s typestate,

and for annotating the signature of methods so as to describe their eect on the state of an object (Aldrich et al. 2009).

In order to track the points in the code where the state of an object changes, hence to detect – at compile time –

potential violations of an object’s protocol using typestate information, references to objects with structured protocols

are required to be stored and shared in controlled ways. Not surprisingly, then, all languages supporting static typestate

checking rely on more or less sophisticated forms of aliasing control (Bierho and Aldrich 2007) which may hinder the

applicability of typestate to objects simultaneously accessed/modied by concurrent processes. Damiani et al. (2008)

have proposed an approach to conjugate typestate and concurrency in a Java-like language relying on some runtime

support: users of an object can invoke any method at any time, even when the state of the object is uncertain; a method

invocation is suspended until the object is in a state for which that method is legal; typestate information is used within

methods, to make sure that only valid elds are accessed. This approach has both computational and methodological

costs: it requires all methods of a concurrent object to be synchronized, it limits parallelism by sequentializing all

concurrent accesses to the same object, and it guarantees protocol compliance only within methods, where some form

of aliasing control can be used.

The rst contribution of this paper is a foundational study of TSOP in an inherently concurrent setting, whereby objects

can be shared and accessed concurrently, and (portions of) their state can be changed while they are simultaneously

used by several processes. We base our study on the Objective Join Calculus (Fournet and Gonthier 1996, 2000) and

we show that the idiomatic modeling of objects in the Objective Join Calculus has strong connections with the main

TSOP features, including state-sensitive operations, explicit state change, and runtime state querying. Such connections

draw heavily from the chemical metaphor that inspired the Objective Join Calculus: programs are modeled as chemical

soups of molecules (i.e. multisets of messages sent to objects) that encode both the current state of the objects and the

(pending) operations on them, while reaction rules correspond to objects’ methods denitions. In particular, chemical

reactions explicitly specify both the valid combinations of state and operations as well as the changes performed by

each operation on the state of an object. Incidentally, we observe that the Objective Join Calculus natively supports

high-level concepts such as compound and multidimensional states (Sunshine et al. 2011). This allows us to formally

investigate the issues arising when states are partially/concurrently updated.

The second contribution of this paper is a theory of behavioral types for TSOP in the Objective Join Calculus and

a corresponding substructural type system. We exploit the chemical metaphor once more to express in a unied and

compositional way the combination of the encapsulated part of objects (state) and their public interface (operations)

and to describe objects protocols in terms of the valid congurations of messages that the objects can/must handle. The

key idea underpinning the type system is that distinct references to the same object may be given dierent types. This

feature accounts for the fact that several processes may use the same object concurrently. For example, a lock could

be shared by two processes 𝑃 and 𝑄 and be acquired by one of them, say 𝑃 . Then, the reference to the lock held by 𝑃

would have a type stating that 𝑃 must (eventually) release the lock, whereas the reference to the lock held by 𝑄 would

have a type stating that 𝑄 can (but need not) attempt to acquire the lock. The overall type of the lock would be the

Manuscript submitted to ACM

The Chemical Approach to Typestate-Oriented Programming 3

1 def o = FREE | acquire(r) ⊲ o.BUSY | r.reply(o)
2 or BUSY | release ⊲ o.FREE
3 in (o.FREE
4 | def c = reply(o') ⊲ o'.release in o.acquire(c))

Listing 1. A lock in the Objective Join Calculus.

combination of these two types, dened in terms of a suitable behavioral connective. The dierence between an object’s

type and the combination of the types of all of its references is explained in terms of a behavioral subtyping relation.

This relation serves other purposes as well: aside from realizing the obvious form of subtype polymorphism, it is used

to characterize safe (and possibly partial) state updates and to derive the protocol of objects with uncertain state. On

objects without typestates, subtyping collapses to the traditional one.

With these ingredients in place, we provide a simple static analysis ensuring two key properties of well-typed

processes called respected prohibitions and weakly fullled obligations: the former means that well-typed processes

comply with the possibilities and prohibitions expressed by the protocols of the objects they use; the latter means that

well-typed processes do not discard objects for which they have pending obligations. The enforcement of stronger

properties such as deadlock freedom goes beyond the scope of our typing discipline and is left for future work. Compared

to the approach of Damiani et al. (2008), our approach enables a ne-grained tuning of the kind of concurrency allowed

on objects with structured protocols. For non-aliased objects, we can take full advantage of static typestate checking

to guarantee that methods are only invoked at the right time. For shared/aliased objects, we can rely on the runtime

synchronization semantics of the Objective Join Calculus to resolve races and execute methods at the right time. We can

thus realize blocking methods à la Damiani et al. (2008) or non-blocking methods that inspect and report (some suitable

abstraction of) an object’s internal state. Overall, as thoroughly exemplied in the rest of the paper, our approach

allows us to regulate the balancing between aliased and non-aliased objects and to mix and match static and runtime

mechanisms for ensuring usage compliance on concurrent objects with compound states and structured protocols.

Structure of the paper. We start with an informal overview of TSOP in the Objective Join Calculus (Section 2) before

recalling its syntax and semantics (Section 3). We present the syntax and semantics of types (Section 4), we describe the

rules of the type system (Section 5), and comment on its safety properties (Section 6). In the latter part of the paper,

we illustrate a few more advanced examples (Section 7) and the key ingredients needed to implement the proposed

framework (Section 8), we discuss related work in more detail (Section 9) and nally hint at future research directions

(Section 10). Proofs of the results can be found in Appendix A.

Origin of the material. An early version of this paper appears in the proceedings of OOPSLA 2015 (Crafa and Padovani

2015).

2 THE CHEMISTRY OF TYPESTATES

The Chemical Metaphor. The Join Calculus (Fournet and Gonthier 1996, 2000) originates from the Chemical Abstract

Machine (Berry and Boudol 1992), a formal model of computations as sequences of chemical reactions transforming

molecules. The Objective Join Calculus (Fournet et al. 2003a) is a mildly sugared version of the Join Calculus with

object-oriented features: a program is made of a set of objects and a chemical soup of messages that can combine into

Manuscript submitted to ACM

4 Silvia Crafa and Luca Padovani

complex molecules; each object consists of reaction rules corresponding to its methods; reaction rules are made of a

pattern and a body: when a molecule in the soup matches the pattern of a reaction, the molecule is consumed and the

corresponding body produces other molecules.

Listing 1 shows the idiomatic implementation and use of a lock in the Objective Join Calculus. The denition on

lines 1–2 creates a new object o with two reaction rules, separated by or. The symbol ⊲ separates the pattern from the

body of each rule, while | combines messages into complex molecules. The rst reaction “res” if a FREE message and

an acquire message (with argument r) are sent to o: the two messages are consumed and those on the right hand side

of ⊲ are produced. In this case, the argument r of acquire is a reference to another object representing the process

that wants to acquire the lock. Hence the eect of triggering the rst reaction is that a BUSY message is sent to o (in

jargon, to “self”) and a reply message is sent to r to notify the receiver that the lock has been successfully acquired.

The second reaction species that the object can also consume a molecule consisting of a BUSY message and a release

message. The reaction just sends a FREE message to o. The lock is initialized on line 3, by sending a FREE message to o.

The process on line 4 shows a typical use of the lock. Since communication in the Join Calculus is asynchronous,

sequential composition is modeled by means of continuation passing: the process creates a continuation object c that

reacts to the reply message sent by the lock; then, the process manifests its intention to acquire the lock by sending

acquire(c) to o. When the reaction on line 1 res, the reply triggers the reaction in c on line 4, causing the lock to be

released. One aspect not explained in the above description is the passing of o in the reply message on line 1 which is

bound to o' on line 4. Since on line 1 o corresponds to “self”, sending o in the message reply(o) enablesmethod chaining.

In fact, with some appropriate syntactic sugar we could rewrite the process on line 4 just as o.acquire.release. We

will introduce a generalization of such syntactic sugar later on (see Example 3.2 and Listing 3). We will also see that

method chaining is not just a trick for writing compact code, but is a key feature that our type system hinges on.

In the next section we will discuss a more complex use case (Example 3.3) where the lock is shared by two processes

that compete for acquiring it. In that case, we will see that the complex molecules in the patterns of the lock’s reaction

rules are essential to make sure that the lock behaves correctly, namely that only one process can hold the lock at any

time. In particular, if an acquire(c') message is available but there is no FREE message in the soup (because another

process has previously acquired the lock thereby consuming FREE), the reaction in line 1 cannot re and the process

waiting for the reply message on c' is suspended until the lock is released.

State and Operations in the Join Calculus. Listing 1 provides a clear illustration of TSOP in the Join Calculus: a lock is

either free or busy; it can only be acquired when it is free, and it can only be released when it is busy; acquisition makes

the lock busy, and release makes it free again. The compound molecules in the patterns specify the valid combinations

of state and operations, and the state is explicitly changed within the body of reactions.

These observations lead to a natural classication of messages in two categories: FREE and BUSY encode the state

of the lock, while acquire and release represent its operations (we follow the convention that “state” messages are

written in upper case and “operation” messages in lower case). Ideally, lock users should not even be aware of the

existence of FREE and BUSY, if only to prevent accidental or malicious violations of the lock protocol. As we will see in

Example 5.5, the connectives in our type language allow us to ne-tune the set of messages that can be sent by the

users of an object, therefore realizing an implicit encapsulation mechanism for state messages.

Messages in the chemical soup encode the current state of the object and the (pending) operations on it: for instance,

the presence of a message o.FREE in the soup encodes the fact that the object o is in state FREE; the presence of a

message o.acquire in the soup encodes the fact that there is a pending invocation to the acquiremethod of the object o.

Manuscript submitted to ACM

The Chemical Approach to Typestate-Oriented Programming 5

Representing state using (molecules of) messages makes it simple to model so-called and-states (Harel 1987; Sunshine

et al. 2011), of which we will see a few instances at work in Section 7. On the contrary, FREE and BUSY are examples of

or-states which mutually exclude each other. The typing of the lock object will guarantee that there is always exactly

one message among FREE and BUSY, i.e. that the state of the lock is always uniquely determined.

Behavioral Types for the Join Calculus. Since in the Join Calculus there is no sharp distinction between (private)

messages that encode the object’s state and (public) messages that represent the object’s operations, we can devise a

type language to describe the valid congurations of messages that objects can/must handle. In fact, we can use types

to specify (and enforce) the object protocol. Object types are built from message types m(𝑡) using three behavioral

connectives, the product ⊗, the choice ⊕, and the exponential ∗. An object of type m(𝑡) must be used by sending an

m-tagged message to it with a (possibly empty) tuple of arguments of type 𝑡 ; an object of type 𝑡 ⊗ 𝑠 must be used both
as specied by 𝑡 and as specied by 𝑠 ; an object of type 𝑡 ⊕ 𝑠 must be used either as specied by 𝑡 or as specied by 𝑠 ;

an object of type ∗𝑡 can be used any number of times (even zero), each time as specied by 𝑡 . To save a few parentheses,

we will assume that ∗ binds stronger than ⊕ and ⊗.
As an example, let us illustrate the type of the lock object. It is useful to keep in mind the intuition that the type of

the lock should describe the whole set of valid congurations of messages targeted to the lock. In this respect, we recall

that:

• there must be one message among FREE and BUSY that represents the state of the lock;

• there can be an arbitrary number of acquire messages regardless of the state of the lock (the lock is useful

only if it is shared among several processes);

• there must be one release message if the lock is BUSY (this is an eventual obligation).

We express all these constraints with the type

𝑡lock
def

= ∗acquire(reply(release)) ⊗
(
FREE ⊕ (BUSY ⊗ release)

)
It is no coincidence that the only occurrence of ∗ is used in front of the only message (acquire) for which there are

no obligations: the lock can but need not be acquired. However, if the lock is acquired, then it must be released; thus

there is no ∗ in front of release. There is no ∗ in front of FREE and BUSY either, meaning that there is an obligation to

produce these messages too, but since FREE and BUSY occur in dierent branches of a ⊕ connective, only one of them

must be produced. In addition to possibilities and obligations, 𝑡lock expresses prohibitions: all message congurations

containing multiple FREE or BUSY messages or both FREE and release messages are prohibited by the type. Our type

system will guarantee that any lock object is always in a conguration that is legal according to 𝑡lock . This implies, for

example, that a well-typed process never attempts to release a lock that is in state FREE. In connection with TSOP, the

type 𝑡lock concisely expresses the fact that the acquire operation is available in both FREE and BUSY states (indeed, it is

composed with these state messages using the ⊗ connective), whereas release is only available in the BUSY state.

There is one last thing to discuss before we end this informal overview, that is the type of the argument of acquire,

named r in Listing 1. If we look at the code, we see that r is the reference to an object to which the lock sends a

reply(o)message. Not surprisingly then, the argument of acquire has type reply(release) in 𝑡lock . This means that

the reference o' in Listing 1 has type release, which is consistent with the way it is used on line 4. In other words, we

use method chaining to express the change in the (public) type of an object as methods are invoked. Both o and o' refer

to the same lock object, but they have dierent interfaces: the former can be used for acquiring the lock; the latter must

be used (once) for releasing it.

Manuscript submitted to ACM

6 Silvia Crafa and Luca Padovani

Process 𝑃,𝑄 ::= null (null process)

| 𝑢.𝑀 (message sending)

| 𝑃 |𝑄 (process composition)

| def 𝑎 = 𝐶 in 𝑃 (object denition)

Molecule 𝑀, 𝑁 ::= m(�̃�) (message)

| 𝑀 |𝑁 (molecule composition)

Pattern 𝐽 , 𝐾 ::= m(𝑥) (message pattern)

| 𝐽 |𝐾 (pattern composition)

Class 𝐶, 𝐷 ::= 𝐽 ⊲ 𝑃 (reaction rule)

| 𝐶 or 𝐷 (class composition)

Table 1. Syntax of the Objective Join Calculus.

[null] null

[def] D P, def 𝑎 = 𝐶 in 𝑃
 D, 𝑎 = 𝐶 P, 𝑃 𝑎 ∉ fn(P)
[par] 𝑃 |𝑄
 𝑃,𝑄

[join] 𝑎.(𝑀 |𝑁)
 𝑎.𝑀,𝑎.𝑁
[red] 𝑎 = {𝐽𝑖 ⊲ 𝑃𝑖 }𝑖∈𝐼 𝑎.𝜎 𝐽𝑘 → 𝑎 = {𝐽𝑖 ⊲ 𝑃𝑖 }𝑖∈𝐼 𝜎𝑃𝑘 𝑘 ∈ 𝐼

Table 2. Semantics of the Objective Join Calculus.

3 THE OBJECTIVE JOIN CALCULUS

The syntax of the Objective Join Calculus is dened in Table 1. We assume countable sets of object names 𝑎, 𝑏, 𝑐 , . . . and

of variables 𝑥 , 𝑦, We let 𝑢, 𝑣 , . . . denote names, which are either object names or variables, and use m, . . . to range

over message tags. We write �̃� for a (possibly empty) tuple 𝑢1, . . . , 𝑢𝑛 of names; we will use this notation extensively for

denoting tuples of various entities. Occasionally, we will also use �̃� as the set of names in �̃�.

The syntax of the calculus comprises the syntactic categories of processes, molecules, patterns, and classes. Molecules

are assemblies of messages and each message m(�̃�) is made of a tag m and a tuple �̃� of arguments; we will abbreviate

m() with m; join patterns (or simply patterns) are molecules whose arguments are all variables.

The process null is inert and does nothing. The process 𝑢.𝑀 sends the messages in the molecule𝑀 to 𝑢. The process

𝑃 |𝑄 is the parallel composition of 𝑃 and 𝑄 . Finally, def 𝑎 = 𝐶 in 𝑃 creates a new instance 𝑎 of the class𝐶 . The name 𝑎

is bound both in 𝐶 (where it plays the role of “self”) and in 𝑃 . We omit the object initialization clause used by Fournet

et al. (2003a) since we are not concerned with privacy aspects. A class is a disjunction of reaction rules, which we will

often represent as a set {𝐽𝑖 ⊲ 𝑃𝑖 }𝑖∈𝐼 . Each rule consists of a pattern 𝐽𝑖 and a body 𝑃𝑖 . The variables in 𝐽𝑖 are bound in 𝑃𝑖 .

An instance of 𝑃𝑖 is spawned each time a molecule matching 𝐽𝑖 is sent to an object that is instance of the class.

We omit the formal denition of free and bound names, which is standard (Fournet et al. 2003a). We write fn(𝑃) for
the set of free names in 𝑃 and we identify processes up to renaming of bound names. In this paper we use an additional

constraint, which is not restrictive and simplies the type system: we require classes to have no free names other than

“self”.

Manuscript submitted to ACM

The Chemical Approach to Typestate-Oriented Programming 7

We now turn to the operational semantics of the calculus, which describes the evolution of a solution D P made of

a set D = {𝑎𝑖 = 𝐶𝑖 }𝑖∈𝐼 of object denitions and a multiset P of parallel processes. Intuitively, P is a “soup” of processes

and molecules that is subject to changes in the temperature (expressed by a relation
) and reactions (expressed

by a relation →). Heating ⇀ breaks things apart, while cooling ⇁ recombines them together, in possibly dierent

congurations. Heating and cooling are reversible transformations of the soup, dened by the rst four rules in Table 2:

rule [null] states that null processes may evaporate or condense; rule [def] moves objects denitions to/from the

D component of solutions, taking care not to capture free names (disposing of a countable set of object names, we

can always silently perform suitable alpha-renamings to avoid captures); rule [par] breaks and recombines processes

and rule [join] does the same with molecules. To avoid unnecessary clutter, following Fournet et al. (2003a), in all

rules except [def] we omit unaected denitions and processes. In rule [def], it is important to mention the whole

set of denitions D to make sure that the name 𝑎 of the object being dened is fresh. Rule [red] denes reactions as

non-reversible transformations of the soup. A reaction may happen whenever the soup contains a molecule targeted to

some object 𝑎 such that the shape of the molecule matches the pattern of one of the rules in the class of 𝑎, up to some

substitution 𝜎 mapping variables to object names (recall that {𝐽𝑖 ⊲ 𝑃𝑖 }𝑖∈𝐼 stands for an or-composition of reaction rules,

as by Table 1). In this case, the molecule is consumed by the reaction and replaced by the body of the rule, with the

substitution 𝜎 applied. Note that the heating/cooling rules [par] and [join] are key to rearrange molecules so that they

can match the pattern of a reaction rule.

Remark 1. The operational semantics presents three forms of non-determinism, due to the heating/cooling of

molecules in the soup, the interleaving of reactions pertaining to dierent objects, and the choice of reactions pertaining

to each single object. The rst form of non-determinism is only relevant in the formal model. In practice, it is resolved

since the Objective Join Calculus enjoys locality: each reaction involves messages targeted to the same object, therefore

all messages sent to an object 𝑎 travel to and react at the unique location of 𝑎. The second form of non-determinism

accounts for the concurrent setting that we are modeling: when the soup contains molecules that can trigger reactions

pertaining dierent objects, these reactions may re in any order or even simultaneously, depending on the system

architecture. The last form of non-determinism arises when there are enough molecules in the soup to trigger dierent

reactions pertaining the same object. This is usually resolved by the compiler, which translates join patterns into code

that processes the messages targeted at one given object according to a deterministic scheduler. In this case, the fact that

the formal operational semantics is underspecied (i.e. non-deterministic) accounts for all possible implementations of

join patterns. �

In the rest of the section we illustrate the calculus by means of examples. For better clarity, we augment the calculus

with conditionals and a few native data types, which can be either encoded or added without diculties.

Example 3.1 (iterator). Listing 2 shows a possible modeling of an array iterator class in the Objective Join Calculus.

Like in object-based languages, the class is modeled as an object ArrayIterator providing just one factory method,

new (line 1), whose arguments are an array a and a continuation object r to which the fresh instance of the iterator

is sent. The iterator itself is an object o that can be in one of three states, INIT, SOME, or NONE. States INIT and SOME

have arguments a (the array being iterated) and n (the index of the current element in the array). INIT is a transient

state used for initializing the iterator (line 2): the iterator spontaneously moves into either state SOME or state NONE,

depending on whether n is smaller than the length #a of the array or not. When in state SOME, the iterator provides a

next operation (line 3) for reading the current element a[n] of the array and moving onto the next one. Since n might

Manuscript submitted to ACM

8 Silvia Crafa and Luca Padovani

1 def ArrayIterator = new(a,r) ⊲

2 def o = INIT(a,n) ⊲ if n < #a then o.SOME(a,n) else o.NONE
3 or SOME(a,n) | next(r) ⊲ o.INIT(a,n+1) | r.reply(a[n],o)
4 or SOME(a,n) | peek(r) ⊲ o.SOME(a,n) | r.some(o)
5 or NONE | peek(r) ⊲ o.NONE | r.none(o)
6 in o.INIT(a,0) | r.reply(o)
7 in ...

