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Abstract
The enhancement of warming rates with elevation, so-called elevation-dependent warming (EDW), is one of the regional, 
still not completely understood, expressions of global warming. Sentinels of climate and environmental changes, mountains 
have experienced more rapid and intense warming trends in the recent decades, leading to serious impacts on mountain 
ecosystems and downstream. In this paper we use a state-of-the-art Global Climate Model (EC-Earth) to investigate the 
impact of model spatial resolution on the representation of this phenomenon and to highlight possible differences in EDW 
and its causes in different mountain regions of the Northern Hemisphere. To this end we use EC-Earth climate simulations 
at five different spatial resolutions, from ∼ 125 to ∼ 16 km, to explore the existence and the driving mechanisms of EDW in 
the Colorado Rocky Mountains, the Greater Alpine Region and the Tibetan Plateau–Himalayas. Our results show that the 
more frequent EDW drivers in all regions and seasons are the changes in albedo and in downward thermal radiation and this 
is reflected in both daytime and nighttime warming. In the Tibetan Plateau-Himalayas and in the Greater Alpine Region, an 
additional driver is the change in specific humidity. We also find that, while generally the model shows no clear resolution 
dependence in its ability to simulate the existence of EDW in the different regions, specific EDW characteristics such as its 
intensity and the relative role of different driving mechanisms may be different in simulations performed at different spatial 
resolutions. Moreover, we find that the role of internal climate variability can be significant in modulating the EDW signal, 
as suggested by the spread found in the multi-member ensemble of the EC-Earth experiments which we use.

Keywords  Elevation-dependent warming · Tibetan Plateau · Greater Alpine Region · Rocky mountains · Model resolution · 
Global climate models

1  Introduction

The enhancement of warming rates with elevation, a phe-
nomenon which is referred to as elevation-dependent warm-
ing (EDW, e.g. MRI 2015), is one of the regional manifesta-
tions of global warming. Impacts of EDW include changes 
in the high-altitude cryosphere system and mountain 

ecosystems, in future water availability and distribution, 
with possible consequences on populations depending on 
these resources.

Monitoring the dependence of warming rates on elevation 
is complicated by different factors. First of all, the complex-
ity and heterogeneity inherent in mountain environments and 
in mountain climate would require a dense and homogene-
ous network of ground stations up to the highest altitudes, 
which are generally not available for most mountain areas. 
The picture provided by all observation-based datasets is 
thus biased towards lower elevations. In addition, long-term 
time series are required to assess the dependence on eleva-
tion of temperature trends and to filter out any inter-decadal 
variability from the detected trends. Unfortunately, meteoro-
logical stations with at least 30 years of records (the classical 
length of time to calculate climatic normals as defined by 
the World Meteorological Organization; Bye et al. 2011) are 
very few at high elevations (MRI 2015). EDW is a complex 
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process also because it occurs in response to many different 
mechanisms that have feedbacks at different scales (Rang-
wala and Miller 2012). It is, therefore, difficult to disentangle 
the causal correlations among the relevant variables and to 
distinguish what are the main drivers of EDW.

A great number of studies on EDW has been performed in 
the recent decades. Most of them are based on the analysis of 
surface station observations, in spite of the limitations out-
lined above, and a few of them are based on estimates of land 
surface temperatures from satellite observations (e.g., Qin 
et al. 2009). A summary of individual studies on EDW is 
provided in MRI (2015) and its supplementary information. 
Most studies based on observations indicate that warming 
rates are amplified with elevation, depending on the season, 
the region of study and the analysed variable (usually either 
the minimum or maximum daily temperature), but there are 
also studies showing no clear correlation between tempera-
ture trends and surface elevation. Mixed results on EDW 
can be highly dependent on the limitations of the current 
networks of in situ stations, on the presence of possible non-
climatic artifacts associated with changes in measurement 
practices, on the different methods adopted to homogenize 
time series and on procedures used to interpolate in situ sta-
tion data to derive gridded products. All these aspects are 
sources of uncertainty that are exacerbated by the relative 
scarcity of observations in high mountains (e.g., You et al. 
2010; Oyler et al. 2015).

The use of climate models, both global and regional, to 
study EDW allows to overcome some of the inadequacies 
inherent in all observing systems when trying to identify the 
main mechanisms at work. In fact, the output of numerical 
models includes all the variables (and their dynamical rela-
tions) needed to build a picture of the mechanisms driving 
EDW, at a given spatial and temporal resolution, and long 
simulations can be run both to reproduce the past and to 
study future projections.