Listing 2. An array iterator.

1 def Lock = new(r) ⊲

2 def o = FREE | acquire(r) ⊲ o.BUSY | r.reply(o)
3 or BUSY | release ⊲ o.FREE
4 in o.FREE | r.reply(o)
5 in let lock = Lock.new (* lock : 𝑡ACQUIRE *)
6 in let lock = lock.acquire (* lock : 𝑡RELEASE *)
7 in lock.release

Listing 3. Lock class definition.

be the index of the last element of the array, the iterator transits to state INIT, which appropriately re-initializes the

iterator. The iterator also provides a peek operation that can be used for querying the state of the iterator (lines 4–5).

The operation does not change the state of the iterator and sends a message on the continuation r with either tag some

or tag none, depending on the internal state of the iterator. �

Example 3.2 (sequential composition). In this example we see how to encode a sequential composition construct

let 𝑦 = 𝑢.m(𝑣) in 𝑃

in the Objective Join Calculus. Intuitively, this construct invokes method m on object 𝑢 with arguments 𝑣 , waits for the

results 𝑦 of the invocation, and continues as 𝑃 . We let

let 𝑦 = 𝑢.m(𝑣) in 𝑃
def

= def 𝑐 = WAIT(𝑥) | reply(𝑦) ⊲ 𝑃{𝑥/�̃�}
in 𝑐.WAIT(�̃�) |𝑢.m(𝑣, 𝑐)

where 𝑐 and 𝑥 are fresh, �̃� = fn(𝑃) \ 𝑦, and 𝑃{𝑥/�̃�} denotes 𝑃 where �̃� have been replaced by 𝑥 . The twist in this

encoding is that all the free names of 𝑃 except 𝑦 are temporarily spilled into a message WAIT and then recovered when

the callee sends the reply message on 𝑐 . Normally, such spilling is not necessary in the encoding with continuation

passing. We do it here to comply with our working assumption that classes have no free names other than “self”.

Using this construct we rephrase the code of Listing 1 into that of Listing 3, which also encapsulates the lock

denition into the Lock class. The re-binding of the lock name on lines 5 and 6 is typical of languages with explicit

continuations (Gay and Vasconcelos 2010). An actual language would provide either adequate syntactic sugar or a

native synchronous method call (Fournet and Gonthier 2000). The types in comments will be described in Section 4. �

Example 3.3 (dining philosophers). We now discuss an example where the same lock is shared by two concurrent

processes. Listing 4 models two philosophers that compete for the same fork when hungry. The fork is created on line 5

Manuscript submitted to ACM

The Chemical Approach to Typestate-Oriented Programming 9

1 def Philosopher = new(fork) ⊲

2 def o = THINK | FORK(f) ⊲ o.FORK(f) | let f = f.acquire in o.EAT(f)
3 or EAT(f) ⊲ o.THINK | f.release
4 in o.THINK | o.FORK(fork)
5 in let fork = Lock.new (* fork : 𝑡ACQUIRE *)
6 in Philosopher.new(fork) | Philosopher.new(fork)

Listing 4. Two dining philosophers.

and shared by two instances of the Philosopher class (line 6). Each philosopher alternates between states THINK and

EAT. In addition, the FORK message holds a reference to the shared fork and is meant to be an invariant part of each

philosopher’s state. Transitions occur non-deterministically: while in state THINK, the reaction on line 2 may re; at

that point, the philosopher restores the FORK message and attempts to acquire the fork; when the fork is acquired, the

philosopher transits into state EAT. While in state EAT, the philosopher holds a reference f to the acquired fork; when

the reaction on line 3 res, the fork is released and the philosopher goes back to state THINK. Note that this reaction

consumes only part of the philosopher’s state, which also comprises the FORK message. �

4 SYNTAX AND SEMANTICS OF TYPES

In this section we dene a type language to describe object protocols in terms of the valid congurations of messages

they accept. Types 𝑡 , 𝑠 , . . . are the regular trees (Courcelle 1983) coinductively generated by the productions below:

𝑡, 𝑠 ::= 0 | 1 | m(𝑡) | 𝑡 ⊕ 𝑠 | 𝑡 ⊗ 𝑠 | ∗𝑡

The message type m(𝑡) denotes an object that must be used by sending a message to it with tag m and arguments of

type 𝑡 ; when 𝑡 is the empty tuple, we omit the parentheses altogether. Compound types are built using the behavioral

connectives ⊕, ⊗, and ∗: an object of type 𝑡 ⊕ 𝑠 must be used either according to 𝑡 or according to 𝑠; an object of type

𝑡 ⊗ 𝑠 must be used both according to 𝑡 and also according to 𝑠; an object of type ∗𝑡 can be used any number of times,

each time according to 𝑡 . Finally, we introduce the constants 0 and 1, which respectively represent the empty sum and

the empty product. Intuitively, 0 is the type of all objects and 1 is the type of all objects without obligations. In the

examples we will also use basic or array types such as int, real, or int[].

Here are a few examples: an object of type m(int) must be used by sending an m message to it with one argument of

type int; an object of type m(int) ⊕ 1 can be used by sending an m message to it, or it can be left alone; an object of

type m ⊕ m′ must be used by sending either an m message or an m′ message to it, while an object of type m ⊗ m′ must be

used by sending both an m message and an m′ message to it; nally, an object of type ∗(m ⊕ m′) can be used by sending

any number of m and m′ messages to it. There is no legal way to use an object of type 0.

We do not devise an explicit syntax for recursive types. We work instead with (possibly innite) regular trees directly

and we introduce a family of innite types as solutions of a nite system of equations. For example, the equation

𝑡 = 1 ⊕ m(𝑡)

is satised by the innite (regular) type

𝑡
def

= 1 ⊕ m(1 ⊕ m(1 ⊕ · · ·))
Manuscript submitted to ACM

10 Silvia Crafa and Luca Padovani

which denotes an object that can be used by sending an m-tagged message to it with an argument which is itself an

object with type 𝑡 . The shape of the equation, with the metavariable 𝑡 that occurs unguarded on the left hand side and

guarded by (one or more) type constructors on the right hand side, makes sure that 𝑡 does exist and is uniquely dened.

Courcelle (1983) details the metatheory of regular trees, including their relation with nite systems of equations. We

require every innite branch of a type to go through innitely many message type constructors. This condition (a

strengthened contractiveness) excludes types such as 𝑡 = 𝑡 ⊕ 𝑡 or 𝑡 = ∗𝑡 which are meaningless in our setting and

provides us with an induction principle on the structure of types that we will use in Denition 4.1 below.

We reserve some notation for useful families of types: we use M to range overmessage types m(𝑡) and𝑇 , 𝑆 to range over

molecule types, namely types of the form

⊗
𝑖∈𝐼 M𝑖 ; we identify molecule types modulo associativity and commutativity

of ⊗ and product with 1; if 𝑇 =
⊗

𝑖∈𝐼 m𝑖(𝑡𝑖), we write 𝑇 for its signature, namely the multiset {m𝑖 }𝑖∈𝐼 .
The following denition formalizes the idea that types describe the valid congurations of messages that can be sent

to objects. Whenever X and Y are sets of molecule types, we let X · Y def

= {𝑇 ⊗ 𝑆 | 𝑇 ∈ X ∧ 𝑆 ∈ Y} and we write X𝑛 for the

𝑛-th power of X for 𝑛 ∈ N, where X0 = {1}.

Denition 4.1 (valid conguration). The interpretation of a type 𝑡 , denoted by J𝑡K, is the set of molecule types

inductively dened by the following equations:

J0K def

= ∅
J1K def

= {1}
J𝑡 ⊕ 𝑠K def

= J𝑡K ∪ J𝑠K
J𝑡 ⊗ 𝑠K def

= J𝑡K · J𝑠K
JMK def

= {M}
J∗𝑡K def

=
⋃

𝑛∈NJ𝑡K𝑛

We say that 𝑇 is a valid conguration for 𝑡 if 𝑇 ∈ J𝑡K.

For instance, Jm ⊕ m′K = {m, m′} and Jm ⊗ m′K = {m ⊗ m′}. Indeed, the user of an object of type m ⊕ m′ can choose to

send either m or m′, whereas the user of an object of type m ⊗ m′ must send both. Note that 0 has no valid congurations,

that the only valid conguration of 1 is the empty molecule type, and that type ∗𝑡 has, in general, innitely many valid

congurations. For instance, J∗mK = {1, m, m ⊗ m, m ⊗ m ⊗ m, . . . }.
We have collected all the ingredients for dening the subtyping relation. The intuition behind subtyping is the usual

safe substitution principle: when 𝑡 6 𝑠 , it is safe to use an object of type 𝑡 where an object of type 𝑠 is expected. In our

setting, “using an object of type 𝑠” means sending to the object a message conguration that is valid for 𝑠 . For instance,

we expect that m ⊕ m′ 6 m. The user of an object of type m must send m to it. This is also a particular valid use (although

not the only valid use) of an object of type m ⊕ m′, which requires its users to send either m or m′. On the contrary, we

expect that m ⊗ m′ 66 m and m 66 m ⊗ m′. The user of an object of type m ⊗ m′ must send both m and m′, hence sending only

m is an illegal way of using it. Vice versa, the user of an object of type m must send only m, hence sending also m′ is an

illegal way of using it. We formalize 6 resorting to a coinductive denition because types are possibly innite terms:

Denition 4.2 (subtyping). We write 6 for the largest relation between types such that 𝑡 6 𝑠 and
⊗

𝑖∈𝐼 m𝑖(𝑠𝑖) ∈ J𝑠K
imply that there is

⊗
𝑖∈𝐼 m𝑖(𝑡𝑖) ∈ J𝑡K such that 𝑠𝑖 6 𝑡𝑖 for every 𝑖 ∈ 𝐼 . If 𝑡 6 𝑠 holds, then we say that 𝑡 is a subtype of 𝑠

and 𝑠 a supertype of 𝑡 . We write 𝑡 ' 𝑠 if both 𝑡 6 𝑠 and 𝑠 6 𝑡 hold.

According to Denition 4.2, each valid conguration for 𝑠 must also be a valid conguration for 𝑡 , up to contravariant

subtyping of argument types. More specically, whenever 𝑆 ∈ J𝑠K, there exists some 𝑇 ∈ J𝑡K with the same signature as

𝑆 such that the arguments of corresponding messages in𝑇 and 𝑆 are related contravariantly. For instance, if 𝑠 = m(int),

then using an object of type 𝑠 means sending to the object one message of the form m(𝑛), where 𝑛 is an integer number.

Then, assuming int 6 real, it is safe to replace such object with another one of type 𝑡 = m(real): the message m(𝑛)

Manuscript submitted to ACM

The Chemical Approach to Typestate-Oriented Programming 11

sent to the former object will be understood without problems also by the latter object, as any integer number is also a

real number. Therefore, m(real) 6 m(int). We also have that m(𝑡) 6 m(𝑡 ⊕ 𝑠) and m(𝑠) 6 m(𝑡 ⊕ 𝑠), namely m(𝑡 ⊕ 𝑠)
is an upper bound of both m(𝑡) and m(𝑠) (in fact, it is the least upper bound of these two types). The user of an object

of type m(𝑡 ⊕ 𝑠) must send m with an argument that can be used according to either 𝑡 or 𝑠 , hence this is also a valid use

for an object of type m(𝑡) or an object of type m(𝑠). We will see a key instance of these relations in Example 4.7.

The interested reader can verify a number of additional properties that will be tacitly used hereafter: that 0 and 1

are indeed the units of ⊕ and ⊗; that 0 is absorbing for ⊗; that ⊗ distributes over ⊕. We capture all these properties by

the following proposition.

Proposition 4.3. The following properties hold:

(1) 6 is a pre-order and a pre-congruence;

(2) the set of types modulo ' forms a commutative Kleene algebra (Conway 1971).

We give a useful taxonomy of types: linear types denote objects that must be used; non-linear types denote objects

without obligations; usable types denote objects that can be used, in the sense that there is a valid way of using them.

Denition 4.4 (type classication). We say that 𝑡 is non linear, written nl(𝑡), if 𝑡 6 1; that 𝑡 is linear, written lin(𝑡), if
𝑡 66 1; that 𝑡 is usable, written usable(𝑡), if 𝑡 6' 0.

If 𝑡 6 1, then 1 ∈ J𝑡K namely it is allowed not to send any message to an object of type 𝑡 . If 𝑡 ' 0, then 𝑡 is linear but

not usable, hence it denotes absurd objects that must be used, but at the same time such that there is no valid way of

using them.

Example 4.5 (standard class type). The class of a conventional object-oriented language containing methods with

signatures {m𝑖(𝑡𝑖)}𝑖∈𝐼 can be described as the type

⊗
𝑖∈𝐼 ∗m𝑖(𝑡𝑖), saying that the objects of this class can be used for

unlimited invocations of all of the available methods, in whatever order. Our subtyping relation is consistent with that

typically adopted in such languages, since

⊗
𝑖∈𝐼 ∗m𝑖(𝑡𝑖) 6

⊗
𝑗 ∈𝐽 ∗m𝑗(𝑠 𝑗) if and only if 𝐼 ⊇ 𝐽 and 𝑡 𝑗 > 𝑠 𝑗 for all 𝑗 ∈ 𝐽

(the subclass has more methods, with arguments of larger type). �

Example 4.6 (lock interfaces). We illustrate the typing of the lock object used in Listings 1 and 3. Observe that the type

𝑡lock , discussed in Section 2, describes the lock object as a whole in terms of both states and operations. Correspondingly,

𝑡lock can be correctly assigned to the binding occurrence of o on line 2 in Listing 3 according to the type system we

will dene in Section 5. Lock users are solely concerned with the public interfaces of the lock, which only refer to the

acquire and release methods. We dene:

𝑡ACQUIRE
def

= ∗acquire(reply(𝑡RELEASE))
𝑡RELEASE

def

= release

respectively for the interface of unacquired and acquired locks. Observe that 𝑡ACQUIRE is non linear, indicating no

obligations on unacquired locks (they can be used any number of times) whereas 𝑡RELEASE is linear, indicating that

acquired locks must be released (eventually). These interfaces can be “derived” (quite literally) by removing the state

types from 𝑡lock ; we will make the notion of “derivation” precise in Section 5.

The fact that (unacquired) locks can be shared without constraints is a consequence of the relation

𝑡ACQUIRE ' 𝑡ACQUIRE ⊗ 𝑡ACQUIRE
Manuscript submitted to ACM

12 Silvia Crafa and Luca Padovani

INIT ⊕ SOME ⊕ NONE

SOME

NONE

peek(some)

peek(none)

next
peek(some)

peek(none)

Fig. 1. Transition diagram of the iterator.

stating a well-known property of the exponential/Kleene star. This property is precisely the one needed for typing the

code in Listing 4, where one fork of type 𝑡ACQUIRE is created (line 5) and then shared by two philosophers (line 6). Thanks

to this property, the type of a lock is independent of the number of processes trying to acquire it. Note that dierent

references to the same lock, like the references to the fork shared by the two philosophers in Listing 4, may have

dierent types corresponding to the dierent public interfaces exposed by the references. For instance, the reference f

held by an eating philosopher has type 𝑡RELEASE, hence it prescribes a release, while the reference f held by a thinking

philosopher has type 𝑡ACQUIRE, allowing acquisitions. �

Example 4.7 (iterator interfaces). Let us consider the array iterator dened in Listing 2. We postpone the description of

the whole type of the iterator object until Section 5, and we discuss here just the public interfaces exposed by the object

in the dierent states, with the help of the transition diagram in Figure 1. When in state NONE, the iterator has reached

the end of the array and there is only one method available, peek, which replies with a none message containing the

iterator unchanged. Therefore, the public interface of the iterator in state NONE is the type satisfying the equation

𝑡NONE = peek(none(𝑡NONE)) ⊕ 1

The 1 term makes 𝑡NONE non linear, allowing the disposal of the iterator when in state NONE. Without it, linearity

would force us to keep using the iterator even at the end of the iteration. This is depicted in Figure 1 with a shaded box.

The interface of the iterator in state SOME must give access to both the next and peek operations. A tentative type

for the iterator in this state is the one satisfying the equation

𝑡SOME = peek(some(𝑡SOME)) ⊕ next(reply(int, 𝑡?))

where peek replies with a some message containing the iterator unchanged, whereas next returns the current element

of the array being scanned (of type int) and the iterator in an updated state. Inspection of Listing 2 reveals that, after a

next operation, the iterator temporarily moves into state INIT and then eventually reaches either state SOME or state

NONE. Therefore, the type 𝑡? exposing the public interface in this unresolved state is obtained as the “intersection” of

the interfaces of the two possible states. More precisely, 𝑡? must be a supertype of both 𝑡NONE and 𝑡SOME. It is not dicult

to verify that the 6-least upper bound of 𝑡NONE and 𝑡SOME is

𝑡BOTH = peek(some(𝑡SOME) ⊕ none(𝑡NONE))

showing that, when the state of the iterator is uncertain, only peek is allowed. Observe also that peek has dierent

types depending on whether the state of the iterator is known or not: when the state is known, the type of peek is

Manuscript submitted to ACM

The Chemical Approach to Typestate-Oriented Programming 13

more precise (only some or only none is sent); when the state is unknown, the type of peek is less precise (either some

or none is sent). Subtyping tunes the precision of the types of objects, according to the knowledge of their state. �

5 TYPE SYSTEM

We need type environments for tracking the type of the objects used by processes. A type environment Γ is a nite

mapping from names to types, written 𝑢1 : 𝑡1, . . . , 𝑢𝑛 : 𝑡𝑛 or �̃� : 𝑡 or {𝑢𝑖 : 𝑡𝑖 }𝑖∈𝐼 as convenient. We write ∅ for the empty

environment, dom(Γ) for the domain of Γ , and Γ1, Γ2 for the union of Γ1 and Γ2, when dom(Γ1) ∩ dom(Γ2) = ∅.
Since each object may be used in dierent parts of a program according to dierent interfaces, we also need a

more exible environment combination operator than (disjoint) union. The environment in which a process is typed

describes how the process uses the objects for which there is a type assignment in the environment. If the same object

is simultaneously used by two (or more) processes, its type will be the combination (i.e., the product) of all the types it

has in the environments used for typing the processes. For example, if some object 𝑢 is shared by two distinct processes

𝑃 and 𝑄 running in parallel, 𝑃 uses 𝑢 according to 𝑡 and 𝑄 uses 𝑢 according to 𝑠 , then the parallel composition of 𝑃

and 𝑄 uses 𝑢 according to 𝑡 ⊗ 𝑠 overall. If, on the other hand, the object 𝑢 is used by only one of the two processes,

say 𝑃 , according to 𝑡 , then it is used according to 𝑡 also by the parallel composition of 𝑃 and 𝑄 . Formally, we dene an

operation ⊗ for combining type environments, thus:

Denition 5.1 (environment combination). The combination of Γ1 and Γ2 is the type environment Γ1 ⊗ Γ2 such that

dom(Γ1 ⊗ Γ2) = dom(Γ1) ∪ dom(Γ2) dened by:

(Γ1 ⊗ Γ2) (𝑢)
def

=

Γ1 (𝑢) if 𝑢 ∈ dom(Γ1) \ dom(Γ2)

Γ2 (𝑢) if 𝑢 ∈ dom(Γ2) \ dom(Γ1)

Γ1 (𝑢) ⊗ Γ2 (𝑢) otherwise

Many substructural type systems dene analogous operators for combining type environments. Notable examples

are + of Kobayashi et al. (1999) and] of Sangiorgi and Walker (2001).

It is also convenient to extend the subtyping relation to type environments, to ease the application of subsumption.

Intuitively, the relation 𝑡 6 𝑠 indicates that an object of type 𝑡 “has more features” than an object of type 𝑠 . Similarly,

we wish to extend 6 to environments so that Γ 6 ∆ indicates that the environment Γ has more resources with possibly

more features than ∆. We must be careful not to introduce in Γ linear resources that are not in ∆, for this would allow

processes to ignore objects for which they have obligations. Technically, we allow weakening for non-linear objects

only. The extension of 6 to type environments is formalized thus:

Denition 5.2 (environment subtyping). We write Γ 6 ∆ if:

(1) dom(∆) ⊆ dom(Γ), and
(2) Γ (𝑢) 6 ∆(𝑢) for every 𝑢 ∈ dom(∆), and
(3) nl(Γ (𝑢)) for every 𝑢 ∈ dom(Γ) \ dom(∆).

We can then express the fact that an environment Γ only contains non-linear resources by checking whether Γ 6 ∅
holds. In this case, we simply write nl(Γ).

With these notions, we can start commenting on the rules of the type system, shown in Table 3. The rules allow

deriving various judgments, for processes, molecules, patterns, classes, and solutions.

Manuscript submitted to ACM

14 Silvia Crafa and Luca Padovani

Typing rules for processes Γ ` 𝑃

[t-null]

∅ ` null

[t-send]

Γ ` 𝑀 :: 𝑇

Γ ⊗ 𝑢 : 𝑇 ` 𝑢.𝑀

[t-par]

Γ𝑖 ` 𝑃𝑖 (𝑖=1,2)

Γ1 ⊗ Γ2 ` 𝑃1 | 𝑃2

[t-object]

𝑎 : 𝑡 ` 𝐶 Γ , 𝑎 : 𝑡 ` 𝑃
Γ ` def 𝑎 = 𝐶 in 𝑃

[t-sub]

∆ ` 𝑃
Γ ` 𝑃

Γ 6 ∆

Typing rules for molecules Γ ` 𝑀 :: 𝑇

[t-msg-m]⊗
𝑖=1..𝑛 𝑢𝑖 : 𝑡𝑖 ` m(�̃�) :: m(𝑡)

usable(𝑡)
�̃� = 𝑢1, . . . , 𝑢𝑛
𝑡 = 𝑡1, . . . , 𝑡𝑛

[t-comp-m]

Γ𝑖 ` 𝑀𝑖 :: 𝑇𝑖
(𝑖=1,2)

Γ1 ⊗ Γ2 ` 𝑀1 |𝑀2 :: 𝑇1 ⊗ 𝑇2

Typing rules for patterns Γ ` 𝐽 :: 𝑇

[t-msg-p]

𝑥 : 𝑡 ` m(𝑥) :: m(𝑡)
usable(𝑡)

[t-comp-p]

Γ𝑖 ` 𝐽𝑖 :: 𝑇𝑖 (𝑖=1,2)

Γ1, Γ2 ` 𝐽1 | 𝐽2 :: 𝑇1 ⊗ 𝑇2
𝑇1 ∩𝑇2 = ∅

Typing rules for classes 𝑢 : 𝑡 ` 𝐶

[t-reaction]

Γ ` 𝐽 :: 𝑇 Γ , 𝑎 : 𝑠 ` 𝑃
𝑎 : 𝑡 ` 𝐽 ⊲ 𝑃

𝑡 ↓ 𝑇
𝑡 6 𝑡 [𝑇] ⊗ 𝑠

[t-class]

𝑎 : 𝑡 ` 𝐶𝑖 (𝑖=1,2)

𝑎 : 𝑡 ` 𝐶1 or 𝐶2

Typing rules for solutions ` D P

[t-definitions]

𝑎𝑖 : 𝑡𝑖 ` 𝐶𝑖 (𝑖∈𝐼)

{𝑎𝑖 : 𝑡𝑖 }𝑖∈𝐼 ` {𝑎𝑖 = 𝐶𝑖 }𝑖∈𝐼

[t-processes]

Γ𝑖 ` 𝑃𝑖 (𝑖∈𝐼)⊗
𝑖∈𝐼 Γ𝑖 ` {𝑃𝑖 }𝑖∈𝐼

[t-solution]

Γ ` D ∆ ` P
` D P

Γ 6 ∆

Table 3. Typing rules.

Rule [t-null] states that the idle process is well typed only in an empty environment. Since the idle process does

nothing, the absence of linear objects in the environment makes sure that no linear object is left unused. On the other

hand, non-linear objects can always be discharged using subsumption [t-sub], which will be described shortly.

Rule [t-send] types message sending 𝑢.𝑀 , where 𝑢 is an object and𝑀 a molecule of messages. This process is well

typed if the type of the object coincides with that of the molecule, which as we will see is just the ⊗-composition of

the types of the messages in it. Note the use of ⊗ in the type environment allowing 𝑢 to possibly occur in 𝑀 as the

argument of some message.

Rule [t-par] types parallel compositions 𝑃1 | 𝑃2. The rule combines the type environments used for typing 𝑃1 and 𝑃2

to properly keep track of the overall use of the objects shared by the two processes.

Manuscript submitted to ACM

The Chemical Approach to Typestate-Oriented Programming 15

Rule [t-object] types object denitions def 𝑎 = 𝐶 in 𝑃 . A type 𝑡 is guessed for the object 𝑎 and checked to be

appropriate for the class 𝐶 (“appropriateness” will be discussed along with the typing rules for classes) and assigned to

𝑎 also for typing 𝑃 . Note that the class 𝐶 is checked in an environment that contains only 𝑎 (that is “self”). That is, the

type system forces classes to contain no free names other than the reference to self. In principle this is not a restriction,

as we have seen in Example 3.2, although in practice it is desirable to allow for more exibility. We have made this

choice to keep the type system as simple as possible. In fact, the type system would remain sound if we allowed 𝐶 to

access non-linear objects. Allowing 𝐶 to access linear objects is a much more delicate business that requires non-trivial

reasoning on the sequence of rings of the rules in 𝐶; this is left as a future extension.

Rule [t-sub] is the subsumption rule, allowing us to enrich the type environment of a process according to Deni-

tion 5.2. Intuitively, if 𝑃 is well typed using the objects described by ∆, then it certainly is well typed in an environment

Γ 6 ∆ where the same objects have more features than those actually used by 𝑃 and there may be other non-linear

objects. This rule is also useful for rewriting the types in the environment as well as for weakening ∆ with non-linear

objects.

The typing rules for molecules derive judgments of the form Γ ` 𝑀 :: 𝑇 . The environment Γ describes the type of

the arguments sent along the messages in𝑀 . The only remarkable feature is the side condition usable(𝑡) in [t-msg-m],

which requires the arguments of a message to be usable (in the sense of Denition 4.4). This condition is essential for

the soundness of the type system (see Example 6.7).

The typing rules for patterns have the form Γ ` 𝐽 :: 𝑇 and are similar to those for molecules. Recall that patterns

occur on the left hand side of reaction rules. In this case, the environment Γ describes the type of the arguments received

when the pattern matches a molecule in the soup. There is a technical dierence between [t-comp-m] and [t-comp-p]:

the former uses the connective ⊗ for combining type environments, as it may happen that the same object is sent as

argument in dierent messages; the latter takes the disjoint union of the environments, requiring arguments received

from dierent messages to have dierent names. The side condition also requires patterns to have disjoint signatures.

Overall, variables and message tags occurring in the same pattern must be pairwise distinct. This restriction is typical

of most presentations of the Join Calculus and is usually motivated by eciency reasons: variable linearity avoids the

need for equality tests when matching molecules; tag linearity allows the implementation to approximate the state

of each message queue with one bit denoting whether the queue is empty or not. In our case, tag linearity is in fact

necessary for the soundness of the type system (see Remark 2).

Before looking at the typing rules for classes, let us rst consider those for solutions D P, which are essentially

unremarkable. Each object denition in D is typed as in rule [t-object] and the processes in the multiset P are typed

as if they were all composed in parallel. The two typings are kept consistent by the fact that [t-solution] uses related

environments Γ and ∆ for both D and P. The reason why ∆ is not exactly Γ is purely technical and accounts for the

fact that the subsumption rule [t-sub] can be applied to the parallel composition of processes 𝑃1 | 𝑃2, but not after the

two processes have been heated and split into the multiset 𝑃1, 𝑃2. More details are provided in Appendix A.

The type system described so far is rather ordinary: the typing rules track the usage of objects and most of the heavy

lifting is silently done by subtyping and the ⊗ connective. The heart of the type system is [t-reaction], which veries

that a reaction rule 𝐽 ⊲ 𝑃 is appropriate for an object 𝑎 of type 𝑡 . The rule determines the type 𝑇 and bindings Γ of the

pattern 𝐽 and checks that the body 𝑃 of the rule is well typed in the environment Γ , 𝑎 : 𝑠 . Having 𝑎 in the environment

grants 𝑃 access to “self”. Now, we have to understand which relations should hold among 𝑡 , 𝑇 , and 𝑠 in order for the

reaction rule to be safe. In this context “safe” means that:

Manuscript submitted to ACM

16 Silvia Crafa and Luca Padovani

(1) 𝑇 describes correctly the type of the received arguments. This is not obvious, because the same tag can be

used in messages with arguments of dierent types while reduction picks messages solely looking at their

tag (Table 2). As an example, consider an object of type 𝑡 = (A ⊗ m(int)) ⊕ (B ⊗ m(bool)) and observe that

the argument of message m has dierent types depending on whether the state of the object is A or B. Then, a

reaction m(𝑥) ⊲ · · · is unsafe for matching an m-tagged message because it does not provide enough information

for understanding whether 𝑥 has type int or bool. On the contrary, both A | m(𝑥) ⊲ · · · and B | m(𝑥) ⊲ · · · are
safe reactions, since in these cases the signature of the matched molecule disambiguates the type of 𝑥 .

(2) By using 𝑎 according to 𝑠 , 𝑃 restores the state of 𝑎 into one of its valid congurations, described by 𝑡 . Again

this is not obvious, because the only knowledge that 𝑃 has regarding the state of 𝑎 comes from the matching of

𝐽 , which in general is a fraction of all the messages targeted to 𝑎 at the time of the reaction. As an example,

consider an object 𝑎 of type 𝑡 = A ⊕ (B ⊗ m). Then, a reaction A ⊲ 𝑎.B |𝑎.m is safe and so is a reaction B | m ⊲ 𝑎.A.

In both cases, the reaction consumes and produces a valid conguration of 𝑡 . On the contrary, a reaction B ⊲𝑎.A

is unsafe. Indeed, from 𝑡 we know that when a message B is present in a valid conguration for 𝑡 , namely

when the reaction can re, there is (or there will be, eventually) also a message m. Thus, by consuming B and

producing A, the reaction moves the object into a conguration A ⊗ m which is invalid according to 𝑡 .

Condition (1) is veried by the side condition 𝑡 ↓ 𝑇 of [t-reaction], saying when a given molecule type 𝑇 is not

ambiguous in 𝑡 :

Denition 5.3 (unambiguous pattern). We say that 𝑇 is unambiguous in 𝑡 , notation 𝑡 ↓ 𝑇 , if {𝑆 | 𝑆 ⊗ 𝑅 ∈ J𝑡K ∧ 𝑆 =

𝑇 } = {𝑇 }.

In words, 𝑡 ↓ 𝑇 holds if for each valid conguration 𝑆 ⊗ 𝑅 of 𝑡 that includes a molecule type 𝑆 sharing the same

signature as 𝑇 , the molecule type is exactly 𝑇 . In addition, there must be a valid conguration of 𝑡 that includes 𝑇 . This

implies that 𝑡 is usable whenever 𝑡 ↓ 𝑇 holds for some 𝑇 . Recalling the examples made when describing condition (1), if

𝑡 = (A ⊗ m(int)) ⊕ (B ⊗ m(bool)), then we have 𝑡 ↓ A ⊗ m(int) and 𝑡 ↓ A ⊗ m(bool), but not 𝑡 ↓ m(bool).

Remark 2. Let be 𝑡 = (m(foo) ⊗ m(bar)) ⊕ 1 and 𝑇 = m(foo) ⊗ m(bar), then 𝑡 ↓ 𝑇 holds because 𝑡 has only one

valid conguration with the same signature as 𝑇 . Now consider the reaction 𝐽 ⊲ 𝑥.foo |𝑦.bar where 𝐽 = m(𝑥) | m(𝑦);

if we let the judgement

𝑥 : foo, 𝑦 : bar ` 𝐽 :: 𝑇

to be derivable even though m occurs twice in 𝐽 , there would be no guarantee that, once 𝐽 matches a molecule, 𝑥 is

actually bound to the argument of type foo and 𝑦 is actually bound to the argument of type bar, and not vice versa. For

this reason, tag linearity in patterns is a key restriction in our type system, where messages with the same tag can have

arguments with dierent types. �

Condition (2) is veried by the side condition 𝑡 6 𝑡 [𝑇] ⊗ 𝑠 of [t-reaction], where the type 𝑡 [𝑇] represents the
“residual” of 𝑡 after a molecule with type𝑇 (the pattern of the reaction rule) has been removed; such residual is combined

(in the sense of ⊗) with 𝑠 , which is what 𝑃 sends to the object; the resulting type 𝑡 [𝑇] ⊗ 𝑠 is compatible with the object’s

type 𝑡 if it is a supertype of 𝑡 . The type residual operator is dened thus:

Manuscript submitted to ACM

The Chemical Approach to Typestate-Oriented Programming 17

Denition 5.4 (type residual). The residual of 𝑡 with respect to M, written 𝑡 [M], is inductively dened as follows:

0[M] = 1[M] = 0

m(𝑡)[m′(𝑠)] = 0 if m ≠ m′

m(𝑡)[m(𝑠)] = 1

(𝑡 ⊕ 𝑠) [M] = 𝑡 [M] ⊕ 𝑠 [M]
(𝑡 ⊗ 𝑠) [M] = (𝑡 [M] ⊗ 𝑠) ⊕ (𝑡 ⊗ 𝑠 [M])

(∗𝑡) [M] = 𝑡 [M] ⊗ ∗𝑡

We extend the residual to molecule types in the obvious way, that is 𝑡 [1] = 𝑡 and 𝑡 [M ⊗ 𝑇] = 𝑡 [M] [𝑇].

Note that the type residual operator (Denition 5.4) is nothing but the Brzozowski derivative (Brzozowski 1964;

Conway 1971) adapted to a commutative Kleene algebra over message types.

To further illustrate the side condition, we work out a few more examples in which we consider dierent objects 𝑎

of type 𝑡 and we write 𝑇 ⊲ 𝑠 for denoting a reaction 𝐽 ⊲ 𝑃 where 𝐽 has type 𝑇 and 𝑃 is typed in an environment that

includes 𝑎 : 𝑠 . We will say that 𝑇 ⊲ 𝑠 is valid or invalid depending on whether the condition holds or not.

• If 𝑡
def

= (A ⊗ m) ⊕
(
B ⊗ (1 ⊕ m)

)
, then A ⊲ B is valid but B ⊲ A is not. We have 𝑡 [B] = 1 ⊕ m and 𝑡 66 (1 ⊕ m) ⊗ A. In

general, the transition from a state in which a message is linear (m) to another where the message is not linear

(1 ⊕ m) cannot be reversed, because the object may have been discarded or aliased.

• If 𝑡
def

= A ⊕ (B ⊗ ∗foo) ⊕ (C ⊗ ∗foo ⊗ ∗bar), then A ⊲ B and B ⊲ C are valid, but neither B ⊲ A nor C ⊲ B is. It is unsafe

for the object to move from state C to state B because there could be residual bar messages not allowed in

state B. In general, non-linear messages such as foo and bar can only accumulate monotonically across state

transitions.

• If 𝑡
def

= (A⊗m(int))⊕(B⊗m(real)), then A⊲B is valid, but B⊲A is not. Indeed 𝑡 [B] = m(real) and 𝑡 66 m(real)⊗A.
The transition A ⊲ B is safe because the int argument of message m in state A can be subsumed to real in state

B, but not vice versa.

Example 5.5 (lock). We illustrate the type system at work showing that the two reactions of the lock (lines 2–3 in

Listing 3) and its initialization (line 4) are well typed using the types we discussed in Section 2 and Example 4.6, that is:

𝑡lock = 𝑡ACQUIRE ⊗
(
FREE ⊕ (BUSY ⊗ 𝑡RELEASE)

)
where 𝑡ACQUIRE = ∗acquire(reply(𝑡RELEASE)) and 𝑡RELEASE = release.

Consider the rst reaction; for its pattern we derive

r : reply(𝑡RELEASE) ` FREE | acquire(r) :: 𝑇

where 𝑇
def

= FREE ⊗ acquire(reply(𝑡RELEASE)). Let 𝑠
def

= BUSY ⊗ 𝑡RELEASE, then for the body of the reaction we derive

[t-msg-m]

∅ ` BUSY :: BUSY
[t-send]

o : BUSY ` o.BUSY

[t-msg-m]

o : 𝑡RELEASE ` reply(o) :: reply(𝑡RELEASE)
[t-send]

r : reply(𝑡RELEASE), o : 𝑡RELEASE ` r.reply(o)
[t-par]

r : reply(𝑡RELEASE), o : 𝑠 ` o.BUSY | r.reply(o)
Now 𝑡lock ↓ 𝑇 holds and furthermore

𝑡lock 6 𝑡lock [𝑇] ⊗ 𝑠 = 𝑡ACQUIRE ⊗ BUSY ⊗ 𝑡RELEASE

hence the side conditions of [t-reaction] are satised. For the pattern in the second reaction we derive

` BUSY | release :: BUSY ⊗ release

and it is easy to see that the body of the reaction is also well typed. Now, we have 𝑡lock ↓ BUSY ⊗ release and

𝑡lock 6 𝑡lock [BUSY ⊗ release] ⊗ FREE ' 𝑡ACQUIRE ⊗ FREE

Manuscript submitted to ACM

18 Silvia Crafa and Luca Padovani

so the side conditions of [t-reaction] are again satised, this time taking 𝑠
def

= FREE.

Concerning the lock initialization (line 4), we obtain

r : reply(𝑡ACQUIRE), o : 𝑡lock ` o.FREE | r.reply(o)

with a derivation analogous to that for the body of the rst reaction and using the subtyping relation 𝑡lock 6 𝑡ACQUIRE ⊗
FREE. Overall, we observe that FREE and BUSY are always produced either during the initialization or by the lock itself

whereas the public interfaces of the lock (𝑡ACQUIRE and 𝑡RELEASE) never allow the user to send these messages directly. In

this sense, FREE and BUSY are encapsulated within the lock. �

Example 5.6 (iterator). We conclude the typing of the array iterator in Example 3.1 (Listing 2). By composing the

public interfaces 𝑡NONE, 𝑡SOME, 𝑡BOTH dened in Example 4.7, we can dene the type of the iterator object o as follows:

𝑡iter
def

= (INIT(int[], int) ⊗ 𝑡BOTH) ⊕ (SOME(int[], int) ⊗ 𝑡SOME) ⊕ (NONE ⊗ 𝑡NONE)

Notice that 𝑡iter is obtained as a disjunction of three types, each corresponding to a pair encoding a possible state and

the public interface of the iterator in that state.

In order to check the typing of the denition of the object o in Listing 2, we have to check four reactions; we just

discuss two of them and, for readability, we only consider message tags omitting argument types. The rst reaction

INIT ⊲ SOME ⊕ NONE is valid since 𝑡iter [INIT] = 𝑡BOTH and

𝑡iter 6 (SOME ⊕ NONE) ⊗ 𝑡BOTH ' (SOME ⊗ 𝑡BOTH) ⊕ (NONE ⊗ 𝑡BOTH)

because 𝑡SOME 6 𝑡BOTH and 𝑡NONE 6 𝑡BOTH as we have argued in Example 4.7. The reaction SOME ⊗ next ⊲ INIT ⊗ 𝑡BOTH is
also valid since 𝑡iter [SOME ⊗ next] = 1 and now

𝑡iter 6 1 ⊗ INIT ⊗ 𝑡BOTH ' INIT ⊗ 𝑡BOTH

Observe that the code in Listing 2 does not contain any reaction involving both the state INIT and the operation

peek, since the iterator in state INIT eventually moves into either state SOME or NONE; nevertheless 𝑡iter exposes the

interface 𝑡BOTH while in state INIT, instead of the empty interface. This is because, in lines 6 and 9, a reference o to the

iterator is returned to the caller while the iterator is moving to state INIT. Such reference could be used by a quick

caller to send a peek message to the iterator while the iterator is still in the transient state INIT, and this requires

INIT ⊗ peek to be a valid conguration of 𝑡iter . It is possible to make sure that the reference o returns to the caller only

once the iterator has moved away from state INIT, by reshaping INIT into a synchronous operation. �

6 PROPERTIES OF WELL-TYPED PROCESSES

In this section we prove the key properties enjoyed by well-typed processes. To begin with, we state a completely

standard, yet fundamental result showing that typing is preserved under heating, cooling, and reductions.