There are some examples of studies on EDW using 
regional climate models (RCMs), whose fine scales should 
allow to capture the effects of the complex mountain topog-
raphy on climate variability and processes better than 
coarser resolution global climate models (GCMs). Giorgi 
et al. (1997), for example, analyzed both a present-day and 
a doubled CO2 concentration experiment over the Alpine 
region with the RegCM regional climate model (Giorgi 
et al. 1993), run at 50 km resolution. They showed enhanced 
warming rates in response to a doubling of CO2 concentra-
tions, with more pronounced changes at higher elevations 
in winter and spring, mostly associated with a decrease in 
snowpack. Another study by Rangwala et al. (2012) ana-
lyzed future projections in the minimum and maximum daily 
temperatures by mid-twenty-first century using four RCMs 
at 50 km, run over specific mountain ranges of the south-
western US Rocky Mountains. They found large increases 

in the maximum temperature at higher elevations in sum-
mer associated with drying conditions. Another regional 
climate model at 20 km resolution was used to investigate 
the elevational dependency of the temperature changes over 
Korea (Im and Ahn 2011) showing that enhanced warm-
ing occurs for minimum temperature at higher elevations, 
especially during winter, mostly because of the snow-albedo 
feedback. Still another study used the PRECIS (Providing 
REgional Climates for Impacts Studies) RCM at ∼ 25 km 
resolution (Jones et al. 2004) nested into the Hadley Cen-
tre’s global atmospheric model HadAM3P to study climate 
change in Central America and Mexico (Karmalkar et al. 
2011), highlighting the expected amplification of future 
warming with elevation in the lower troposphere and its sig-
nificant implications for mountainous regions (e.g., Bradley 
et al. 2006). The paper by Minder et al. (2018) explored the 
characteristics and causes of EDW in the Rocky Mountains 
using very high resolution simulations ( ≤ 12 km) with the 
Weather Research and Forecasting Model (WRF) and found 
very complex patterns of warming with elevation, including 
cases of warming nearly independent of height. They found 
that warming is maximum in regions of maximum snow loss 
and albedo reduction, identifying the snow-albedo feedback 
as the primary cause of EDW. Their simulations showed that 
EDW depends strongly on the adopted RCM configuration 
including the dependence not only on the spatial resolution 
but also on the land surface model used in the RCM.

A majority of model studies on EDW is based on global 
climate models, in spite of their coarse horizontal resolu-
tions (on average coarser than 120 km; Taylor et al. 2012). 
Some studies used simulations from a single GCM (e.g., 
Fyfe and Flato 1999; Liu et al. 2009; Rangwala et al. 2010; 
Yan et al. 2016), while others analysed the output of sev-
eral models with different characteristics, such as the lat-
est Climate Model Intercomparison Project (CMIP5) GCM 
ensemble (e.g., Rangwala et al. 2013, 2016; Palazzi et al. 
2017). In a recent study, Yan et al. (2016) performed specific 
experiments to test the sensitivity of the CCSM3 GCM to 
changes in CO2 concentrations and found that the changes in 
snow depth and cloud cover in and around the Tibetan Pla-
teau in response to CO2 quadruplication would lead to EDW. 
Rangwala et al. (2013) analysed the CMIP5 GCMs up to 
2100 and found that warming rates are projected to be ampli-
fied at higher altitudes with respect to the adjacent areas in 
the Tibetan Plateau and in the Rocky Mountains in North 
America, especially in the cold season. They found enhanced 
increases in the minimum temperature in the Tibetan Pla-
teau related to increases in the downward longwave radiation 
and in the maximum temperature in the Rocky Mountains 
associated with snow reduction and snow-albedo feedbacks. 
In a previous study (Palazzi et al. 2017) we investigated ele-
vation-dependent warming in the Tibetan Plateau–Himala-
yas using a subset of the CMIP5 ensemble and we found, 
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on average, enhanced warming rates at higher elevations 
in both historical simulations and in future projections. In 
that work we used a set of physical criteria and correlations 
of possible variables driving EDW both with elevation and 
with changes in temperature to disentangle their role, and 
we used a multiple regression model to assess their relative 
importance. We found that the most important driving vari-
able for the models in the Tibetan Plateau–Himalayas is the 
change (i.e., decrease) in albedo with elevation, followed by 
changes in atmospheric humidity and downward longwave 
radiation. That study, while analysing a rather large ensem-
ble of CMIP5 models, used the multi-model mean of all 
GCMs to draw conclusions on EDW.

Over the recent decades, global climate models have con-
siderably increased the number of components incorporated 
within them and the degree of detail in the description of 
the key climate processes (IPCC 2013). At the same time, 
global models have been tested at increasing horizontal reso-
lutions, reaching even grid scales that are typically achieved 
by numerical weather prediction models (e.g., Demory et al. 
2014; Davini et al. 2017).

In this paper we exploit an ensemble of climate simula-
tions performed with the EC-Earth GCM (Hazeleger et al. 
2010, 2012), run at five atmospheric horizontal resolutions 
from about 125 km down to about 16 km, which were pro-
duced in the framework of the PRACE project “Climate 
SPHINX” (Stochastic Physics HIgh resolutioN eXperi-
ments, Davini et al. 2017; Watson et al. 2017). This rep-
resents a quite comprehensive and unprecedented set of 
simulations performed with a global model, able to span a 
large range of spatial resolutions up to those generally not 
achieved with GCMs for long climate simulations, and thus 
giving us the opportunity to test the sensitivity of specific 
processes or climate mechanisms to the spatial resolution 
which is employed. The aim of this study is to assess if and 
to what extent the representation of EDW (and of its driv-
ing processes) is dependent on the model resolution, as it 
might be expected for processes that largely depend on the 
orography. To our knowledge, there are only few studies 
that have to some extent explored the impact of the model 
resolution on the simulation of EDW. One is the work by 
Rangwala et al. (2016), in which the authors analysed vari-
ous CMIP5 GCMs with spatial resolution varying between 
1 ◦ and 3 ◦ longitude–latitude and studied EDW focusing on 
the Rocky Mountains and the Tibetan Plateau/Himalayas. 
They did not find any significant indication on the role of the 
spatial resolution on the simulation of EDW. Another study 
by Yan et al. (2016) used the data from the 1990 control and 
4 × CO2 runs by the CCSM3 GCM with horizontal resolu-
tions of T85 (1.4◦ lon–lat) and T31 (3.75◦ lon–lat) and found 
that the increase in net radiation at the surface (influenced by 
the effects of decreases in total cloud and snow at ground) 
resulted in EDW on the Tibetan Plateau and its surroundings 

but that this effect was evident only at the finest model reso-
lution (1.4◦ ). In our study we explore significantly higher 
resolutions, comparable to those usually achieved only by 
RCMs. We consider EC-Earth GCM simulations run at five 
horizontal resolutions from T159 ( ∼ 125 km) to T1297 ( ∼ 
16 km), the coarsest of which being finer than the finest 
considered in the two studies mentioned above. We focus 
our analysis on three mountain ranges of the northern hemi-
sphere—the Tibetan Plateau–Himalayas (already dealt with 
in our previous study, Palazzi et al. 2017), the Greater Alpine 
Region in Europe, and the Colorado Rocky mountains—in 
order to highlight possible regional differences in EDW. It 
is worth noticing that in the three regions which we con-
sider, all located in mid-latitudes, EDW is not influenced by 
another important mechanism active in tropical areas, that is 
latent heat release in response to enhanced diabatic heating 
of the upper troposphere (e.g., Bradley et al. 2009).

The paper is organized as follows: Sect. 2 presents the 
three mountain regions considered in this study and provides 
a short summary on the observed EDW in each of them 
based on the literature. The EC-Earth model data and the 
methods employed for their analysis are also presented in 
Sect. 2. In Sect. 3 we describe the results of our analysis in 
terms of presence and characteristics of EDW in the three 
regions and in the different seasons and we discuss the dif-
ferences in the model representation of the phenomenon as a 
function of the model resolution. The driving EDW mecha-
nisms are described in Sect. 4, while Sect. 5 summarizes and 
discusses the main results and concludes the paper.

2 � Study areas, data and methods

2.1 � Study areas

We consider three mountainous regions shown in Fig. 1: part 
of the Rocky Mountains in United States (Rockies, − 125◦ E 
to − 95◦ E longitude, 34◦N–49◦ N latitude), the Greater 
Alpine Region (GAR, 4 ◦E–19◦ E longitude, 43◦N–49◦ N lati-
tude) and the Hindu Kush–Karakoram–Himalaya–Tibetan 
Plateau (HKKH-TP, 70◦E–105◦ E longitude and 25◦N–40◦ N 
latitude). Please note that the green areas in Fig. 1 indicate 
the regions lying below 500 m a.s.l.; these areas have been 
filtered out in our analysis of EDW, as explained in Sect. 2.3. 
Besides the literature review reported in Sect. 1, here we 
provide a brief overview and characterization of observed 
EDW in the three regions, as from previous studies based 
on measurements:

–	 In the Colorado Rocky mountains, EDW and its possi-
ble impacts on snowpack characteristics and timing of 
seasonal melting, forests and vegetation have been docu-
mented in past studies (e.g., Diaz and Eischeid 2007; 
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Clow 2010; Pederson et al. 2011; Stewart et al. 2005). 
One of them (Diaz and Eischeid 2007), for example, 
documented enhanced warming rates in the period 1987–
2006 with respect to the early twentieth century above 
about 2000 m a.s.l. with trends exceeding by about 1 ◦ C 
the average temperature increase in the Western United 
States. This and other studies (e.g., Daly et al. 2008; 
Williams et al. 2010; Clow 2010; Pederson et al. 2011, 
2013) assessed EDW in this region using measurements 
from the high-elevation Snowpack Telemetry (SNOTEL) 
network and related gridded climate products, without 
evaluating these data for possible inhomogeneities, an 
issue which was subsequently dealt with by Oyler et al. 
(2015).

–	 In the Alpine region from the late ninteenth century until 
the end of the twentieth century temperatures have risen 
at a rate about twice as large as the northern-hemispheric 
average (mean temperature increase of about 2 ◦ C, Auer 
et al. 2007). Warming occurred with a rate of 0.5 ◦C/
decade from 1980 onwards (EEA 2009) and Philipona 
(2013) suggested mainly water vapor-enhanced green-
house warming as a cause. Previous studies also sug-
gested that larger increases in average surface air temper-
ature at higher elevations in the Alps occurred in winter 
and spring compared to other seasons, particularly in the 
Swiss Alps (Beniston et al. 1997), mainly associated with 
a strong snow-albedo feedback. Another study focusing 
on the southern part of the Eastern Alps (the Trentino 
region), however, found significant negative elevation-
dependent warming in the period 1975–2010, consist-
ent for mean, maximum and minimum air temperature, 
attributed to solar brightening and increased radiative 
forcing at lower elevations (Tudoroiu et al. 2016);