Theorem 6.1 (subject reduction). If ` D P and

D P R D ′ P ′

where R ∈ {⇀,⇁,→}, then ` D ′ P ′.

Theorem 6.1 is crucial for the next results, since it assures that the properties enjoyed by well-typed processes are

invariant under arbitrarily long process reductions.

Manuscript submitted to ACM

The Chemical Approach to Typestate-Oriented Programming 19

The rst proper soundness result states that a well-typed process respects the prohibitions expressed by the types of

the objects it manipulates. We say that 𝑡 prohibits 𝑇 if not usable(𝑡 [𝑇]), namely if there is no valid conguration of 𝑡

that includes (a molecule with the same signature as) 𝑇 . Now we have:

Theorem 6.2 (respected prohibitions). If

Γ , 𝑎 : 𝑡 ` 𝑃 |𝑎.m1(𝑐1) | · · · |𝑎.m𝑛(𝑐𝑛) ,

then usable(𝑡 [m1 ⊗ · · · ⊗ m𝑛]).

In words, if the type of an object prohibits invocation of a particular method when the object is in some particular

state, then there is no well-typed soup of processes containing pending invocations to that method when the object is

in that state. To illustrate, consider the lock object in Listing 1. The type 𝑡lock of the lock we have dened in Section 2

prohibits invocation of method release when the lock is in state FREE, indeed 𝑡lock [FREE ⊗ release] ' 0, that is

¬usable(𝑡lock [FREE ⊗ release]). Now, a free lock is identied by the presence of a o.FREE molecule in the solution.

Hence, the following judgment is not derivable

Γ , o : 𝑡lock ` 𝑃 | o.FREE | o.release

Similarly, the type 𝑡lock states that, when in state BUSY, there can be exactly one pending invocation to release. In

particular, 𝑡lock [BUSY ⊗ release ⊗ release] ' 0. So,

Γ , o : 𝑡lock ` 𝑃 | o.BUSY | o.release | o.release

is another judgment that cannot be derived. Remarkably, we can infer a great deal of information regarding the state

of an object by solely looking at its type, knowing virtually nothing about the rest of the (well-typed) program. For

instance, no soup containing both a FREE and a BUSY message simultaneously targeted to the same lock is well typed,

meaning that the state of every lock is always uniquely determined.

The second soundness result states that a well-typed process fullls all the obligations with respect to the objects it

owns. More precisely, if a process 𝑃 is typed in an environment that contains a linear object 𝑎, that is an object whose

type mandates the (eventual) invocation of a particular method, then 𝑎 cannot be discarded by 𝑃 , but must be held by 𝑃

and used according to its type.

Theorem 6.3 (weakly fulfilled obligations). If Γ ` 𝑃 and 𝑎 ∈ dom(Γ) and lin(Γ (𝑎)), then 𝑎 ∈ fn(𝑃).

Another way of reading this theorem is that well-typed processes can only discard non-linear objects, namely objects

for which they have no pending obligations. For example, since 𝑡lock mandates the invocation of method release once

the lock has been acquired, omitting the f.release from line 5 in Listing 4 would result into an ill-typed philosopher.

We have labeled Theorem 6.3 “weak” obligation fulllment because the property may indeed look weaker than

desirable. One would probably expect a stronger property saying that every method that must be invoked is eventually

invoked. Such stronger property, which is in fact a liveness property, is however quite subtle to characterize and hard to

enforce with a type system. In particular, it would require well-typed processes to be free from both deadlocks and

livelocks, which is something well beyond the capabilities of the type system we have presented in Section 5. The next

two examples illustrate why this is the case.

Example 6.4 (deadlock). Assuming a Lock class dened as in Listing 3, the following code attempts at acquiring the

same lock twice, resulting in a deadlock:

Manuscript submitted to ACM

20 Silvia Crafa and Luca Padovani

1 def Lock = ... (* see Listing 3 *)

2 in let lock = Lock.new (* lock : 𝑡ACQUIRE *)

3 in let lock1 = lock.acquire (* lock1 : 𝑡RELEASE *)

4 in let lock2 = lock.acquire (* lock2 : 𝑡RELEASE *)

5 in lock1.release | lock2.release

A lock is created on line 2 and used twice on lines 3 and 4 for acquisition. This is possible because of the relation

𝑡ACQUIRE ' 𝑡ACQUIRE ⊗ 𝑡ACQUIRE. Clearly, only the rst acquisition succeeds, and the program blocks while performing

the second one. Note that the program is well typed, as both lock1 and lock2, which have a linear type, are used in

line 5 for releasing the lock, according to the lock protocol. However, such “usage” is merely syntactic, for neither of

the two release messages will ever be received, and the lock will never be released. Note that static deadlock detection

is undecidable in general and non-trivial to approximate. In this example, for instance, it would require understanding

that the acquire method is a blocking one (this information cannot be inferred merely from the type of Lock) and

that it is the same lock being acquired twice, in a fragment of sequential code (this is easy to detect here since lock

syntactically occurs twice, but in general the code could invoke the acquire method on distinct variables that are

eventually instantiated with the same reference to lock). �

Example 6.5 (livelock). There is one trivial way to honor all pending obligations (as by Theorem 6.3), namely

postponing them forever. For example, let

forever (𝑢) def

= def 𝑐 = m(𝑥) ⊲ 𝑐.m(𝑥) in 𝑐.m(𝑢)

where 𝑐 is a fresh name. The judgment 𝑎 : 𝑡 ` forever (𝑎) is derivable for any 𝑡 such that usable(𝑡). In particular, 𝑡 may

be linear, and yet forever (𝑎) never invokes any method on 𝑎. Although forever (𝑎) fools the type system into believing

that all pending obligations on 𝑎 have been honored, processes like forever (𝑎) are suciently contrived to be rarely

found in actual code. In other words, we claim that Theorem 6.3 provides practically useful guarantees about the actual

use of objects with linear types. �

Finally, we draw the attention on a general property of the type system that is key for proving Theorem 6.2:

Lemma 6.6. There exist no Γ and 𝑃 such that Γ , 𝑢 : 0 ` 𝑃 .

This property states that there is no well-typed process that can hold an unusable object. The result may look obvious,

but it has important consequences: we have remarked the role of subtyping for deducing the interface of objects with

uncertain state. For instance, 𝑡BOTH (Example 4.7) is obtained as the least upper bound of 𝑡NONE and 𝑡SOME. Since 0 is the

top type, the least upper bound of two (or more) types always exists, but it can be 0. For example, had we forgotten to

equip the iterator with a peek operation in state SOME (line 4 of Listing 2), 𝑡BOTH would be 0 and the iterator would be

essentially unusable. Lemma 6.6 tells us that the type system detects such mistakes.

Example 6.7. The side condition in rule [t-msg-m] requires the arguments of a message to have a usable type. If this

condition were not enforced it would be possible to derive 𝑎 : 0 ` forever (𝑎) in spite of the fact that 𝑎 has an unusable

type (note that forever (𝑎) sends 𝑎 as the argument of a message). Then, the following derivation would be legal and

Manuscript submitted to ACM

The Chemical Approach to Typestate-Oriented Programming 21

Theorem 6.2 would not hold:

.

.

.

𝑎 : 0 ` forever (𝑎)

[t-msg-m]

` bar :: bar
[t-send]

𝑎 : bar ` 𝑎.bar
[t-par]

𝑎 : 0 ⊗ bar ` forever (𝑎) |𝑎.bar
[t-sub]

𝑎 : foo ` forever (𝑎) |𝑎.bar
Since foo 6 0 ⊗ bar ' 0, the subsumption rule could be used for allowing prohibited method invocations (bar)

knowing that these would be absorbed by 0 types in other parts of the derivation. �

7 EXAMPLES

In this section we discuss a few more advanced examples to illustrate the expressiveness of our approach, which

encompasses both statically enforced guarantees and dynamic support from the runtime system. We conclude the

section with a summary of the three programming patterns used throughout the paper for realizing state-changing

methods in our approach.

7.1 One-Place Buer

It is possible to assign dierent types to a given object, corresponding to dierent usage protocols involving possibly

dierent numbers of intended users. Such degree of polymorphism is made possible by the semantics of the Objective

Join Calculus, which allows sending arbitrary congurations of messages to objects and relies on runtime join pattern

matching for triggering reactions.

The code fragment below models a one-place buer as an object with two operations insert and remove that switch

the buer’s state from EMPTY to FULL and vice versa.

def Buffer = new(r) ⊲

def o = EMPTY | insert(x,r) ⊲ o.FULL(x) | r.reply(o)

or FULL(x) | remove(r) ⊲ o.EMPTY | r.reply(x,o)

in o.EMPTY | r.reply(o)

in ...

When used in a single-threaded way, the one-place buer has just one user at any time, which must necessarily

alternate insert and remove operations in order to achieve a sensible behavior. In this case, the public interface of the

buer is dened by the types 𝑡EMPTY and 𝑡FULL that satisfy the equations

𝑡EMPTY = insert(int, reply(𝑡FULL)) ⊕ 1 𝑡FULL = remove(reply(int, 𝑡EMPTY))

and the overall type of a buer is

𝑡buer
def

= (EMPTY ⊗ 𝑡EMPTY) ⊕ (FULL(int) ⊗ 𝑡FULL)

The use of 1 just in 𝑡EMPTY and not also in 𝑡FULL means that it is possible to insert an element in an empty buer and

that it is mandatory to remove the element from a full buer. Dierent combinations of possibilities and obligations can

be achieved by a suitable placement of 1. A more radical choice concerns the number of threads allowed to access the

buer: the buer could be simultaneously accessed by both a producer thread (which inserts elements in the buer) and

a consumer thread (which removes them). In this case, producer and consumer would use the buer according to the

Manuscript submitted to ACM

22 Silvia Crafa and Luca Padovani

interfaces dened by

𝑡prod = insert(int, reply(𝑡prod)) 𝑡cons = remove(reply(int, 𝑡cons))

When two independent threads access the same buer, none of them can know with absolute certainty in which

state the buer is. However, according to the chemical semantics of the Join Calculus, if an operation is invoked when

the buer is in a state that disallows the triggering of the corresponding reaction, the invocation remains pending until

the buer moves into the “right” state. For example, unlike the single-thread case, the consumer might issue a remove

message when the buer is EMPTY, in which case it would not receive an answer until the producer issues an insert. In

this scenario, the type of the buer must be revised to account for the possibility that an insert message is sent when

the buer is FULL, or a remove message is sent when the buer is EMPTY:

𝑡 ′buer
def

= (EMPTY ⊕ FULL(int)) ⊗ 𝑡prod ⊗ 𝑡cons

Since the buer state message is consumed when a reaction is triggered, producer and consumer always operate in

mutual exclusion even if they attempt to access the buer simultaneously. In Sections 7.2 and 7.3 we will see examples

of concurrent objects where several processes may concurrently access the same object when they act on disjoint

components of the object’s state.

An even more permissive usage policy for the buer is to allow an arbitrary number of producers and/or consumers.

For example, the types

(EMPTY ⊕ FULL(int)) ⊗ ∗𝑡prod ⊗ 𝑡cons and (EMPTY ⊕ FULL(int)) ⊗ 𝑡prod ⊗ ∗𝑡cons

respectively account for arbitrarily many producers and one consumer, or for one producer and arbitrarily many

consumers. Note that all these dierent typings are legal for the same object denition (cf. rule [t-class] and [t-reaction]),

ultimately realizing a form of code polymorphism. Choosing one type over another means trading exibility and

eciency: on the one hand, 𝑡buer oers stronger guarantees on the usage protocol of the buer and allows for a more

ecient code (each operation is allowed precisely when the buer is in the right state to execute it), but limits sharing

and concurrent access to the buer; on the other hand, a type like 𝑡 ′buer allows more liberal and concurrent usage of

the buer but crucially relies on the runtime support for suspending the operations until the buer is in a state that

allows them to execute.

7.2 Concurrenteue

In this section we model a non-blocking concurrent queue, showing that by breaking down the state of an object into

smaller components we can enhance concurrency of the program. Unlike the one-place buer of Section 7.1, where

concurrent producer and consumer may compete for the buer but they eventually access it in mutual exclusion, the

concurrent queue we model here allows for simultaneous access and modication, whereby the consumer may dequeue

an element of the queue while the producer is enqueuing another one. We implement the non-blocking queue following

Michael and Scott’s concurrent queue algorithms (Michael and Scott 1996): the linked list storing the queue’s elements

always contains at least one node that stores no sensible data and whose only purpose is to separate producer and

consumer so that they never interfere except, possibly, when the queue is empty.

The overall state of the queue consists of two references h and t to the nodes at its head and tail, respectively. In

principle, we could store both h and t in a single state message, say LIST(h,t), but doing so would prevent concurrent

access to the queue, since concurrent invocations of enqueue and dequeue would compete for consuming the sole LIST

Manuscript submitted to ACM

The Chemical Approach to Typestate-Oriented Programming 23

1 def Queue = new(r) ⊲

2 def o = TAIL(t) | enqueue(x,r) ⊲

3 let node = Node.new(x) in
4 t.link(node) | o.TAIL(node) | r.reply(o)
5 or HEAD(h) | dequeue(r) ⊲

6 case h.has_next() of
7 no(h) ⊲ o.HEAD(h) | r.none(o)
8 or yes(h) ⊲ let k = h.unlink() in
9 let x,k = k.get_data() in

10 o.HEAD(k) | r.some(x,o)
11 in let node = Node.new(-1) in
12 o.HEAD(node) | o.TAIL(node) | r.reply(o)
13

14 def Node = new(x,r) ⊲

15 def o = DATA(v) | get_data(r) ⊲ o.DATA(v) | r.reply(v,o)
16 or LAST | has_next(r) ⊲ o.LAST | r.no(o)
17 or LAST | link(n) ⊲ o.NEXT(n)
18 or NEXT(n) | has_next(r) ⊲ o.NEXT(n) | r.yes(o)
19 or NEXT(n) | unlink(r) ⊲ o.LAST | r.some(n)
20 in o.DATA(x) | o.LAST | r.reply(o)

Listing 5. Modeling of a non-blocking, concurrent queue.

message to re the corresponding reaction. Given that enqueue only modies the tail of the queue, while dequeue

possibly modies only the head of the queue, it makes sense to split the overall state of the queue using two distinct

messages HEAD and TAIL, each carrying a reference to the corresponding end of the linked list. In general, splitting

compound states into independent messages may enhance concurrency by reducing the synchronizations between

independent operations of an object.

The code of the concurrent queue is shown in the upper part of Listing 5 and heavily relies on the syntactic sugar

introduced in Example 3.2. The separator node (created on line 11) initially contains an arbitrary element -1 and is

used for initializing the state of the queue (line 12). When the producer enqueues some data x (reaction on line 2), a

new node for x is created (line 3) and the node t at the tail of the queue is linked to node, which becomes the new tail

(line 4). When the consumer attempts to dequeue some data (reaction on line 5), the separator h at the head of the queue

is queried to check whether it is linked to a subsequent node (line 6). The case 𝑢.m(𝑣) of {𝐽𝑖 ⊲ 𝑃𝑖 }𝑖∈𝐼 construct is a
straightforward generalization of let (Example 3.2) for which we omit a formal denition. If the separator is not linked

to another node, then the queue is empty and the consumer is notied with a none message (line 7). If the separator is

indeed linked to a subsequent node, then that node (and not h) is the rst proper node of the queue. In this case, the

separator h is detached from its successor k (line 8), the data x stored in the successor node is retrieved (line 9), and k

becomes the new separator (line 10). Simultaneously, the consumer is notied with a some message that contains x as

well as the continuation of the queue.

The code for Node, shown in the lower part of Listing 5, is fairly straightforward. The only remarkable feature of a

node is that its state is a combination of DATA, containing the data stored in the node, and either one NEXT or one LAST

message, depending on whether the node is linked to a subsequent node or not. In the former case, the NEXT message

Manuscript submitted to ACM

24 Silvia Crafa and Luca Padovani

carries a reference to the subsequent node. The operations link and unlink have the eect of switching these two

states.

Note that link (line 17) and unlink (line 19) do not return the continuation of the node on which they are invoked

(in the case of unlink, a node n is in fact returned, but that is the subsequent node in the chain, not the node itself). We

have made this choice given that Node is only meant to be an auxiliary structure for implementing Queue and given

that, according to the code for Queue, link and unlink are always the last operations invoked on a node by its owners.

Let us now devise types for queues and nodes, starting from the formers. The types 𝑡enq and 𝑡deq respectively expose

operations for enqueueing and dequeueing data into/from the queue. The state of the queue is always the combination

of HEAD and TAIL. Formally, we have

𝑡enq = enqueue(int, reply(𝑡enq))

𝑡deq = dequeue(none(𝑡deq) ⊕ some(int, 𝑡deq))

𝑡queue = HEAD(𝑡ANY) ⊗ TAIL(link(𝑡ANY)) ⊗ 𝑡enq ⊗ 𝑡deq
Note that 𝑡enq and 𝑡deq in 𝑡queue are combined by ⊗, meaning that they do not describe mutually exclusive behaviors.

This is what allows two dierent threads, one producer and one consumer, to simultaneously access the same queue.

The type 𝑡ANY describes the interface of a Node whose state (either NEXT or LAST) is unknown, and will be detailed

shortly. The arguments of HEAD and TAIL have dierent types, reecting the fact that the queue uses them dierently.

In particular, nodes stored in HEAD can be in any state, hence we use the type 𝑡ANY in HEAD(𝑡ANY), while nodes stored in

TAIL do not have a successor and the only operation invoked on them from the queue is link (line 4), hence we use the

type link(𝑡ANY) in TAIL(link(𝑡ANY)).

Nodes expose three dierent public interfaces, depending on whether their state is LAST, NEXT, or uncertain. Corre-

spondingly, we have three types 𝑡LAST, 𝑡NEXT, and 𝑡ANY that satisfy the following equations:

𝑡LAST = link(𝑡ANY) ⊗ 𝑡ANY
𝑡NEXT = unlink(reply(𝑡ANY)) ⊕ 𝑡ANY
𝑡ANY = get_data(reply(int, 𝑡ANY)) ⊕ has_next(no(𝑡ANY) ⊕ yes(𝑡NEXT))

The operations get_data and has_next are always available, as witnessed by the fact that they occur in 𝑡ANY. On

the contrary, link is available only on nodes in state LAST, while unlink is available only on nodes in state NEXT.

There is a subtle, but fundamental dierence between 𝑡LAST and 𝑡NEXT in that unlink can be chosen in alternative to

the operations in 𝑡ANY (see the ⊕ in the equation for 𝑡NEXT) whereas link must be performed in addition to one of

the operations in 𝑡ANY (see the ⊗ in the equation for 𝑡LAST). The rationale for this asymmetry is due to the fact that

queues can be simultaneously accessed by both a producer and a consumer. When a queue is empty there will be two

threads acting on the only node in it, which is the separator: the producer will try to link the separator to a node

that stores the data being enqueued (line 4) while the consumer will query the separator with has_next to check

whether it is followed by another node (line 6). If has_next executes rst and answers no, the type of the reference

returned to the consumer is 𝑡ANY and not 𝑡LAST, for the capability of performing a link is exclusive to the producer. To

allow simultaneous invocations of link and get_data we use ⊗ in the equation for 𝑡LAST. In the code of Queue, such

simultaneous access to the separator is best illustrated on line 12, where the node separator is stored in both HEAD and

TAIL. On the contrary, unlink is always the last operation invoked on a node and is therefore mutually exclusive with

get_data and has_next, which explains the ⊕ in the equation for 𝑡NEXT.

Manuscript submitted to ACM

The Chemical Approach to Typestate-Oriented Programming 25

L_EMPTY ⊗ R_EMPTY

L_FULL ⊗ R_EMPTY L_EMPTY ⊗ R_FULL

L_FULL ⊗ R_FULL

L_FULL ⊗ R_EMPTY L_EMPTY ⊗ R_FULL

l_send r_send

r_send l_send

l_recv r_recv

r_recv l_recv

Fig. 2. Transition diagram of the full-duplex channel.

The type

𝑡node
def

= DATA(int) ⊗
(
(LAST ⊗ 𝑡LAST) ⊕ (NEXT(𝑡ANY) ⊗ 𝑡NEXT)

)
describes the overall set of valid message congurations that can be sent to a Node.

7.3 Full-Duplex Channel

In the example of Section 7.2 we deliberately chose to have a compound state instead of a monolithic one LIST to

enable the concurrent access to the object. In this section we discuss one nal example where the compound state arises

naturally as the combination of the states of two independent one-place buers. The example we consider is that of a

bidirectional, full-duplex channel for connecting two peer processes, called “left” and “right” and identied by a letter

𝑝 ∈ {l, r}. Full-duplex communication allows the two peers to simultaneously cross-post messages on the channel, so

as to maximize parallelism.