–	 In the Tibetan Plateau the existence of EDW was first 
demonstrated by Liu and Chen (2000), showing that tem-
perature variations during the last 100 years in this high-
mountain region have a larger magnitude of change and 
appear at an earlier time compared to the whole Northern 
Hemisphere, particularly in the cold season. This led to 

the development of many other studies focused on EDW 
in this area. Liu et al. (2009), for example, analysed the 
elevation dependency in monthly mean of daily mini-
mum temperature finding more prominent warming at 
higher than lower elevations during winter and spring 
most likely caused by a combination of cloud-radiation 
and snow-albedo feedbacks. Yan and Liu (2014) also 
showed a dependence of warming on elevation over the 
last 50 years, particularly amplified in most recent dec-
ades. Increasing warming rates with elevation between 
3000 m and 5000 m have also been detected from satel-
lite in this region, through the analysis of land surface 
temperature data (e.g., MODIS observations, Qin et al. 
2009). Another study (You et al. 2010) used homoge-
nized surface stations at elevations higher than 2000 m 
a.s.l. and two reanalysis products to investigate EDW in 
the Tibetan Plateau and found a lack of any linear rela-
tionship between temperature trends and elevation in the 
surface data and an inconsistent picture in the two rea-
nalyses. Their results, while highlighting the complexity 
of the phenomenon, also suggest that different datasets 
can provide different pictures and that caution should be 
taken when using reanalysis products to identify climatic 
trends in this topographically complex region.

2.2 � Model data

We analyze the output of historical and future simulations of 
the state-of-the-art Earth System Model EC-Earth, version 
3.1 (Hazeleger et al. 2010, 2012; http://www.ec-earth​.com) 
performed in the framework of the PRACE project Climate 
SPHINX (Stochastic Physics HIgh resolutioN eXperiments). 
All technical aspects and the scientific setup of the Climate 
SPHINX experiments are described in Davini et al. (2017) 
and on the main project web pages http://www.to.isac.cnr.it/
sphin​x/. The simulations performed with the EC-Earth GCM 
in SPHINX are atmosphere-only experiments extending for 
30 years in the past (from 1979 to 2008) and 30 years in the 

Rocky Mountains
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m

GAR

0 1000 2000 3000 4000 5000
m

HKKH TP

0 2000 4000 6000 8000
m

Fig. 1   Topographic maps of the three study areas (left: Rocky Moun-
tains; middle: Greater Alpine Region; right: Hindu Kush–Karako-
ram–Himalaya–Tibetan Plateau) from a high-resolution Digital Ele-

vation Model at ∼ 0.0167 ° resolution (ETOPO1 Global Relief Model 
from the NOAA’s National Geophysical Data Center). Green areas lie 
below 500 m a.s.l. See text for details

http://www.ec-earth.com
http://www.to.isac.cnr.it/sphinx/
http://www.to.isac.cnr.it/sphinx/
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future (from 2039 to 2068) using forcing conditions from 
the Representative Concentration Pathway emission scenario 
RCP 8.5 (Riahi et al. 2011). EC-Earth was run exploring five 
different horizontal resolutions, labelled as low (spectral res-
olution T159, corresponding to ∼ 125 km in the meridional 
direction), moderate (T255, ∼ 80 km), intermediate (T511, 
∼ 40 km), high (T799, ∼ 25 km), and very high (T1279, ∼ 
16 km). The vertical resolution is kept constant across all of 
the simulations and accounts for 91 levels up to 0.01 hPa. 
The coarsest resolution, T159, is the one typically used in 
state-of-the-art global climate model simulations (e.g. in 
the latest CMIP5 intercomparison project), while the finest, 
T1279, is a resolution typically used for numerical weather 
prediction. Due to computational costs, a different number of 
EC-Earth members is available for each resolution: twenty 
members were run at T159 and at T255, twelve at T511, six 
at T799 and two at T1279. A peculiarity of the SPHINX 
experiment is that half of the members at each resolution 
was run including base physics while the other half using 
stochastic parameterizations (Davini et al. 2017). Introduc-
ing randomness into parameterizations represents a way to 
include small-scale processes in coarse resolution models 
with the advantage of being less computationally-demanding 
than increasing the spatial resolution of numerical models 
(Palmer 2012). These ensembles give us the opportunity 
to gauge, at the same time, the internal variability of the 
EC-Earth model (thus, also, climate variability in EDW) 
through the spread of the multi-member ensemble as well as 
the uncertainty associated with the specific model chosen, 
i.e., a model implementing either base physics or stochastic 
parameterizations. In our EDW analysis we do not find any 
significant difference between simulations with and with-
out stochastic physics (discussed in Sect. 3 and shown in 
the Supplementary Information), and thus we consider all 
individual members, irrespective of whether stochastic phys-
ics is implemented or not, as part of a single ensemble. In 
addition, our results are mostly based on the analysis of the 
multi-member ensemble mean as a representative measure 
of the whole ensemble.