The channel is modeled in the Objective Join Calculus thus:

1 def Channel = new(r) ⊲

2 def o = L_EMPTY | l_send(v,r) ⊲ o.L_FULL(v) | r.reply(o)

3 or L_FULL(v) | r_recv(r) ⊲ o.L_EMPTY | r.reply(v,o)

4 or R_EMPTY | r_send(v,r) ⊲ o.R_FULL(v) | r.reply(o)

5 or R_FULL(v) | l_recv(r) ⊲ o.R_EMPTY | r.reply(v,o)

6 in o.L_EMPTY | o.R_EMPTY | r.reply(o)

7 in · · ·

The channel provides two pairs of operations 𝑝_send and 𝑝_recv used by peer 𝑝 for sending and receiving messages.

For the left peer, L_EMPTY represents the empty buer and L_FULL(𝑣) the full buer with a value 𝑣 . Tags R_EMPTY and

R_FULL are used for representing the buer of the right peer in a similar way. Observe that each buer is either empty

or full just as discussed in Section 7.1, but the two buers coexist and can change state independently. This means that

L_EMPTY and L_FULL are or-states, and so are R_EMPTY and R_FULL: on the contrary, all pairs shown in Figure 2 are

and-states. This will be reected in the type of the channel, where dierent states of the same buer are combined by ⊕,
whereas states of dierent buers are combined by ⊗.

Manuscript submitted to ACM

26 Silvia Crafa and Luca Padovani

The code for Channel allows each peer to perform send and receive operations in any order. In practice, since the

buers are one-place, it makes sense to enforce a usage protocol such that each peer 𝑝 alternates send and receive

operations. In this way, the 𝑝_send of peer 𝑝 lls the corresponding buer and enables the 𝑝_recv of the other peer

𝑝 , but only after 𝑝 has sent its own message. Figure 2 depicts the transition diagram of the full-duplex channel used

according to this protocol. The interface of the channel from the viewpoint of 𝑝 is described by the type 𝑡𝑝s dened by

𝑡𝑝s = 𝑝_send(int, reply(𝑡𝑝r))

𝑡𝑝r = 𝑝_recv(reply(int, 𝑡𝑝s))

The types of the interfaces are combined with state message types to form the type of the channel as follows

𝑡chan
def

= (L_EMPTY ⊗ R_EMPTY ⊗ 𝑡ls ⊗ 𝑡rs) ⊕ (L_FULL ⊗ R_FULL ⊗ 𝑡lr ⊗ 𝑡rr)
⊕ (L_FULL ⊗ R_EMPTY ⊗ 𝑡lr ⊗ 𝑡rs) ⊕ (L_EMPTY ⊗ R_FULL ⊗ 𝑡ls ⊗ 𝑡rr)
⊕ (L_FULL ⊗ R_EMPTY ⊗ 𝑡ls ⊗ 𝑡rr) ⊕ (L_EMPTY ⊗ R_FULL ⊗ 𝑡lr ⊗ 𝑡rs)

where we have elided the type of values in the buers for readability.

Inspection of 𝑡chan reveals that the reference o returned on line 6 has type 𝑡ls ⊗ 𝑡rs, that is the composition of the

two public interfaces of the channel, each corresponding to one of the peers. Therefore, the same channel object can be

used by two parallel processes, according to these two types, as illustrated by the code snippet below:

let c = Channel.new() in (* c : 𝑡ls ⊗ 𝑡rs *)

{ let c = c.l_send(1) in (* c : 𝑡lr *)

let v,c = c.l_recv in ... (* c : 𝑡ls *)

| let c = c.r_send(2) in (* c : 𝑡rr *)

let v,c = c.r_recv in ... } (* c : 𝑡rs *)

The internal state of the full-duplex channel is the combination of distinct messages L_𝑥 and R_𝑦 that are consumed

and produced concurrently by the users of the channel. In particular, each reaction rule in Channel changes only part of

the channel’s state, leaving the rest unchanged. The last side condition of rule [t-reaction] veries that such partial

change maintains the channel’s overall state in one of the congurations described by 𝑡chan. The interested reader can

verify that each reaction rule is indeed well typed with respect to 𝑡chan.

As a nal consideration, the fact that 𝑡chan and the diagram in Figure 2 list 6 congurations (instead of the 4

corresponding to all possible combinations of L_𝑥 and R_𝑦) suggests that the interface of the channel depends not only

on its current state (encoded as a pair L_𝑥 ⊗ R_𝑦) but also on its past history. For instance, in the two states identied by

the combination of messages L_FULL ⊗ R_EMPTY, the peer l has produced its own message while the buer of peer r is

empty. But this can be either because r has not produced its own message yet, or because r has indeed produced the

message, and peer l has already received it.

7.4 Programming Paerns for Concurrent TSOP in the Objective Join Calculus

By now we have illustrated a broad range of examples of concurrent objects with structured protocols and methods

that (partially) update their state. Overall, we can classify methods according to three usage patterns.

(1) A method that can be invoked only when the receiver object is in a state for which the method is valid. In this

case, aliasing of the object must be controlled (in our case, by giving the object a linear type) so that the type

system can statically track its state. Examples of methods following this pattern are release for locks, next

Manuscript submitted to ACM

The Chemical Approach to Typestate-Oriented Programming 27

for iterators, insert and remove for buers (the single-threaded version), link and unlink for nodes of the

queue.

(2) A method that can be invoked regardless of the state of the receiver object, relying on the reaction semantics

of the Join Calculus to suspend the invocation until the object is in a state for which the method is valid. The

method can (but need not) be given an unlimited type (using ∗) to permit object aliasing. Examples of methods

following this pattern are acquire for locks, insert and remove for buers (the multi-threaded versions),

l_recv and r_recv for full-duplex channels.

(3) A method that can be invoked regardless of the state of the receiver object and noties the caller with a

message that discloses some information about the object’s state. As a result of the invocation, the caller may

have acquired enough information for performing subsequent state-specic invocations. Examples of methods

following this pattern are peek for iterators and has_next for nodes of the queue.

8 IMPLEMENTATION ASPECTS

In this section we discuss the practical feasibility of our approach and we provide some evidence that it is amenable to

be integrated in a practical programming language. TSOP involves design and implementation aspects covering both

the program level, that is the runtime support for handling messages, matching join patterns, ring reactions, and the

type level, namely the compile-time support that enforces our typing discipline. Concerning the program level and

considering that our approach relies on a standard formulation of the (Objective) Join Calculus, we discuss two dierent

strategies for adopting our programming model: the rst one makes use of (existing) implementations of the Join

Calculus (Section 8.1); the second one rests on the tight analogies between TSOP realized in the Objective Join Calculus

and the Actor Model, a programming paradigm that also combines OOP and concurrency (Section 8.2). Concerning

the type level, we only discuss some key issues concerning the implementation of the type discipline advocated in the

paper (Section 8.3) and leave a more in-depth investigation to future work.

8.1 TSOP with Implementations of the Objective Join Calculus

There exist a number of standalone, embedded, and library implementations of the Join Calculus: native support for

join patterns is provided in JoCaml (Fournet et al. 2003b), Join Java (Itzstein and Jasiunas 2003), and in Cω (Benton et al.

2004; Microsoft Research 2004), among others; library implementations of join patterns are available for C#
(Russo

2007; Turon and Russo 2011), Visual Basic (Russo 2008), Scala (Haller and Van Cutsem 2008), Erlang (Plociniczak and

Eisenbach 2010). Both native and library implementations of join patterns have pros and cons. Natively supported

join patterns allow for specic optimizations (Le Fessant and Maranget 1998) and analysis techniques (Fournet et al.

1997; Patrignani et al. 2011), but they are currently available only for niche programming languages that enjoy limited

popularity. Library implementations of join patterns are (or can be made) available for all mainstream programming

languages and therefore integrate more easily with existing code and development environments, but they might be

constrained by the syntax and typing discipline of the host language. Nonetheless, carefully crafted implementations

can perform and scale remarkably well (Turon and Russo 2011).

Listing 6 presents a Scala implementation of the full-duplex channel (Section 7.3) using the Scala Joins library (Haller

and Van Cutsem 2008), which provides a simple DSL for embedding Join-style denitions in Scala.
1
The code dening

the Channel class has a straightforward correspondence with its formal counterpart. The class consists of a set of

1
The example has been written and tested using a variant of Scala Joins 0.4 that has been patched to make it compatible with Scala 2.11.6.

Manuscript submitted to ACM

28 Silvia Crafa and Luca Padovani

1 class Channel[TL, TR] extends Joins {
2 // MESSAGES //
3 private object L_EMPTY extends NullaryAsyncEvent
4 private object R_EMPTY extends NullaryAsyncEvent
5 private object L_FULL extends AsyncEvent[TL]
6 private object R_FULL extends AsyncEvent[TR]
7 object l_send extends SyncEvent[Unit, TL]
8 object r_send extends SyncEvent[Unit, TR]
9 object l_recv extends NullarySyncEvent[TR]

10 object r_recv extends NullarySyncEvent[TL]
11 // REACTION RULES //
12 join {
13 case L_EMPTY() and l_send(v) => L_FULL(v)
14 l_send reply {}
15 case L_FULL(v) and r_recv() => L_EMPTY()
16 r_recv reply v
17 case R_EMPTY() and r_send(v) => R_FULL(v)
18 r_send reply {}
19 case R_FULL(v) and l_recv() => R_EMPTY()
20 l_recv reply v
21 }
22 // INITIALIZATION //
23 L_EMPTY()
24 R_EMPTY()
25 }
26

27 class Process(chan : Channel[Int, String]) {
28 def runRight(v : String) : Unit = {
29 println("Right sends " + v); chan.r_send(v)
30 println("Right receives " + chan.r_recv())
31 runRight(v + "*") }
32 def runLeft(v : Int) : Unit = {
33 println("Left sends " + v); chan.l_send(v)
34 println("Left receives " + chan.l_recv())
35 runLeft(v + 1) }
36 }
37

38 object TestChannel extends App {
39 val chan = new Channel[Int, String]
40 Future { new Process(chan).runLeft(1930) }
41 Future { new Process(chan).runRight("Pluto") }
42 Thread.sleep(5000000)
43 }

Listing 6. The full-duplex channel in Scala Joins.

Manuscript submitted to ACM

The Chemical Approach to Typestate-Oriented Programming 29

event declarations specifying the messages that can be targeted to instances of the class (lines 3–10), the reaction rules

specifying the behavior of instances of the class (lines 12–21), as well as the initial state of each instance (lines 23–24).

The main program (lines 39–41) creates a channel that is shared by two asynchronous processes that exchange integers

and strings in full-duplex. The messages representing the state of the channel (lines 3–6) are private to enforce

encapsulation of the state. The public interface (lines 7–10) is represented by synchronous events: invoking a Channel’s

public operation (lines 29–30 and 33–34) suspends the calling thread until the matching reaction has red and a result

has been returned (lines 14,16,18,20). In the formal model, all message sends are asynchronous and sequentiality is

encoded with explicit continuations (see the reference c in the user code for the channel in Section 7.3). The reaction

rules that govern the channel behavior are dened by means of a call to the join method (inherited from the Joins

superclass in the Scala Joins library) that takes as a parameter a partial function encoding the join patterns in terms of

pattern matching. Pattern composition is then achieved by means of the and combinator, whose denition exploits

Scala’s extractors and extensible pattern matching. Note that Channel is parametric in the types TL and TR of the

messages exchanged over the full-duplex channel. This possibility, not accounted for in the formal presentation of the

type system (Section 5), comes for free thanks to Scala’s support for generics.

8.2 TSOP with Actors

The Actor Model (Agha 1986; Hewitt et al. 1973) is a programming paradigm that blends OOP, concurrency, and

message-passing. In this section we show that the actor programming model bears strong similarities with our approach

to TSOP for concurrent objects. In particular, it is well known that actors can directly implement Finite State Machines:

a machine’s state corresponds to the actor’s behavior, which species how the actor handles incoming messages. The

ability of the actor to change its current behavior in response to some message, say m, corresponds to a state transition

labelled with m. Unlike the chemical model that underlies the Join Calculus, however, where both states and operations

are uniformly encoded as messages, in actor systems behaviors and (ordinary) messages belong to distinct categories.

To illustrate, let us consider the implementation of the one-place buer from Section 7.1 using Scala Akka Actors,

shown in Listing 7. Two features of Akka should be kept in mind when looking at this code. First, as in the Objective

Join Calculus, communication is asynchronous and responses are communicated by exchanging explicit continuations.

Second, the default message handling policy of Akka diers from that of the Objective Join Calculus. In Akka, messages

that cannot be handled by the current behavior of an actor are discarded, whereas in the Objective Join Calculus they

keep oating in the chemical soup until, if ever, they form a molecule that matches the left hand side of a reaction. In

order to realize this policy in Akka, we rely on mix-in composition by means of a trait Chemical that modies an actor

so that any message of type ProtocolMsg that is not handled by the current behavior is collected (method chemReact in

line 9) and resent to self whenever the actor enters a new state which might be able to handle it (method chemBecome

in line 8). Note that the default policy of discarding unhandled messages is specic to Akka. Other implementations of

the Actor Model, such as the one of Erlang, allow unhandled messages to accumulate in the actor’s mailbox.

With this machinery in place, the denition of the buer (lines 19–32) closely resembles the corresponding Join

denition: the two reactions are represented by the two partial functions EMPTY and FULL and the initial behavior of

the buer is EMPTY (line 31). Protocol messages are encapsulated in a BufferProtocol object (lines 13–16) and are

parameterized w.r.t. the type of the values exchanged in the protocol.
2
Notice that reply and replyVal messages, used

by the buer to answer its users, are not tagged with the ProtocolMsg trait since only the buer’s incoming messages

2
Since the type parameters of messages are not related to the Buffer’s type parameter, the Scala compiler raises a warning for line 24 since it fails to

match the type argument of the case pattern due to type erasure. On the other hand, dening the generic case classes inside the Buffer[T] class would

Manuscript submitted to ACM

30 Silvia Crafa and Luca Padovani

1 trait ProtocolMsg
2

3 trait Chemical extends Actor {
4 private val soup : ArrayBuffer[ProtocolMsg] = new ArrayBuffer()
5 private def check() = { soup.map(self ! _); soup.clear }
6 private def keep : Receive = { case msg:ProtocolMsg => soup.append(m) }
7

8 def chemBecome(newState : Receive) = { context.become(newState); check() }
9 def chemReact(behave : Receive) : Receive = behave orElse keep

10 }
11

12 object BufferProtocol {
13 case class insert[T](value : T, replyTo : ActorRef) extends ProtocolMsg
14 case class remove(replyTo : ActorRef) extends ProtocolMsg
15 case class reply(o : ActorRef)
16 case class replyVal[T](v : T, o : ActorRef)
17 }
18

19 class Buffer[T] extends Actor with Chemical {
20 import BufferProtocol._
21 def continuation : ActorRef = self
22

23 def EMPTY = chemReact {
24 case insert(x : T, r) => chemBecome(FULL(x))
25 r ! reply(continuation)
26 }
27 def FULL(x : T) = chemReact {
28 case remove(r) => chemBecome(EMPTY)
29 r ! replyVal(x, continuation)
30 }
31 def receive = EMPTY
32 }

Listing 7. Scala Akka implementation of the one-place buer.

are kept in the chemical soup. A more ne-grained chemical semantics could use specic subtypes of ProtocolMsg to

better identify which of the saved messages have to be resent to self depending on the new actor state. However, at this

stage we avoid any consideration about typing.

Finally, observe that if the buer is used in a single-threaded way, that is at any time it has just one user that

alternates insert and remove operations, then there is no need to rene the default Akka semantics that concerns

message handling. In this case, we can avoid mixing-in the Chemical trait, remove the call to chemReact, and use

standard context.become instead of chemBecome method for switching behavior.

As a second example of TSOP in Akka, we illustrate the implementation of the full-duplex channel (Section 7.3).

The challenge of this example comes from the fact that, according to the Actor Model, an actor can only handle one

generate a visibility problem in the user code since such code can only indirectly access the Buffer object through an ActorRef reference. A more

precise account of the typing of this code is postponed to future work when studying the implementation of the associated behavioral type discipline.

Manuscript submitted to ACM

The Chemical Approach to Typestate-Oriented Programming 31

1 class BufferSubObj[T] extends Buffer[T] {
2 override def continuation : ActorRef = context.parent
3 }
4

5 object ChannelProtocol {
6 case class l_send[TL](value : TL, replyTo : ActorRef) extends ProtocolMsg
7 case class r_send[TR](value : TR, replyTo : ActorRef) extends ProtocolMsg
8 case class l_recv(replyTo : ActorRef) extends ProtocolMsg
9 case class r_recv(replyTo : ActorRef) extends ProtocolMsg

10 }
11

12 class Channel[TL, TR] extends Actor{
13 import ChannelProtocol._
14 import BufferProtocol._
15

16 val left = context.actorOf(Props(new BufferSubObj[TL]))
17 val right = context.actorOf(Props(new BufferSubObj[TR]))
18

19 def receive = {
20 case l_send(v : TL, r) => left forward insert(v, r)
21 case r_recv(r) => left forward remove(r)
22 case r_send(v : TR, r) => right forward insert(v, r)
23 case l_recv(r) => right forward remove(r)
24 }
25 }

Listing 8. The full-duplex channel in Scala Akka.

message at a time. Therefore, a naive implementation of the full-duplex channel along the same lines of the buer would

constraint its ability to handle concurrent operations requested by its users. In order to recover (at least partially) such

concurrent behavior of the full-duplex channel, we structure its implementation as the bottom-up and-composition

of two children actors, each corresponding to a one-place buer. The full-duplex channel object then only acts as a

forwarder that delegates incoming messages to the appropriate child buer. Listing 8 shows the code of the Channel

actor. Its behavior (lines 19–24) is xed and consists of forwarding incoming messages to its children of type Buffer

(lines 16–17). The and-states of the channel depicted in Figure 2 then correspond to the composition of the states of the

two children, each of them dealing with only part of the channel’s state, thus allowing the two buers to be concurrently

accessed by the two users.

The type of the two buers, BufferSubObj, specializes the chemical buer by overriding the denition of the

continuation reference (lines 1–3). Indeed, after sending a message to the channel, say l_send, a user of the channel

expects to receive a reply message carrying the channel’s continuation, that is the reference to the channel to be

used in the rest of the protocol. Since such a reply message is not sent back by the channel itself but by one of its

buers, the BufferSubObj object overrides the continuation eld (see Listing 7) to the parent actor. Also notice that

the ChannelProtocol object does not mention reply and replyVal messages, since these are sent directly by the

buers. If desired, additional encapsulation can be provided to hide BufferProtocol’s replies by means of additional

ChannelProtocol’s replies.

Manuscript submitted to ACM

32 Silvia Crafa and Luca Padovani

1 object FullDuplex extends App {
2 import ChannelProtocol._
3 import BufferProtocol._
4

5 val s = ActorSystem()
6 val channel = s.actorOf(Props(new Channel[Int, String]), "channel")
7 val leftUser = s.actorOf(Props(new Actor{
8 channel ! l_send(1, self)
9 def receive = runLeft(1)

10 def runLeft(v : Int) : Receive = {
11 case reply(o) => o ! l_recv(self)
12 case replyVal(x, o) => o ! l_send(v + 1, self)
13 context.become(runLeft(v + 1))
14 }
15 }))
16 val rightUser = s.actorOf(Props(new Actor{
17 channel ! r_send("*", self)
18 def receive = runRight("*")
19 def runRight(v : String) : Receive = {
20 case reply(o) => o ! r_recv(self)
21 case replyVal(x, o) => o ! r_send(v + "*", self)
22 context.become(runRight(v + "*"))
23 }
24 }))
25 Thread.sleep(2000)
26 s.shutdown()
27 }

Listing 9. Two actors using the full-duplex channel.

To conclude, Listing 9 shows the Akka version of the channel’s client code that we wrote both in the Join Calculus

(Section 7.3) and in Scala Joins (Listing 6). In line 6 a channel actor is created and shared among two user actors (lines

7–15 and 16–24) that exchange integers and strings in full-duplex mode. Each user starts by sending a message to the

channel actor reference (lines 8 and 17) and waits for a reply(o) message carrying the continuation reference o that

is used to send the next receive message (lines 11 and 20). According to the buer’s protocol, receive messages reply

with replyVal(x, o) messages, that are then handled by the peer actors by recursively unfolding their behavior (lines

12–13 and 21–22).

8.3 Type Checking and TSOP for Concurrent Objects

Imposing the typing discipline that we have described in Section 5 is more challenging to put into practice since this

requires the implementation of a substructural type system that makes use of unconventional behavioral connectives.

When using the Scala Joins library, the programmer can only rely on the native Scala type checker, which can verify that

programs comply with the interface of the objects they use, but not necessarily with their protocol. The compiler can

detect if a message of the wrong type is sent to an object or if a message is sent to an object that does not expose that

message in its interface, but it cannot verify whether messages are sent in a particular order, or if a program fulls the

Manuscript submitted to ACM

The Chemical Approach to Typestate-Oriented Programming 33

obligations with respect to the objects it uses. In the case of Scala Akka, the compiler provides even weaker guarantees:

actor behaviors are dened as partial functions of type Any => Unit so the compiler allows to send any type of message

to any actor. Basic typing support for TSOP with actors might be provided by the experimental module Akka-Typed that

is available in Scala Akka’s latest release 2.4. This module introduces typed actor references and static type checking to

precisely guarantee that only messages of the expected type are sent to typed actors. Interestingly, in order to account

for the possibility that actors dynamically change their behavior, the module puts forward a continuation-passing

programming discipline that is very similar to that we used in Join Calculus and in the examples above. However, no

linear property is checked by Akka-Typed type system.

Besides these approaches based on Scala, in more general terms we envision two ways of implementing the behavioral

typing discipline advocated in this paper: the rst one is to develop a TSOP-aware programming language, possibly

integrated with one or more host languages, in the style of Plaid (Aldrich et al. 2009; Sunshine et al. 2011); the second one

is to superimpose our type system to that of an existing programming language, augmented with a DSL for TSOP. The

rst approach would grant us complete control over the type checker and would make it possible to take full advantage

of typing information, for example to minimize the amount and nature of runtime checks concerning typestates. A

major downside is that the language would likely enjoy limited popularity. The second approach has been pursued in

Mungo (Kouzapas et al. 2016), a Java front-end that implements a behavioral type system for Java objects exposing

dynamically changing interfaces. The key idea in Mungo is to have a pre-processing phase that analyzes the code using

a typestate-sensitive type checker. If this phase is passed, the program is handed over to the standard Java compiler.

The stratication of this architecture could favor the integration of our framework with a wider range of programming

languages and development environments.

9 RELATEDWORK

Typestate-Oriented Programming

DeLine and Fähndrich (2004) represent class states as invariants describing predicates over elds. They support

verication in the presence of inheritance and depend on a classication of references as not aliased or possibly aliased.

This approach is rened by Bierho and Aldrich (2007) and by Aldrich et al. (2009) with a exible access permission

system that permits state changes even in the presence of aliasing. Shared access permissions have been investigated in

a concurrent framework by Stork et al. (2009, 2014), but their integration with the typestate mechanism has not been

considered in these works. In Plaid (Sunshine et al. 2011), the typestate of an object directly corresponds to its class,

and that class can change dynamically. Plaid supports the major state modeling features of Statecharts: state hierarchy,

or-states, and and-states, allowing states dimensions to change independently.

The foundations of Plaid and, in general, of TSOP are formally studied by Garcia et al. (2014) using a nominal

object-oriented language with mutable state and a native notion of typestate change. The language is also equipped

with a permission-based type system integrated with a gradual typing mechanism that combines static and dynamic

checking. Progress and type preservation properties are formally proved. Our type system for TSOP is structural instead

of nominal in the sense that object types are related by nding a correspondence between messages rather than between

class/state names (Denition 4.2). As a consequence, the eect of a state-changing operation on the interface of an

object is tracked implicitly by the type of exchanged continuations. Approaches based on nominal type systems, such

as those used by DeLine and Fähndrich (2004) and Garcia et al. (2014), use annotations such as [Closed » Open] that

mention the name of the state(s) of the object before and after the operation.

Manuscript submitted to ACM

34 Silvia Crafa and Luca Padovani

To the best of our knowledge, TSOP has been investigated in a concurrent setting only by Damiani et al. (2008) and

marginally by Gay et al. (2010). Damiani et al. (2008) develop a type and eect system for a Java-like language to trace

how the execution of a method changes the state of the receiver object. To forbid access to elds that are not available in

the current object’s state, only direct invocations of methods on this can change the state of the current object. Since

each class method is synchronized, two concurrent threads cannot simultaneously execute in the same object. Our

approach relaxes such restrictions. For instance, both the concurrent queue (Section 7.2) and the full-duplex channel

(Section 7.3) can be used in true concurrency by two processes, and each process is statically guaranteed to comply

with (its view of) the object protocol. Gay et al. (2010) study an integration of typestate and session types targeting

distributed objects. The focus of their work is on the modularization of sessions across dierent methods rather than

on typestates themselves. In fact, their work rests on the assumption that non-uniform objects (those whose interface

changes with time) must be used linearly.

Possibly Concurrent Objects with Dynamic Interfaces

In the actor model (Agha 1986; Hewitt et al. 1973) messages received by objects are handled by an internal single-threaded

control which can dynamically change its behaviour, thereby changing the object/actor’s state. In SCOOP (Nienaltowski

2007; West et al. 2015) each object is associated with a handler thread and the client threads wishing to send requests

to the object must explicitly register this desire by using the separate construct. Unlike actors, SCOOP’s threads

have more control over the order in which the receiver processes messages: the messages from a single separate

block are processed in order, without any interleaving. In addition, SCOOP allows pre/postcondition reasoning in

a concurrent setting: before executing a method, the executing processor waits until the precondition is satised

while each postcondition clause is evaluated individually and asynchronously. Pre/post conditions are reminiscent of

state-sensitive operations distinctive of TSOP.

Behavioral description of objects with dynamically changing interfaces, sometimes called active or non-uniform

objects, have been studied for more than two decades. Nierstrasz (1993) proposes nite-state automata for describing

object protocols and failure semantics for characterizing the subtyping relation. Type-theoretic approaches based on

similar notions have been subsequently studied for various object calculi and type languages, with varying degrees

of ensured properties (Najm et al. 1999; Puntigam 2001a,b; Puntigam and Peter 2001; Ravara and Vasconcelos 2000).

Drossopoulou et al. (2001) propose an approach to the static verication of programs using objects with dynamic

interfaces based on runtime object re-classication. Aside from the fact that none of these works is based on the

Join Calculus or addresses TSOP explicitly, all of these type systems are biased towards the description of operations

rather than state. In the approach of Najm et al. (1999) and in that of Ravara and Vasconcelos (2000), types are variants

of process algebras built on actions standing for method invocations. Choices and “parallel” composition roughly

correspond to our ⊕ and ⊗ operators, and sequential composition is used to express the dynamic change of an object’s

interface. We model this aspect using explicit continuation passing, along the lines of existing works on sessions (Dardha

et al. 2012; Gay and Vasconcelos 2010). By contrast, the type systems of Puntigam (2001a,b) and that of Puntigam and

Peter (2001) are based on the decoration of object types with tokens akin to typestates, in the sense that they can be

used to represent in an abstract form the internal state of object that aects the available operations. Tokens themselves

can be annotated in such a way so as to express obligations on the use of objects.

Castegren and Wrigstad (2016) propose a type system that integrates traits and capabilities for controlling data races

in concurrent objects. They introduce two connectives ⊕ and ⊗ whose semantics remotely resembles that of our own

Manuscript submitted to ACM

The Chemical Approach to Typestate-Oriented Programming 35

behavioral connectives. The purpose of such operators is to capture the potential interferences between dierent traits

of an object rather than to describe its intended usage protocol.

Session Types and Continuations

Object protocols are a particular instance of behavioral types, namely types that prescribe the valid sequence of

interactions that can be performed by, or may occur between, given processes. Session types, of which Hüttel et al.

(2016) provide a comprehensive survey, are probably the best known example of behavioral types. There are both

analogies and key dierences between object protocols and session types that are worth pointing out. An object protocol

describes the valid ways in which an object can be used by its clients, pretty much as a (binary) session type (Honda

1993) describes the valid sequences of operations that can be performed on a communication channel. However, a

binary session is always used to connect exactly two communicating processes, whereas a concurrent object may be

shared among, and simultaneously accessed by, several clients. For this reason, the notion of “duality”, which is key

in binary session type theories to relate the behaviors of the two peers of a session, makes no sense in our setting.

Multiparty sessions (Honda et al. 2016) generalize binary sessions to several interacting participants. Multiparty session

types dier from our object protocols in two main respects: rst, they provide a description of the allowed interactions

from a neutral viewpoint, whereas our protocols are always associated with a single object. Second, multiparty session

types are enforced by projecting the interactions concerning every single participant, so that the behavior of a single

participant with respect to its peers is always described in terms of a sequence of operations. Again, this contrasts with

object protocols where the order of method invocations is underspecied. In any case, in session type theories there is

always a close correspondence between the structure of the code that realizes a given protocol and the structure of

the protocol itself. In contrast, our approach allows for a form of behavioral polymorphism whereby the same shared

concurrent object can be given dierent (incompatible) protocols according to the intended usage (cf. the protocols for

the buer object in Section 7.1).

Without additional mechanisms in place, binary and multiparty session type theories can guarantee deadlock freedom

only within a single session. In presence of multiple, interleaved sessions, it is necessary either to make additional

assumptions on the network topology, which must be acyclic (Wadler 2014), or to use a richer type structure (Coppo

et al. 2016; Padovani 2014) to detect mutual dependencies between sessions. Hüttel et al. (2016) provide a survery of

these and related techniques, whose adaptation to our typing discipline is left for future work.

The use of explicit continuations for describing structured behaviors has been inspired by the encoding of session

types into linear channel types (Dardha et al. 2012). Our type system uses essentially the same technique, except that

continuations are objects instead of channels. Continuations are convenient also when types account for structured

protocols, to describe the eect of functions on channels (Gay and Vasconcelos 2010). Hu and Yoshida (2016) use

continuations for modeling session channels as a collection of Java classes, each corresponding to a specic state of the

protocol.

Types for the Join Calculus

Our language of behavioral types is an original contribution of this paper and is also the rst behavioral type theory for

the Objective Join Calculus. Other type systems for the Join Calculus have been formally investigated by Fournet et al.

(1997) and Patrignani et al. (2011) and for the Objective Join Calculus by Fournet et al. (2003a). Fournet et al. (1997)

discuss an extension of ML-style polymorphism to the Join Calculus and address the issues that arise when polymorphic

Manuscript submitted to ACM

36 Silvia Crafa and Luca Padovani

channels are joined in the same pattern; Patrignani et al. (2011) present a typing discipline to reason on the scope

within which channels are allowed to be used, so as enforce a form of encapsulation. These two works are based on

the original formulation of the Join Calculus (Fournet and Gonthier 1996), where a join denition introduces a bunch

of channel names all at once. In particular, objects are modeled indirectly as the set of the operations they support,

each operation being represented by a distinct channel. Since types are associated with channels, it is then dicult if

at all possible to describe and reason about the overall behavior of objects. The seminal paper on the Objective Join

Calculus by Fournet et al. (2003a) also introduces a type system for establishing basic safety and privacy properties. In

particular, it distinguishes between public and private messages, the latter ones being used for encoding the internal

state of objects. Once again, privacy information is associated with the single messages and object types solely specify

their interface, but not their protocol. In our type system, the separation between public and private messages stems

from the fact that distinct references to the same object may be given dierent types possibly combined using ⊗.
To the best of our knowledge, the work by Calvert and Mycroft (2012) is the only one that describes a form of analysis

on join patterns that takes object behaviors into account and therefore that is remotely related to our type system.

However, Calvert and Mycroft (2012) propose a control-ow analysis rather than a type system and their aim is to

optimize code generated by join denitions, for instance detecting that some channels (called signals) never escape the

scope of the object in which they are dened and that their associated message queue always contains (at most) one

message. Similar properties can also be inferred by inspecting the type associated with objects in our type system.

Parametric Properties

A dierent approach to checking that programs comply with the protocol of the objects they use is by means of

monitoring techniques for parametric properties (Jin et al. 2011; Meredith et al. 2010). Such techniques are based

on runtime verication, hence they cannot rule out protocol violations that do not manifest themselves during one

particular execution. However, they can be used for verifying rather complex properties involving non-regular protocols

(like the fact that a lock is released as many times as it is acquired) and multiple objects (like the fact that a collection

does not change while it is being iterated upon). Our type system can use linearity to capture some non-regular protocols.

For instance, it requires locks to be released as many times as they are acquired. However, it cannot express contextual

properties (like the fact that the lock is released within the same method that has acquired it), nor properties involving

multiple objects, since dierent objects have unrelated types.

10 CONCLUDING REMARKS

We have given evidence that the Objective Join Calculus is a natural model for TSOP. The choice of this particular

model allowed us (1) to approach TSOP in a challenging setting involving concurrency, object sharing/aliasing, and

partial/concurrent state updates; (2) to capture the characterizing facets of TSOP (state-sensitive operations, explicit

state change, runtime state querying, object protocols, multidimensional state, aliasing control) with the support of a

simple and elegant language of behavioral types equipped with intuitive semantics and subtyping (Section 4); (3) to

devise a type system (Section 5) that statically guarantees valuable properties (Section 6) and includes a characterization

of safe, concurrent state updates in terms of subtyping (see the side conditions of [t-reaction]).

In this paper we focused on the theoretical foundations of the chemical approach to TSOP and only glimpsed at the

key aspects that concern its practical realization (Section 8). While much of the current research eorts are directed to

Manuscript submitted to ACM

The Chemical Approach to Typestate-Oriented Programming 37

exploring the implementation of our approach, we report a non-exhaustive list of extensions and future developments

that we nd particularly relevant or intriguing.

In our type system, ne-grained aliasing control is realized by the ⊗ connective: an object of type (equivalent to)

𝑡 ⊗ 𝑠 can (actually, must) be used according to both 𝑡 and 𝑠 , by possibly parallel processes. Uncontrolled aliasing requires

using the exponential ∗. However, neither ⊗ nor ∗ express with sucient precision some forms of aliasing/sharing

of objects. It would be interesting to investigate whether and how our type language integrates with other forms of

aliasing control (Bierho and Aldrich 2007; Fähndrich and DeLine 2002; Stork et al. 2009).

Ecient compilation techniques for join patterns (Le Fessant and Maranget 1998) rely on atomic operations and

nite-state automata for tracking the presence messages with a given tag. Our type system paves the way to further

optimizations: for example, 𝑡lock says that, when the method release is invoked, the lock is for sure in state BUSY. In

other words, the reaction involving BUSY and release can be triggered without requiring an actual synchronization and

invocations to release compiled as ordinary method calls. The availability of precise information on the usage protocol

of objects can help reducing the amount of locking, simplifying the mechanisms (automata) that detect triggered

reactions, and improving the representation of objects with typestate.

We have designed and implemented a type checking algorithm for our type system (Crafa and Padovani 2017). The

algorithm relies on explicit type annotations for object denitions and infers the type of all the free occurrences of

object references. Full inference of object protocols has been investigated in a number of works (a detailed survey is

given by de Caso et al. (2013)), some of which use specication languages inspired to regular expressions (Henzinger

et al. 2005) as we do.

Acknowledgments. The authors are grateful to the anonymous referees for their insightful comments and suggestions.

REFERENCES
Gul Agha. 1986. Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press, Cambridge, MA, USA.

Jonathan Aldrich, Joshua Sunshine, Darpan Saini, and Zachary Sparks. 2009. Typestate-oriented programming. In Proceedings of the 24th ACM SIGPLAN
Conference Companion on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA’09). ACM, 1015–1022.

Nels E. Beckman, Duri Kim, and Jonathan Aldrich. 2011. An Empirical Study of Object Protocols in the Wild. In Proceedings of the 25th European Conference
on Object-Oriented Programming (ECOOP’11), Vol. LNCS 6813. 2–26.

Nick Benton, Luca Cardelli, and Cédric Fournet. 2004. Modern concurrency abstractions for C#. ACM Transactions on Programming Languages and
Systems 26, 5 (2004), 769–804.

Gérard Berry and Gérard Boudol. 1992. The Chemical Abstract Machine. Theoretical Compututer Science 96, 1 (1992), 217–248.
Kevin Bierho and Jonathan Aldrich. 2007. Modular typestate checking of aliased objects. In Proceedings of the 22nd Annual ACM SIGPLAN Conference on

Object-Oriented Programming Systems and Applications (OOPSLA’07). ACM, 301–320.

Janusz A. Brzozowski. 1964. Derivatives of Regular Expressions. Journal of ACM 11, 4 (1964), 481–494.

Peter Calvert and Alan Mycroft. 2012. Control Flow Analysis for the Join Calculus. In Proceedings of 19th International Symposium on Static Analysis
(SAS’12), Vol. LNCS 7460. Springer, 181–197.

Elias Castegren and Tobias Wrigstad. 2016. Reference Capabilities for Concurrency Control. In Proceedings of 30th European Conference on Object-Oriented
Programming (ECOOP’16), Vol. LIPIcs 56. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 5:1–5:26.

John Conway. 1971. Regular Algebra and Finite Machines. William Clowes & Sons Ltd.

Mario Coppo, Mariangiola Dezani-Ciancaglini, Nobuko Yoshida, and Luca Padovani. 2016. Global Progress for Dynamically Interleaved Multiparty

Sessions. Mathematical Structures in Computer Science 26 (2016), 238–302. Issue 2.
Bruno Courcelle. 1983. Fundamental Properties of Innite Trees. Theoretical Computer Science 25 (1983), 95–169.
Silvia Crafa and Luca Padovani. 2015. The Chemical Approach to Typestate-Oriented Programming. In Proceedings of the ACM International Conference

on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA’15), Vol. ACM SIGPLAN Notices 50. ACM, 917–934. Issue 10.

Silvia Crafa and Luca Padovani. 2017. CobaltBlue. (2017). Retrieved March 2017 from http://www.di.unito.it/~padovani/Software/CobaltBlue/index.html

Ferruccio Damiani, Elena Giachino, Paola Giannini, and Sophia Drossopoulou. 2008. A type safe state abstraction for coordination in Java-like languages.

Acta Informatica 45, 7-8 (2008), 479–536.

Manuscript submitted to ACM

http://www.di.unito.it/~padovani/Software/CobaltBlue/index.html

38 Silvia Crafa and Luca Padovani

Ornela Dardha, Elena Giachino, and Davide Sangiorgi. 2012. Session types revisited. In Proceedings of the 14th symposium on Principles and Practice of
Declarative Programming (PPDP’12). ACM, 139–150.

Guido de Caso, Víctor A. Braberman, Diego Garbervetsky, and Sebastián Uchitel. 2013. Enabledness-based program abstractions for behavior validation.

ACM Transactions on Software Engineering and Methodology 22, 3 (2013), 25:1–25:46.

Robert DeLine and Manuel Fähndrich. 2004. Typestates for Objects. In Proceedings of the 18th European Conference on Object-Oriented Programming
(ECOOP’04), Vol. LNCS 3086. Springer, 465–490.

Sophia Drossopoulou, Ferruccio Damiani, Mariangiola Dezani-Ciancaglini, and Paola Giannini. 2001. Fickle: Dynamic Object Re-classication. In

Proceedings of the 15th European Conference on Object-Oriented Programming (ECOOP’01), Vol. LNCS 2072. Springer, 130–149.
Manuel Fähndrich and Robert DeLine. 2002. Adoption and Focus: Practical Linear Types for Imperative Programming. In Proceedings of the ACM SIGPLAN

2002 conference on Programming Language Design and Implementation (PLDI’02). ACM, 13–24.

Cédric Fournet and Georges Gonthier. 1996. The Reexive CHAM and the Join-Calculus. In Proceedings of the 23rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL’96). ACM, 372–385.

Cédric Fournet and Georges Gonthier. 2000. The Join Calculus: A Language for Distributed Mobile Programming. In International Summer School on
Applied Semantics (APPSEM), Vol. LNCS 2395. Springer, 268–332.

Cédric Fournet, Cosimo Laneve, Luc Maranget, and Didier Rémy. 1997. Implicit Typing à la ML for the Join-Calculus. In Proceedings of the 8th International
Conference on Concurrency Theory (CONCUR’97), Vol. LNCS 1243. Springer, 196–212.

Cédric Fournet, Cosimo Laneve, Luc Maranget, and Didier Rémy. 2003a. Inheritance in the Join Calculus. Journal of Logic and Algebraic Programming 57,

1-2 (2003), 23–69.