We analyze the following set of model variables which 
are relevant for the study of EDW, as also done in previ-
ous studies (e.g. Palazzi et al. 2017): surface altitude and 
monthly averages of daily minimum and maximum near sur-
face air temperature (tasmin and tasmax, respectively, using 
standard CMIP5 nomenclature), surface downwelling long-
wave and shortwave radiation (rlds and rsds, respectively), 
surface upwelling shortwave radiation (rsus), near surface 
specific humidity (huss). The surface albedo is calculated 
as the ratio between the upward (i.e., reflected) and down-
ward (i.e., incoming) shortwave radiation at the surface. The 
height of the mean orography (elevation) used by the model 
is available for each simulation resolution. For the observed 
elevation data shown in Fig. 1, we use the ETOPO1 Global 

Relief Model from the NOAA’s National Geophysical Data 
Center (NGDC) available at http://www.ngdc.noaa.gov/mgg/
globa​l/globa​l.html, a digital elevation model (DEM) avail-
able for the whole globe with a grid spacing of 1 arc-minute 
(approximately 0.0167°).

2.3 � Methods

The first step to assess elevation-dependent warming is to 
quantify a warming signal. In this study, this is evaluated 
as the difference, or change, between the 2039–2068 cli-
matology and the 1979–2008 climatology of the minimum 
and of the maximum daily temperature ( Δtasmin , Δtasmax ). 
For each of the three regions, the temperature change 
between the future and past climatology is evaluated on a 
seasonal basis using the standard definition of the seasons 
for the Northern Hemisphere mid-latitudes: winter (Decem-
ber–February, DJF), spring (March– May, MAM), summer 
(June–August, JJA), and autumn (September–November, 
SON). It is generally recommended to analyze minimum 
and maximum temperatures separately because different 
mechanisms driving EDW can be at play during nighttime 
and daytime.

The second step is to assess whether a warming signal in 
minimum and maximum temperatures exhibits a depend-
ence on elevation. As commonly done in the literature (e.g. 
Liu and Chen 2000; Vuille et al. 2003; Pepin and Lundquist 
2008; Liu et al. 2009; Qin et al. 2009; Rangwala et al. 2010, 
2012; Palazzi et al. 2017), we calculate the slope obtained 
by linear regression of timeseries of daily minimum or maxi-
mum temperature against the model elevation and we assess 
its statistical significance. The regression is performed both 
at each grid point and using data averaged into elevational 
bands. The statistical significance of the linear slopes is 
assessed using a Student’s t test, which tests against the 
null hypothesis that the coefficient of the regression is zero 
(no slope). We also explore a new methodology based on 
grouping the temperature change data into elevation bins 
and then fitting the Probability Density Function (PDF) of 
the temperature changes evaluated for each bin with a LOcal 
regrESSion (LOESS) method. In fact, the uneven distribu-
tion of points at different elevations may have an impact on 
the slope evaluation and the dependence of the temperature 
changes with elevation may not be linear. Using the PDF 
solves the first issue while the LOESS regression would 
highlight possible departures from linearity.

Only grid cells with elevation above 500 m a.s.l. are con-
sidered in the analysis, to reduce some of the influence of the 
coastal areas or of other areas generating potential interfer-
ence, such as the Po Valley in the Greater Alpine Region. 
Another geographical filter is applied in the analysis of the 
HKKH-TP region to exclude the area of the Taklamakan 
desert, a region bounded by the Kunlun Mountains to the 

http://www.ngdc.noaa.gov/mgg/global/global.html
http://www.ngdc.noaa.gov/mgg/global/global.html
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south, the Pamir Mountains and Tian Shan to the west and 
north, and the Gobi Desert to the east. This is done in order 
to avoid the excessive contribution to warming of this desert 
area, similar to the approach applied in Giorgi et al. (2014) 
who filtered out desert areas with extreme large (small) 
values of the indices that the authors used to assess hydro-
climatic extremes.

Using a similar methodological approach as in Palazzi 
et  al. (2017), we proceed with the identification of the 
variables that may potentially contribute to EDW. These 
include all factors whose changes may alter the surface 
energy balance and cause temperature variations, and thus 
include albedo, surface downwelling longwave (thermal) and 
shortwave radiation, and near-surface specific humidity, as 
already suggested by previous studies (e.g. Rangwala and 
Miller 2012; Palazzi et al. 2017). As done for the minimum 
and the maximum temperature, we calculate the change 
between the average in the period 2039–2068 and the aver-
age in the period 1979–2008 of the possible EDW drivers 
and, in particular, the absolute change for albedo ( Δalbedo ) 
and the fractional (or normalized) change for rlds, rsds, and 
huss ( Δrlds∕rlds0 , Δrsds∕rsds0 , Δhuss∕huss0 ). Fractional 
changes are calculated relative to the averaged climatology 
between the mean in the years 1979–2008 and the mean in 
the years 2039–2068. Previous studies showed that tempera-
ture changes may be more sensitive to the fractional changes 
of those variables rather than to their absolute changes (e.g. 
Rangwala et al. 2013, 2016).

In order for the four variables listed above—Δalbedo , 
Δrlds∕rlds0 , Δrsds∕rsds0 , Δhuss∕huss0 – to be actual EDW 
drivers, the following conditions have to be satisfied: (1) 
they have to exhibit a dependence on the elevation and the 
sign of that dependence has to be physically consistent with 
enhanced warming with elevation, and (2) they have to 
spatially correlate with temperature variations even if the 
dependence on elevation is removed. Condition (1) implies 
that the changes in radiations (rsds, rlds) and in huss have to 
exhibit the same elevational dependence as the temperature 
change does: if these variables increase (decrease) also the 
temperature change increases (decreases). On the contrary, 
changes in albedo have to exhibit an elevational gradient of 
opposite sign, since an increase in albedo leads to a reduc-
tion of absorbed radiation at the surface and, therefore, to 
a decrease in surface warming. Basically, condition (1) 
ensures that the variation with altitude of a given variable 
and the altitudinal dependence of temperature changes are 
related with each other by some known physical mecha-
nisms. Condition (2) is essential to identify those variables 
which still (spatially) correlate with temperature changes 
independently of elevation.

Finally, to disentangle the relative importance of the iden-
tified EDW drivers in each season and region, we set up a 
multiple linear regression model (see Eq. 1) in which the 

change in daily minimum or maximum temperature is the 
predictand and the possible drivers are the predictors (as 
in Palazzi et al. 2017). Predictors and the predictand are 
altitude-detrended, by removing the linear fit on elevation, 
and standardized, by dividing each change by its standard 
deviation over the whole spatial domain.

In Eq. 1 the drivers correspond to the variables that, among 
Δalbedo , Δrlds∕rlds0 , Δrsds∕rsds0 , and Δhuss∕huss0 , fulfill 
the conditions (1) and (2) described above. This approach 
allows to test all the possible combinations of the n predic-
tors that lead to a different regression model. Overall, the 
possible regression models are (2n

− 1) and their ability in 
predicting the temperature change is quantified by the coeffi-
cient of determination R 2 that measures the proportion of the 
variance of the predictand that they can explain: the closer 
R 2 is to 1, the better the prediction is. At the same time, 
the value of R 2 allows to quantify how much of the EDW 
response in the model is not explained by the drivers (pre-
dictors) considered. By construction, the regression models 
including a larger number of predictors are associated with 
higher values of R 2 . Therefore, to measure the relative qual-
ity of the regression models and avoid a ranking biased by 
the number of predictors, we use the Akaike information 
criterion corrected for finite sample sizes (AICc, Burnham 
and Anderson 2003), which favors the models with less pre-
dictors and penalizes those with more (the lower the AICc, 
the better the model).

3 � The simulated elevational dependence 
of surface warming

We analyse EDW by exploring the dependence of the min-
imum and maximum temperature changes on elevation for 
the three areas and for each season, and at each model 
resolution. One example is shown in Fig. 2, where EDW is 
analysed for the minimum temperature in autumn (SON) in 
the Rockies, GAR, and HKKH-TP. All other cases are dis-
played in Figs. S1–S6 of the Supplementary Information 
(SI). Figure 2 shows in black the regression line evaluated 
using all data, in green the regression line evaluated fitting 
the average of the data (green dots) in each 100 m-thick 
elevational bin, and in blue the LOESS fitting curve. Pur-
ple shading indicates the probability density of a given 
minimum temperature change in each elevation bin (see 
also Sect. 2.3). Figures 3, 4, and 5 show, for each model 
resolution (displayed along the x-axis) and season (each 
column plot), the value of the slope describing the linear 
relationship between either the minimum or maximum 
temperature changes and the elevation (corresponding to 

(1)
Δ(tasmin, tasmax) =a1driver1 + a2driver2 +⋯ + a

n
driver

n
+ �
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Fig. 2   Dependence of minimum 
daily temperature (tasmin) on 
elevation in SON for the Rocky 
Mountains (left panels), the 
GAR (middle panels) and the 
HKKH–TP (right panels) at 
the different EC-Earth model 
resolutions. The black line is the 
regression line evaluated using 
all data while the green line that 
evaluated fitting the average of 
the data (green dots) into each 
elevational bin. Superimposed 
is the PDFs of the temperature 
change calculated for each 
bin (shading), as explained in 
Sect. 2.3. The LOESS curved 
fitting line is also shown in blue. 
See also Figs. S1–S6 of the SI 
to look at all remaining cases
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Fig. 3   Elevational gradients of the seasonal temperature change in the 
Rocky Mountains, for each ensemble member at different model reso-
lutions. The minimum and maximum temperature changes are shown 
in the top and bottom panels, respectively, while different seasons are 
organized in the different columns. Each gray circle is the output of 

one individual model ensemble member at each resolution, while the 
black circle denotes the multi-member mean (corresponding to the 
slope of the green line in Fig. 2 and in Figs. S1–S6 of the SI). The 
open symbols represent statistically non-significant elevational gradi-
ents of warming rates
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the slope of the green line in Fig. 2 and in Figs. S1–S6 of 
the SI). Each grey circle indicates the output of one indi-
vidual model member at each resolution, while the black 
circle denotes the multi-member mean. Empty symbols 
indicate elevational gradients of surface warming that are 
not statistically significant. Positive slopes in Figs. 3, 4 
and 5 indicate EDW, while negative slopes highlight the 
situations in which there is still warming but it is larger at 
lower elevations (assuming a linear relationship) and we 
do not focus on this kind of occurrences. Finally, Table 1 
summarizes the information provided in Figs. 3, 4 and 5 

with regard to the multi-member mean, highlighting with 
a “Y” entry EDW cases and with a “N” the cases with no 
EDW. ‘Y” or “N” entries in parentheses denote the cases 
in which the slope of the elevational gradient of warming 
rate is not statistically significant against the hypothesis 
of no slope.