Cédric Fournet, Fabrice Le Fessant, Luc Maranget, and Alan Schmitt. 2003b. JoCaml: A Language for Concurrent Distributed and Mobile Programming. In

Lecture Notes of the 4th International School on Advanced Functional Programming (AFP’03), Vol. LNCS 2638. Springer, 129–158.
Ronald Garcia, Éric Tanter, Roger Wol, and Jonathan Aldrich. 2014. Foundations of Typestate-Oriented Programming. ACM Transactions on Programming

Languages and Systems 36, 4 (2014), 12.
Simon J. Gay and Vasco Thudichum Vasconcelos. 2010. Linear Type Theory for Asynchronous Session Types. Journal of Functional Programming 20, 1

(2010), 19–50.

Simon J. Gay, Vasco Thudichum Vasconcelos, António Ravara, Nils Gesbert, and Alexandre Z. Caldeira. 2010. Modular Session Types for Distributed

Object-Oriented Programming. In Proceedings of the 37th annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’10).
ACM, 299–312.

Philipp Haller and Tom Van Cutsem. 2008. Implementing Joins Using Extensible Pattern Matching. In Proceedings of the 10th International Conference on
Coordination Models and Languages (COORDINATION’08), Vol. LNCS 5052. Springer, 135–152.

David Harel. 1987. Statecharts: a visual formalism for complex systems. Science of Computer Programming 8, 3 (1987), 231–274.

Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. 2005. Permissive Interfaces. In Proceedings of the 10th European Software Engineering Conference
held jointly with the 13th ACM SIGSOFT International Symposium on Foundations of Software Engineering (ESEC/FSE’05). ACM, 31–40.

Carl Hewitt, Peter Bishop, and Richard Steiger. 1973. A Universal Modular ACTOR Formalism for Articial Intelligence. In Proceedings of the 3rd
International Joint Conference on Articial Intelligence (IJCAI’73). William Kaufmann, 235–245.

Kohei Honda. 1993. Types for Dyadic Interaction. In Proceedings of the 4th International Conference on Concurrency Theory (CONCUR’93), Vol. LNCS 715.
Springer, 509–523.

Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2016. Multiparty Asynchronous Session Types. Journal of ACM 63, 1 (2016), 9.

Raymond Hu and Nobuko Yoshida. 2016. Hybrid Session Verication through Endpoint API Generation. In Proceedings of the 19th International Conference
on Fundamental Approaches to Software Engineering (FASE’16), Vol. LNCS 9633. Springer, 401–418.

Hans Hüttel, Ivan Lanese, Vasco T. Vasconcelos, Luís Caires, Marco Carbone, Pierre-Malo Deniélou, Dimitris Mostrous, Luca Padovani, António Ravara,

Emilio Tuosto, Hugo Torres Vieira, and Gianluigi Zavattaro. 2016. Foundations of Session Types and Behavioural Contracts. Comput. Surveys 49, 1
(2016), 3:1–3:36.

G. Stewart Von Itzstein and Mark Jasiunas. 2003. On Implementing High Level Concurrency in Java. In Proceedings of the 8th Asia-Pacic Conference on
Advances in Computer Systems Architecture (ACSAC’03), Vol. LNCS 2823. Springer, 151–165.

Dongyun Jin, Patrick O’Neil Meredith, Dennis Grith, and Grigore Roşu. 2011. Garbage Collection for Monitoring Parametric Properties. In Proceedings
of the 32nd ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI’11). ACM, 415–424.

Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner. 1999. Linearity and the Pi-Calculus. ACM Transactions on Programming Languages and
Systems 21, 5 (1999), 914–947.

Dimitrios Kouzapas, Ornela Dardha, Roly Perera, and Simon J. Gay. 2016. Typechecking protocols with Mungo and StMungo. In Proceedings of the 18th
International Symposium on Principles and Practice of Declarative Programming (PPDP’16). ACM, 146–159.

Fabrice Le Fessant and Luc Maranget. 1998. Compiling Join-Patterns. Electronic Notes in Theoretical Computer Science 16, 3 (1998), 205–224.
Patrick O’Neil Meredith, Dongyun Jin, Feng Chen, and Grigore Roşu. 2010. Ecient monitoring of parametric context-free patterns. Automated Software

Engineering 17, 2 (2010), 149–180.

Maged M. Michael and Michael L. Scott. 1996. Simple, Fast, and Practical Non-Blocking and Blocking Concurrent Queue Algorithms. In Proceedings of the
15th Annual ACM Symposium on Principles of Distributed Computing (PODC’96). ACM, 267–275.

Manuscript submitted to ACM

The Chemical Approach to Typestate-Oriented Programming 39

Microsoft Research. 2004. C𝜔 . (2004). Retrieved March 2017 from https://www.microsoft.com/en-us/research/project/comega/

Elie Najm, Abdelkrim Nimour, and Jean-Bernard Stefani. 1999. Guaranteeing Liveness in an Object Calculus through Behavioural Typing. In Proceedings
of the Joint International Conference on Formal Description Techniques for Distributed Systems and Communication Protocols (FORTE’99) and Protocol
Specication, Testing and Verication (PSTV’99), Vol. 156. Kluwer, 203–221.

Piotr Nienaltowski. 2007. Practical Framework for Contract-Based Concurrent Object-Oriented Programming. Ph.D. Dissertation. ETH Zurich.

Oscar Nierstrasz. 1993. Regular Types for Active Objects. In Proceedings of the 8th annual conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA’93). ACM, 1–15.

Luca Padovani. 2014. Deadlock and Lock Freedom in the Linear 𝜋 -Calculus. In Proceedings of the Joint 23rd EACSL Annual Conference on Computer Science
Logic and 29th Annual ACM/IEEE Symposium on Logic In Computer Science (CSL-LICS’14). ACM, 72:1–72:10.

Marco Patrignani, Dave Clarke, and Davide Sangiorgi. 2011. Ownership Types for the Join Calculus. In Proceedings of the Joint 13th IFIP WG 6.1 International
Conference FMOODS and 30th IFIP WG 6.1 International Conference FORTE (FMOODS/FORTE’11), Vol. LNCS 6722. Springer, 289–303.

Hubert Plociniczak and Susan Eisenbach. 2010. JErlang: Erlang with Joins. In Proceedings of the 12th International Conference on Coordination Models and
Languages (COORDINATION’10), Vol. LNCS 6116. Springer, 61–75.

Franz Puntigam. 2001a. State Inference for Dynamically Changing Interfaces. Computer Languages 27, 4 (2001), 163–202.
Franz Puntigam. 2001b. Strong Types for Coordinating Active Objects. Concurrency and Computation: Practice and Experience 13, 4 (2001), 293–326.
Franz Puntigam and Christof Peter. 2001. Types for Active Objects with Static Deadlock Prevention. Fundamenta Informaticae 48, 4 (2001), 315–341.
António Ravara and Vasco T. Vasconcelos. 2000. Typing Non-uniform Concurrent Objects. In Proceedings of the 11th International Conference on

Concurrency Theory (CONCUR’00), Vol. LNCS 1877. Springer, 474–488.
Claudio V. Russo. 2007. The Joins Concurrency Library. In Proceedings of the 9th International Symposium on Practical Aspects of Declarative Languages

(PADL’07), Vol. LNCS 4354. Springer, 260–274.
Claudio V. Russo. 2008. Join Patterns for Visual Basic. In Proceedings of the 23rd ACM SIGPLAN conference on Object-Oriented Programming Systems

Languages and Applications (OOPSLA’08). ACM, 53–72.

Davide Sangiorgi and David Walker. 2001. The Pi-Calculus - A Theory of Mobile Processes. Cambridge University Press.

Sven Stork, Paulo Marques, and Jonathan Aldrich. 2009. Concurrency by default: using permissions to express dataow in stateful programs. In Proceedings
of the 24th ACM SIGPLAN conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA’09). ACM, 933–940.

Sven Stork, Karl Naden, Joshua Sunshine, Manuel Mohr, Alcides Fonseca, Paulo Marques, and Jonathan Aldrich. 2014. Æminium: A Permission-Based

Concurrent-by-Default Programming Language Approach. ACM Transactions on Programming Languages and Systems 36, 1 (2014), 2:1–2:42.
Robert E. Strom and Shaula Yemini. 1986. Typestate: A Programming Language Concept for Enhancing Software Reliability. IEEE Transactions on Software

Engineering 12, 1 (1986), 157–171.

Joshua Sunshine, Karl Naden, Sven Stork, Jonathan Aldrich, and Éric Tanter. 2011. First-Class State Change in Plaid. In Proceedings of the 26th ACM
international conference on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA’11). ACM, 713–732.

Aaron Joseph Turon and Claudio V. Russo. 2011. Scalable join patterns. In Proceedings of the 8th annual conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA’93). ACM, 575–594.

Philip Wadler. 2014. Propositions as sessions. Journal of Functional Programming 24, 2-3 (2014), 384–418.

Scott West, Sebastian Nanz, and Bertrand Meyer. 2015. Ecient and reasonable object-oriented concurrency. In Proceedings of the 20th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP’15). ACM, 273–274.

A PROOFS

In this appendix, it is convenient to generalize the denition of substitution given in the main body of the paper. In

particular, a substitution 𝜎 is a map from names to object names that diers from the identity for a nite subset of

variables. We write dom(𝜎) for the (nite) set of variables for which 𝜎 is not the identity.

A.1 Properties of Subtyping

Proposition A.1. The following properties hold:

(1) If 𝑇 ⊗ M ∈ J𝑡K and M′ = M, then 𝑇 ∈ J𝑡 [M′]K.
(2) If 𝑇 ∈ J𝑡 [M]K, then there exists M′ such that M′ = M and 𝑇 ⊗ M′ ∈ J𝑡K.

Proof. Both items are proved by an easy induction on 𝑡 . �

Proposition A.2. If 𝑡 6 𝑠 and 𝑇 = 𝑆 , then 𝑡 [𝑇] 6 𝑠 [𝑆].
Manuscript submitted to ACM

https://www.microsoft.com/en-us/research/project/comega/

40 Silvia Crafa and Luca Padovani

Proof. It is straightforward to see that Denition 5.4 is only aected by the signature of a molecule type and not

by the type of the message arguments. Therefore, we can assume 𝑇 = 𝑆 without loss of generality. We prove the

result when 𝑇 is a single message type M, the general statement following by a simple induction on the size of the

molecule type 𝑇 . Let
⊗

𝑖∈[1,𝑛] m𝑖(𝑠𝑖) ∈ J𝑠 [M]K. From Proposition A.1(2) we deduce that there exist m0 and 𝑠0 such that

{m0} = M and

⊗
𝑖∈[0,𝑛] m𝑖(𝑠𝑖) ∈ J𝑠K. From the hypothesis 𝑡 6 𝑠 we know that there exists a family of 𝑡𝑖 such that⊗

𝑖∈[0,𝑛] m𝑖(𝑡𝑖) ∈ J𝑡K and 𝑠𝑖 6 𝑡𝑖 for every 𝑖 ∈ [0, 𝑛]. We conclude

⊗
𝑖∈[1,𝑛] m𝑖(𝑡𝑖) ∈ J𝑡 [M]K by Proposition A.1(1). �

Proposition A.3. If 𝑇1 ⊗ 𝑇2 6 𝑆1 ⊗ 𝑆2 and 𝑇𝑖 = 𝑆𝑖 for 𝑖 = 1, 2 and 𝑇1 ∩𝑇2 = ∅, then 𝑇𝑖 6 𝑆𝑖 for every 𝑖 = 1, 2.

Proof. Easy application of Denition 4.2. �

Lemma A.4. If 𝑡 ↓ 𝑇 and 𝑡 6 𝑠 ⊗ 𝑆 and usable(𝑠) and 𝑇 = 𝑆 , then 𝑇 6 𝑆 .

Proof. Let 𝑅 ∈ J𝑠K. Such 𝑅 exists from the hypothesis usable(𝑠). Then 𝑅 ⊗ 𝑆 ∈ J𝑠 ⊗ 𝑆K. From the hypothesis

𝑡 6 𝑠 ⊗ 𝑆 we deduce that there exist 𝑅′ and 𝑇 ′
such that 𝑅′ ⊗ 𝑇 ′ ∈ J𝑡K and 𝑅′ ⊗ 𝑇 ′ 6 𝑅 ⊗ 𝑆 with 𝑅 ⊗ 𝑆 = 𝑅′ ⊗ 𝑇 ′

.

Let be 𝑅 = M1 ⊗ · · · ⊗ M𝑘 and 𝑆 = M𝑘+1 ⊗ · · · ⊗ M𝑛 . From 𝑅′ ⊗ 𝑇 ′ 6 𝑅 ⊗ 𝑆 and 𝑅 ⊗ 𝑆 = 𝑅′ ⊗ 𝑇 ′
, we know that

𝑅′ ⊗ 𝑇 ′ = M′
1
⊗ · · · ⊗ M′𝑛 where M′

𝑖
6 M𝑖 for every 𝑖 ∈ [1, 𝑛]. Now, from the hypotheses 𝑇 = 𝑆 and 𝑡 ↓ 𝑇 , we deduce

that 𝑇 ′ = 𝑇 and 𝑅′ = M′
1
⊗ · · · ⊗ M′

𝑘
and 𝑇 = M′

𝑘+1 ⊗ · · · ⊗ M′𝑛 . Therefore we conclude 𝑇 6 𝑆 from M′
𝑖
6 M𝑖 for every

𝑖 ∈ [𝑘 + 1, 𝑛]. �

A.2 Properties of Environment Subtyping and Combinations

Proposition A.5. The following properties hold:

(1) dom(Γ ⊗ ∆) = dom(Γ) ∪ dom(∆);
(2) If Γ1 6 ∆1 and Γ2 6 ∆2, then Γ1 ⊗ Γ2 6 ∆1 ⊗ ∆2.

Proof. Item (1) follows easily from Denition 5.1. We prove item (2) showing that ∆1 ⊗ ∆2 and Γ1 ⊗ Γ2 satisfy the

conditions of Denition 5.2.

Concerning condition (1) of Denition 5.2, from the hypotheses Γ𝑖 6 ∆𝑖 we deduce dom(∆𝑖) ⊆ dom(Γ𝑖) for every
𝑖 = 1, 2. Therefore, from item (1) we deduce dom(∆1⊗∆2) = dom(∆1)∪dom(∆2) ⊆ dom(Γ1)∪dom(Γ2) = dom(Γ1⊗Γ2).

Concerning condition (2) of Denition 5.2, consider𝑢 ∈ dom(∆1⊗∆2). We have to consider several cases, but we only

discuss one, the others being similar or simpler. Suppose 𝑢 ∈ (dom(∆1) \ dom(∆2)) ∩ dom(Γ2). From the hypotheses

Γ𝑖 6 ∆𝑖 we deduce Γ1 (𝑢) 6 ∆1 (𝑢) and nl(Γ2 (𝑢)), that is Γ2 (𝑢) 6 1. We conclude (Γ1 ⊗ Γ2) (𝑢) = Γ1 (𝑢) ⊗ Γ2 (𝑢) 6

∆1 (𝑢) ⊗ 1 ' ∆1 (𝑢) = (∆1 ⊗ ∆2) (𝑢) using the pre-congruence of 6.

Concerning condition (3) of Denition 5.2, consider𝑢 ∈ dom(Γ1⊗Γ2)\dom(∆1⊗∆2), that is𝑢 ∈ (dom(Γ1)∪dom(Γ2))\
(dom(∆1)∪dom(∆2)). We discuss only one case, the others being analogous. Suppose𝑢 ∈ dom(Γ1) \dom(Γ2). From the

hypothesis Γ1 6 ∆1 we deduce nl(Γ1 (𝑢)) and we conclude nl((Γ1 ⊗ Γ2) (𝑢)) by observing that (Γ1 ⊗ Γ2) (𝑢) = Γ1 (𝑢). �

Denition A.6 (environment substitution). The application of 𝜎 to the environment Γ is the environment 𝜎Γ dened

by the following environment combination (cf. Dention 5.1): 𝜎Γ
def

=
⊗

𝑢∈dom(Γ) 𝜎 (𝑢) : Γ (𝑢).

Proposition A.7. The following properties hold:

(1) dom(𝜎Γ) = 𝜎 (dom(Γ));
(2) 𝜎 (Γ ⊗ ∆) = 𝜎Γ ⊗ 𝜎∆;
(3) Γ 6 ∆ implies 𝜎Γ 6 𝜎∆;

Manuscript submitted to ACM

The Chemical Approach to Typestate-Oriented Programming 41

Proof. Items (1) and (2) follow easily from Denition 5.1 and Denition A.6. We prove item (3) showing that 𝜎Γ

and 𝜎∆ satisfy the conditions of Denition 5.2.

Concerning condition (1), we observe that dom(𝜎∆) = 𝜎 (dom(∆)) ⊆ 𝜎 (dom(Γ)) = dom(𝜎Γ) using item (1).

Concerning condition (3), consider𝑢 ∈ dom(𝜎Γ)\dom(𝜎∆). FromDenitionA.6we have (𝜎Γ) (𝑢) =
⊗

𝑣∈dom(Γ),𝜎 (𝑣)=𝑢 Γ (𝑣).
From the hypothesis 𝑢 ∉ dom(𝜎∆) we deduce that for every 𝑣 ∈ dom(Γ) such that 𝜎 (𝑣) = 𝑢 we have 𝑣 ∉ dom(∆).
Therefore, from the hypothesis Γ 6 ∆, we deduce nl(Γ (𝑣)) for every 𝑣 ∈ dom(Γ) such that 𝜎 (𝑣) = 𝑢. That is to say,

Γ (𝑣) 6 1 for every 𝑣 ∈ dom(Γ) such that 𝜎 (𝑣) = 𝑢. Now we derive (𝜎Γ) (𝑢) 6 1, namely nl((𝜎Γ) (𝑢)) which is what

we wanted to prove.

Concerning condition (2), consider 𝑢 ∈ dom(𝜎∆) ⊆ dom(𝜎Γ). Now we derive

(𝜎Γ) (𝑢) =
⊗

𝑣∈dom(Γ),𝜎 (𝑣)=𝑢 Γ (𝑣) by Denition A.6

=
⊗

𝑣∈dom(Γ)\dom(∆),𝜎 (𝑣)=𝑢 Γ (𝑣) ⊗
⊗

𝑣∈dom(∆),𝜎 (𝑣)=𝑢 Γ (𝑣) since dom(∆) ⊆ dom(Γ)
6

⊗
𝑣∈dom(∆),𝜎 (𝑣)=𝑢 Γ (𝑣) proof of condition (3)

6
⊗

𝑣∈dom(∆),𝜎 (𝑣)=𝑢 ∆(𝑣) by hypothesis Γ 6 ∆

= (𝜎∆) (𝑢) by Denition A.6

which concludes the proof. �

A.3 Proof of Theorem 6.1 (Subject Reduction)

Lemma A.8. If ` D P and D P ⇀ D ′ P ′, then ` D ′ P ′.

Proof. We reason by cases on the heating rule being applied. We omit the discussion of rule [join] since it is similar

to that of [par].

[null] Then D ′ = D and P = P ′, null. From [t-solution] we deduce that there exist Γ and ∆ such that Γ 6 ∆ and

Γ ` D and ∆ ` P. From [t-processes] we deduce that there exist ∆1 and ∆2 such that ∆ = ∆1 ⊗ ∆2 and ∆1 ` P ′
and

∆2 ` null. From [t-sub] and [t-null] we deduce nl(∆2), hence ∆ 6 ∆1. We conclude by transitivity of 6 with an

application of [t-solution].

[def] ThenD ′ = D, 𝑎 = 𝐶 and P = P ′′, def 𝑎 = 𝐶 in 𝑃 and P ′ = P ′′, 𝑃 and 𝑎 ∉ fn(P ′′). From [t-solution] we deduce

that there exist Γ and ∆ such that Γ 6 ∆ and Γ ` D and ∆ ` P. From [t-processes] we deduce that there exist ∆1 and

∆2 such that ∆ = ∆1 ⊗ ∆2 and ∆1 ` P ′′
and ∆2 ` def 𝑎 = 𝐶 in 𝑃 . From [t-sub] and [t-object] we deduce that there

exists 𝑡 and ∆′
2
such that ∆2 6 ∆′

2
and 𝑎 : 𝑡 ` 𝐶 and ∆′

2
, 𝑎 : 𝑡 ` 𝑃 . Using the hypothesis 𝑎 ∉ fn(P ′′) we can assume,

without loss of generality, that 𝑎 ∉ dom(Γ). Let Γ ′ def

= Γ , 𝑎 : 𝑡 and ∆′ def

= ∆, 𝑎 : 𝑡 and observe that Γ ′ 6 ∆′
. We conclude

` D ′ P ′
.