We use the information extracted from Figs. 2-5, S1–S6 
of the SI and from Table 1 to analyse in detail how the EC-
Earth model represents seasonal EDW in the three areas:
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–	 Rockies (Figs. S1 and S2, left column plots of Fig. 2 and 
Fig. 3): The model simulates EDW in both the minimum 
temperature and the maximum temperature in autumn 
at all model resolutions, with more intense EDW as the 
resolution becomes coarser (more evident for tasmax). 
As suggested in Figs. 2 and S1–S2, autumn is also the 
season in which the relationship between changes in tas-
min or tasmax and the elevation is rather well described 
by a linear model. In the other seasons the EDW signal 
is either absent or less evident throughout all resolutions. 
In winter EDW is not detected, and larger temperature 
increases are expected at lower than higher elevations. 
This signal is robust across all model resolutions and 
almost all model members at each resolution. More pre-
cisely, Figs. S1 and S2 of the SI show a more complex 
pattern of temperature changes with elevation in winter 
(left column plots): in fact, there is an elevational range, 
between about 1000 and 2000 m a.s.l., where EDW in 
both tasmin and tasmax is found, while the negative 
elevational gradients of warming found at lower and 
higher elevations dominate the overall trend, indicating 
no EDW. Rangwala et al. (2012), using mid-twenty-first 
century projections of four regional climate models with 
a spatial resolution of about 50 km, found similar results 
showing a more amplified response in the minimum tem-
perature (relative to the maximum temperature) in lower-
elevation regions of the Colorado Rocky Mountains 
during winter months. In spring EDW is significantly 
simulated only at the two coarsest resolutions, while in 
summer EDW is only detected at some resolutions with 
no particular pattern. Further, in spring the LOESS fit 
suggests the existence of different warming regimes with 
height: the temperature change increases with elevation 

up to about 1500–2000 m and then it either decreases or 
remains almost constant (see Figs. S1 and S2 of the SI). 
This may explain the non significance of the EDW slope 
at the highest resolutions.

–	 GAR (Figs. S3 and S4, middle column plots of Fig. 2 
and Fig. 4): EDW is detected in summer and autumn at 
the three finest resolutions, while in winter and spring 
it is detected only at the coarsest resolutions (T255 
and T159 in winter, T159 in spring). The relationship 
between warming rates and elevation is well represented 
by a linear model. Further, for this region, the PDF of 
the temperature change in each bin is well peaked around 
its mean value, which allows to have an unambiguous 
estimate of the warming expected at each elevation.

–	 HKKH–TP (Figs. S5 and S6, right column plots of Fig. 2 
and Fig. 5): This area shows the most robust and the 
clearest EDW. Here, the elevational gradients of warm-
ing rates, for both the maximum and the minimum tem-
perature, are always positive and statistically significant 
with only four exceptions all occurring at the coarsest 
resolution (T159). For both tasmin and tasmax the largest 
EDW occurs in autumn at almost all model resolutions. 
Further, in autumn the elevational gradient of warming 
rates is characterized by a clear twofold behaviour (green 
dots and LOESS curved fitting), with the temperature 
change increasing with elevation up to about 4000-4500 
m (EDW) and then decreasing at higher elevations. This 
behaviour is coherent throughout all model resolutions 
except the coarsest, corroborating previous modelling 
(e.g., Palazzi et al. 2017) and satellite-based (e.g., Qin 
et al. 2009) studies.

Table 1   Cases where EDW 
(i.e., enhanced warming rates 
with elevation) is detected or 
not detected (indicated by Y and 
N respectively). Parentheses 
indicate cases where the signal 
is not statistically significant

Tasmin Tasmax

t1279 T799 T511 T255 T159 T1279 T799 T511 T255 T159

HKKH-TP Y Y Y Y (N) Y Y Y Y (Y)
DJF GAR​ (N) (N) N (N) N N (N) (N) Y Y

Rockies N N N N N N N N N N
T1279 T799 T511 T255 T159 T1279 T799 T511 T255 T159

HKKH-TP Y Y Y Y N Y Y Y Y (Y)
MAM GAR​ (Y) N N N N (N) N (N) (Y) Y

Rockies (N) (N) (N) Y Y (Y) (Y) (Y) Y Y
T1279 T799 T511 T255 T159 T1279 T799 T511 T255 T159

HKKH-TP Y Y Y Y Y Y Y Y Y Y
JJA GAR​ Y Y Y (N) (N) Y Y Y N (N)

Rockies N Y (Y) Y Y N Y (N) (N) Y
T1279 T799 T511 T255 T159 T1279 T799 T511 T255 T159

HKKH-TP Y Y Y Y Y Y Y Y Y Y
SON GAR​ Y Y Y (Y) Y Y Y Y N (N)