[par] Then D ′ = D and P = P ′′, 𝑃1 | 𝑃2 and P ′ = P ′′, 𝑃1, 𝑃2. From [t-solution] we deduce that there exist Γ

and ∆ such that Γ 6 ∆ and Γ ` D and ∆ ` P. From [t-processes] we deduce that there exist ∆1 and ∆2 such that

∆ = ∆1 ⊗ ∆2 and ∆1 ` P ′′
and ∆2 ` 𝑃1 | 𝑃2. From [t-sub] and [t-par] we deduce that there exist ∆21 and ∆22 such that

∆2 6 ∆21 ⊗ ∆22 and ∆2𝑖 ` 𝑃𝑖 for 𝑖 = 1, 2. We conclude with an application of [t-processes] and one of [t-solution]. �

Lemma A.9. If ` D P and D P ⇁ D ′ P ′, then ` D ′ P ′.

Proof. We reason by cases on the cooling rule being applied. We omit the discussion of rule [join] since it is similar

to that of [par].

Manuscript submitted to ACM

42 Silvia Crafa and Luca Padovani

[null] Then D ′ = D and P ′ = P, null. The result is immediate as null is well typed in the empty environment.

[def] ThenD = D ′, 𝑎 = 𝐶 and P = P ′′, 𝑃 and P ′ = P ′′, def 𝑎 = 𝐶 in 𝑃 and 𝑎 ∉ fn(P ′′). From [t-solution] we deduce

that there exist Γ and ∆ such that Γ 6 ∆ and Γ ` D and ∆ ` P. From [t-definitions] we deduce that Γ = Γ ′, 𝑎 : 𝑡 and

𝑎 : 𝑡 ` 𝐶 . From [t-processes] we deduce that there exist ∆1 and ∆2 such that ∆ = ∆1 ⊗ ∆2 and ∆1 ` P ′′
and ∆2 ` 𝑃 .

From the hypothesis 𝑎 ∉ fn(P ′′) we can assume, without loss of generality, that 𝑎 ∈ dom(∆2) \ dom(∆1). That is,
∆2 = ∆′

2
, 𝑎 : 𝑠 where 𝑡 6 𝑠 . We conclude by [t-sub] and [t-object].

[par] Then D = D ′
and P = P ′′, 𝑃1, 𝑃2 and P ′ = P ′′, 𝑃1 | 𝑃2. From [t-solution] we deduce that there exist Γ and ∆

such that Γ 6 ∆ and Γ ` D and ∆ ` P. From [t-processes] we deduce that there exist ∆1, ∆2, and ∆3 such that ∆1 ` P ′′

and ∆2 ` 𝑃1 and ∆3 ` 𝑃2. By [t-par] we obtain ∆2 ⊗ ∆3 ` 𝑃1 | 𝑃2. We conclude with one application of [t-processes]

and one of [t-solution]. �

Lemma A.10. If Γ ` 𝐽 :: 𝑇 and ∆ ` 𝜎 𝐽 :: 𝑆 and 𝑇 6 𝑆 , then ∆ 6 𝜎Γ .

Proof. By induction on 𝐽 and by cases on its shape.

𝐽 = m(𝑥) Then Γ = {𝑥𝑖 : 𝑡𝑖 }𝑖∈[1,𝑛] and 𝑇 = m(𝑡1, . . . , 𝑡𝑛) and 𝜎 𝐽 = m(𝑎1, . . . , 𝑎𝑛) and 𝑆 = m(𝑠1, . . . , 𝑠𝑛) and ∆ =⊗
𝑖∈[1,𝑛] 𝑎𝑖 : 𝑠𝑖 . From the hypothesis 𝑇 6 𝑆 we deduce 𝑠𝑖 6 𝑡𝑖 for every 𝑖 ∈ [1, 𝑛]. To prove ∆ 6 𝜎Γ , observe that

dom(𝜎Γ) = dom(∆) and consider 𝑎 ∈ dom(∆). We deduce:

∆(𝑎) =
⊗

𝑖∈[1,𝑛],𝑎𝑖=𝑎 𝑠𝑖 by denition of ∆

=
⊗

𝑖∈[1,𝑛],𝑎𝑖=𝑎 𝑡𝑖 by pre-congruence of 6

=
⊗

𝑖∈[1,𝑛],𝜎 (𝑥𝑖)=𝑎 𝑡𝑖 by denition of 𝜎

= (𝜎Γ) (𝑎) by Denition A.6

𝐽 = 𝐽1 | 𝐽2 Then Γ = Γ1, Γ2 and𝑇 = 𝑇1 ⊗𝑇2 and ∆ = ∆1 ⊗∆2 and 𝑆 = 𝑆1 ⊗ 𝑆2 and Γ𝑖 ` 𝐽𝑖 :: 𝑇𝑖 and ∆𝑖 ` 𝜎 𝐽𝑖 :: 𝑆𝑖 for every
𝑖 = 1, 2. Since 𝑇1 and 𝑇2 have disjoint signatures, and so do 𝑆1 and 𝑆2, from the hypothesis 𝑇 6 𝑆 and Proposition A.3

we deduce 𝑇𝑖 6 𝑆𝑖 for every 𝑖 = 1, 2. By induction hypothesis we deduce that ∆𝑖 6 𝜎Γ𝑖 for every 𝑖 = 1, 2. We conclude

∆ = ∆1 ⊗ ∆2 6 𝜎Γ1 ⊗ 𝜎Γ2 = 𝜎 (Γ1 ⊗ Γ2) = 𝜎 (Γ1, Γ2) = 𝜎Γ by Proposition A.5(2) and Proposition A.7(2). �

Lemma A.11. If Γ ` 𝑀 :: 𝑇 , then 𝜎Γ ` 𝜎𝑀 :: 𝑇 .

Proof. By induction on the derivation of Γ ` 𝑀 :: 𝑇 and by cases on the last rule applied.

[t-msg-m] Then 𝑀 = m(𝑢1, . . . , 𝑢𝑛) and Γ =
⊗

𝑖∈[1,𝑛] 𝑢𝑖 : 𝑡𝑖 and usable(𝑡1, . . . , 𝑡𝑛). By Proposition A.7(2) we deduce

𝜎Γ =
⊗

𝑖∈[1,𝑛] 𝜎 (𝑢𝑖) : 𝑡𝑖 . We conclude with one application of [t-msg-m] observing that 𝜎𝑀 = m(𝜎 (𝑢1), . . . , 𝜎 (𝑢𝑛)).

[t-comp-m] Then 𝑀 = 𝑀1 |𝑀2 and Γ = Γ1 ⊗ Γ2 and 𝑇 = 𝑇1 ⊗ 𝑇2 and Γ𝑖 ` 𝑀𝑖 :: 𝑇𝑖 for every 𝑖 = 1, 2. By induction

hypothesis we deduce 𝜎Γ𝑖 ` 𝜎𝑀𝑖 :: 𝑇𝑖 . We conclude with one application of [t-comp-m] observing that 𝜎𝑀 = 𝜎𝑀1 |𝜎𝑀2

and by Proposition A.7(2). �

Lemma A.12. If Γ ` 𝑃 , then 𝜎Γ ` 𝜎𝑃 .

Proof. By induction on the derivation of Γ ` 𝑃 and by cases on the last rule applied. We omit the discussion of

[t-null] which is trivial.

Manuscript submitted to ACM

The Chemical Approach to Typestate-Oriented Programming 43

[t-send] Then 𝑃 = 𝑢.𝑀 and Γ = ∆ ⊗ 𝑢 : 𝑇 and ∆ ` 𝑀 :: 𝑇 . By Lemma A.11 we deduce 𝜎∆ ` 𝜎𝑀 :: 𝑇 . By [t-send]

we derive 𝜎∆ ⊗ 𝜎 (𝑢) : 𝑇 ` 𝜎 (𝑢).𝜎𝑀 . We conclude by observing that 𝜎Γ = 𝜎 (∆ ⊗ 𝑢 : 𝑇) = 𝜎∆ ⊗ 𝜎 (𝑢) : 𝑇 by

Proposition A.7(2).

[t-par] Then 𝑃 = 𝑃1 | 𝑃2 and Γ = Γ1 ⊗ Γ2 and Γ𝑖 ` 𝑃𝑖 for every 𝑖 = 1, 2. By induction hypothesis we deduce 𝜎Γ𝑖 ` 𝜎𝑃𝑖
for every 𝑖 = 1, 2. We conclude by Proposition A.7(2) and one application of [t-par], observing that 𝜎𝑃 = 𝜎𝑃1 |𝜎𝑃2.

[t-object] Then 𝑃 = def 𝑎 = 𝐶 in𝑄 and there exists 𝑡 such that 𝑎 : 𝑡 ` 𝐶 and Γ , 𝑎 : 𝑡 ` 𝑄 . Without loss of generality we

may assume that no variable in dom(Γ) is mapped to 𝑎 by 𝜎 . If this is not the case, we can suitably rename 𝑎 in 𝑃 where

it is bound. Now we have 𝜎 (Γ , 𝑎 : 𝑡) = 𝜎Γ , 𝑎 : 𝑡 . By induction hypothesis we deduce 𝜎 (Γ , 𝑎 : 𝑡) ` 𝜎𝑄 . We conclude with

one application of [t-object].

[t-sub] Then there exists ∆ such that Γ 6 ∆ and ∆ ` 𝑃 . By induction hypothesis we deduce 𝜎∆ ` 𝜎𝑃 . We conclude by

Proposition A.7(3) and one application of [t-sub]. �

Lemma A.13. If ` D P and D P → D P ′, then ` D P ′.

Proof. We have D = D ′, 𝑎 = {𝐽𝑖 ⊲ 𝑃𝑖 }𝑖∈𝐼 and P = P ′′, 𝑎.𝜎 𝐽𝑘 and P ′ = P ′′, 𝜎𝑃𝑘 for some 𝑘 ∈ 𝐼 . From [t-solution]

we deduce that there exist Γ and ∆ such that Γ 6 ∆ and Γ ` D and ∆ ` P. From [t-definitions] we deduce that there

exist 𝑡 such that Γ (𝑎) = 𝑡 and 𝑎 : 𝑡 ` {𝐽𝑖 ⊲ 𝑃𝑖 }𝑖∈𝐼 . From [t-class] and [t-reaction] we deduce that there exist Γ0, 𝑇 , and

𝑠 such that (1) Γ0 ` 𝐽𝑘 :: 𝑇 and (2) Γ0, 𝑎 : 𝑠 ` 𝑃𝑘 and furthermore (3) 𝑡 ↓ 𝑇 , and (4) 𝑡 6 𝑡 [𝑇] ⊗ 𝑠 . From [t-processes] we

deduce that there exist ∆1, ∆2, 𝑡1, and 𝑡2 such that 𝑡 6 𝑡1 ⊗ 𝑡2 and ∆ = (∆1, 𝑎 : 𝑡1) ⊗ (∆2, 𝑎 : 𝑡2) and ∆1, 𝑎 : 𝑡1 ` P ′′
and

∆2, 𝑎 : 𝑡2 ` 𝑎.𝜎 𝐽𝑘 (if 𝑎 ∉ fn(P ′′) we can take 𝑡1 = 1). From [t-sub] and [t-send] we deduce that there exist ∆′
2
, 𝑡3, and

𝑆 such that ∆2 6 ∆′
2
and 𝑡2 6 𝑡3 ⊗ 𝑆 and (5) ∆′

2
, 𝑎 : 𝑡3 ` 𝜎 𝐽𝑘 :: 𝑆 . Overall, we have (6) 𝑡 6 𝑡1 ⊗ 𝑡3 ⊗ 𝑆 . Furthermore, it

must be the case that 𝑇 = 𝑆 for 𝑇 and 𝑆 are molecule types for a pattern and a molecule having the same signature.

From (3), (6) and usable(𝑡1 ⊗ 𝑡3), which comes by the following Lemma A.15, by an application of Lemma A.4 we

deduce 𝑇 6 𝑆 . From (1), (5), and Lemma A.10, we deduce that ∆′
2
, 𝑎 : 𝑡3 6 𝜎Γ0. From Proposition A.7(3) we derive

∆′
2
, 𝑎 : 𝑡3 ⊗ 𝑠 6 𝜎Γ0 ⊗ 𝑎 : 𝑠 . From (2), Lemma A.12, and one application of [t-sub] we derive ∆2, 𝑎 : 𝑡3 ⊗ 𝑠 ` 𝜎𝑃𝑘 and

from this we can further derive (∆1 ⊗ ∆2), 𝑎 : 𝑡1 ⊗ 𝑡3 ⊗ 𝑠 ` P ′′, 𝜎𝑃𝑘 with an application of [t-processes]. From (6) and

Proposition A.2 we deduce 𝑡 [𝑇] 6 (𝑡1 ⊗ 𝑡3 ⊗ 𝑆) [𝑆] = ((𝑡1 ⊗ 𝑡3) [𝑆] ⊗ 𝑆) ⊕ (𝑡1 ⊗ 𝑡3 ⊗ 𝑆 [𝑆]) 6 𝑡1 ⊗ 𝑡3. We conclude

𝑡 6 𝑡1 ⊗ 𝑡3 ⊗ 𝑠 using (4) and pre-congruence of 6. �

Theorem 6.1 is now obtained as the combination of Lemmas A.8, A.9 and A.13.

A.4 Proof of Theorem 6.2 (Respected Prohibitions)

Lemma A.14. Γ ` 𝑀 :: 𝑇 implies usable(Γ).

Proof. By induction on the derivation of Γ ` 𝑀 :: 𝑇 and by cases on the last rule applied.

[t-msg-m] Then𝑀 = m(𝑢1, . . . , 𝑢𝑛) and Γ =
⊗

𝑖=1..𝑛 𝑢𝑖 : 𝑡𝑖 where usable(𝑡1, . . . , 𝑡𝑛). The result follows immediately.

[t-comp-m] Then Γ = Γ1 ⊗ Γ2 and𝑀 = 𝑀1 |𝑀2 and𝑇 = 𝑇1 ⊗𝑇2 and Γ𝑖 ` 𝑀𝑖 :: 𝑇𝑖 for 𝑖 = 1, 2. By induction hypothesis we

deduce usable(Γ𝑖) for every 𝑖 = 1, 2. We conclude usable(Γ) since usable(𝑠1) and usable(𝑠2) imply usable(𝑠1 ⊗ 𝑠2). �

The following Lemma is an equivalent reformulation of Lemma 6.6.

Lemma A.15. Γ ` 𝑃 implies usable(Γ).
Manuscript submitted to ACM

44 Silvia Crafa and Luca Padovani

Proof. By induction on the derivation of Γ ` 𝑃 and by cases on the last rule applied. Most cases are simple or they

follow immediately from the induction hypothesis. The case of [t-send] is a consequence of Lemma A.14. If the last rule

applied is [t-sub], then ∆ ` 𝑃 where Γ 6 ∆. By induction hypothesis we deduce usable(∆). We conclude usable(Γ) by
Denition 5.2 since nl(𝑡) implies usable(𝑡). �

Theorem A.16 (Theorem 6.2). If Γ , 𝑎 : 𝑡 ` P, 𝑎.m1(𝑐1), . . . , 𝑎.m𝑛(𝑐𝑛), then there exist 𝑆 and 𝑠𝑖 such that 𝑡 6

𝑆 ⊗
⊗

𝑖∈[1,𝑛] m𝑖(𝑠𝑖).

Proof. From the hypothesis and [t-processes] we deduce that there exist Γ𝑖 and 𝑡𝑖 for 𝑖 ∈ [0, 𝑛] such that Γ =⊗
𝑖∈[0,𝑛] Γ𝑖 and 𝑡 =

⊗
𝑖∈[0,𝑛] 𝑡𝑖 and Γ0, 𝑎 : 𝑡0 ` P and Γ𝑖 , 𝑎 : 𝑡𝑖 ` 𝑎.m𝑖(𝑐𝑖) for every 𝑖 ∈ [1, 𝑛]. If 𝑎 ∉ fn(P), we

can take 𝑡0 = 1 without loss of generality. From [t-sub] and [t-send] we deduce that, for every 𝑖 ∈ [1, 𝑛], there exist
𝑠𝑖 and m𝑖 such that 𝑡𝑖 6 m𝑖(𝑠𝑖). From Lemma A.15 we deduce usable(𝑡0), namely there exist 𝑆 ∈ J𝑡0K. We conclude

𝑡 =
⊗

𝑖∈[0,𝑛] 𝑡𝑖 6 𝑆 ⊗
⊗

𝑖∈[1,𝑛] m𝑖(𝑠𝑖) by denition of 𝑡 and pre-congruence of 6. �

Note that there is no molecule type 𝑆 such that 𝑆 ' 0, hence the property in Theorem 6.2 cannot be satised trivially.

A.5 Proof of Theorem 6.3 (Weakly Fulfilled Obligations)

Lemma A.17. If Γ ` 𝑃 and 𝑎 ∈ dom(Γ) \ fn(𝑃), then nl(Γ (𝑎)).

Proof. By induction on the derivation of Γ ` 𝑃 and by cases on the last rule applied. We omit the discussion of

[t-null] which is trivial.

[t-send] Then Γ = Γ ′ ⊗ 𝑢 : 𝑇 and 𝑃 = 𝑢.𝑀 and Γ ′ ` 𝑀 :: 𝑇 . An easy induction on the derivation of Γ ′ ` 𝑀 :: 𝑇

suces to establish that dom(Γ ′) = fn(𝑀), therefore fn(𝑃) = {𝑢} ∪ fn(𝑀) = fn(Γ). The statement holds vacuously

since dom(Γ) \ fn(𝑃) = ∅.

[t-par] Then Γ = Γ1 ⊗ Γ2 and 𝑃 = 𝑃1 | 𝑃2 and Γ𝑖 ` 𝑃𝑖 for every 𝑖 = 1, 2. By induction hypothesis, 𝑎 ∈ dom(Γ𝑖) \ fn(𝑃𝑖)
implies nl(Γ𝑖 (𝑎)) for every 𝑖 = 1, 2. We conclude by observing that dom(Γ) = dom(Γ1) ∪ dom(Γ2) and fn(𝑃) =

fn(𝑃1) ∪ fn(𝑃2).

[t-object] Then 𝑃 = def 𝑐 = 𝐶 in 𝑄 and Γ , 𝑐 : 𝑡 ` 𝑄 where, without loss of generality, we may assume 𝑎 ≠ 𝑐 . By

induction hypothesis we deduce that 𝑎 ∈ (dom(Γ) ∪ {𝑐}) \ fn(𝑄) implies nl(Γ (𝑎)). We conclude by observing that

fn(𝑃) = fn(𝑄) \ {𝑐}.

[t-sub] Then∆ ` 𝑃 for some∆ such that Γ 6 ∆. Recall that dom(∆) ⊆ dom(Γ) by Denition 5.2. Let 𝑎 ∈ dom(Γ)\fn(𝑃).
We distinguish two sub-cases: if 𝑎 ∈ dom(∆), then we conclude using the induction hypothesis; if 𝑎 ∈ dom(Γ) \dom(∆),
then nl(Γ (𝑎)) by Denition 5.2. �

Theorem 6.3 is just a reformulation of Lemma A.17.

Received March 2016; revised November 2016; accepted March 2017

Manuscript submitted to ACM

	Abstract
	1 Introduction
	2 The Chemistry of Typestates
	3 The Objective Join Calculus
	4 Syntax and Semantics of Types
	5 Type System
	6 Properties of Well-Typed Processes
	7 Examples
	7.1 One-Place Buffer
	7.2 Concurrent Queue
	7.3 Full-Duplex Channel
	7.4 Programming Patterns for Concurrent TSOP in the Objective Join Calculus

	8 Implementation Aspects
	8.1 TSOP with Implementations of the Objective Join Calculus
	8.2 TSOP with Actors
	8.3 Type Checking and TSOP for Concurrent Objects

	9 Related Work
	10 Concluding Remarks
	References
	A Proofs
	A.1 Properties of Subtyping
	A.2 Properties of Environment Subtyping and Combinations
	A.3 Proof of Theorem 6.1 (Subject Reduction)
	A.4 Proof of Theorem 6.2 (Respected Prohibitions)
	A.5 Proof of Theorem 6.3 (Weakly Fulfilled Obligations)