Rockies Y Y Y Y Y Y Y Y Y Y
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To summarize, the season showing the most striking evi-
dence of EDW in both tasmin and tasmax in all regions is 
autumn. In fact, the elevational gradients of warming rates 
in SON exhibit always a positive and statistically significant 
slope (except in two cases found in the GAR) and the spread 
among the individual model realizations at each resolution 
is overall smaller than in the other seasons. The region that 
is expected to be more prone to EDW in all seasons is the 
HKKH–TP. As shown in Table 1, these findings are quite 
robust across all model resolutions. EC-Earth does not simu-
late EDW in DJF in the Rockies for both tasmin and tasmax 
at any resolutions (Fig. 3), and this signal is coherent across 
all model members (except a few ones at the two coarsest 
resolutions). Also, EDW is not simulated for tasmin in DJF 
and in MAM in the GAR (Fig. 4) where, in fact, the statisti-
cally significant slopes which we found are all negative. In 
some cases, we find considerable variability of the response 
among the ensemble members at a given resolution, particu-
larly in the Rockies (Fig. 3) and in the GAR (Fig. 4) and, in a 
few cases, some members present both positive and negative 
slopes. As already mentioned in Sect. 2.2, we do not find 
any clear signal in the response of the different members 
to be directly ascribable to the two possible models used in 
SPHINX (i.e., the use of either base physics or stochastic 
parameterizations). This is visible in Figs. 3, 4 and 5 looking 
at the highest resolution (T1279) results, as the two mem-
bers available at this resolution, run either with or without 
stochastic parameterizations, do not provide significantly 
different EDW response. Also, the results obtained by aver-
aging only the members implementing the base physics did 
not differ significantly from those shown in Figs. 3, 4 and 5 
which refer to the average of all members at each resolution 
(see Figs. S7–S9 of the SI). The relationship between warm-
ing rates and elevation is not necessarily linear, as we find 
in the HKKH-TP region and in the Rockies. This corrobo-
rates previous studies showing that enhanced warming can 
occur at intermediate elevations in the vicinity of the 0 ◦ C 
isotherm (e.g., Pepin and Lundquist 2008; Ceppi et al. 2012; 
Palazzi et al. 2017) where positive feedbacks from ice and 
snow at the surface may play a crucial role. Our results do 
not suggest any clear or universal relationship between the 
EDW representation and the model resolution, at least using 
this model. A previous study by Rangwala et al. (2016), 
using an ensemble of CMIP5 GCMs with spatial resolutions 
from 1 ◦ to 3 ◦ and thus coarser than the EC-Earth simulations 
analysed in our paper, did not find any difference as well 
in the EDW simulated by GCMs having different spatial 
resolutions.

4 � Drivers of elevation‑dependent warming

Next we analyse the role of the four variables possible 
drivers of EDW ( Δalbedo , Δrlds∕rlds0 , Δrsds∕rsds0 , 
Δhuss∕huss0 ) in the different seasons, highlighting regional 
differences and assessing whether model simulations per-
formed at different spatial resolutions present different 
behaviours. From a practical point of view we proceed with 
the calculation of the three linear Pearson correlation coef-
ficients described below, useful to check if the conditions (1) 
and (2) discussed in Sect. 2.3 are fulfilled:

–	 R1, between either Δtasmin or Δtasmax and elevation, 
and its statistical significance, to highlight the cases with 
or without EDW.

–	 R2, between each of the four possible EDW drivers and 
elevation, and its statistical significance;

–	 R3, between the (minimum, maximum) temperature 
change and each of the four possible EDW drivers, and 
its statistical significance. R3 is calculated after having 
removed the dependence on elevation of each variable, 
which is obtained by considering the residuals compared 
to a linear fit respect to elevation.

From the considerations reported in Sect. 2.3, a positive 
sign of R2 for Δrlds∕rlds0 , Δrsds∕rsds0 , Δhuss∕huss0 and 
− Δalbedo is physically consistent with EDW (i.e., with the 
condition R1 > 0). Therefore, having R2 greater than zero 
and statistically significant is one necessary condition for 
those variables to be actually drivers of EDW. For the vari-
ables that fulfill this condition we compute the correlation 
coefficient R3, measuring their spatial correlation with the 
temperature change, after having first detrended all variables 
for elevation. We recall that, in this case, we do not explore 
the results individually for each ensemble member but the 
calculation of the correlation coefficients was performed on 
the average of all members available at each model resolu-
tion. The R3 values are shown in Figs. 6 and 7 for tasmin 
and for tasmax, respectively. Grey boxes indicate the cases 
in which there is no EDW or it is not statistically significant, 
based on the values of R1 and in agreement with the analysis 
presented in Sect. 3, while white boxes identify the situa-
tions in which:

–	 for a given variable, R2 is negative or not statistically-
significant, which indicates that the variable certainly 
cannot be a driver of EDW. We recall that the condition 
R2 < 0 applies also to the change in albedo since we use 
−Δalbedo in the calculations,

–	 the spatial correlation between a possible driver of EDW 
and the temperature change is negative.



2695Elevation‑dependent warming in global climate model simulations at high spatial resolution﻿	

1 3

Figures 6 and 7 thus indicate what are the possible drivers 
of EDW and how much they correlate (value of R3) with the 
change in the minimum (Fig. 6) and maximum (Fig. 7) tem-
perature. The relative contribution to EDW of the different 
drivers can be assessed using the multiple linear regression 
model described by Eq. 1. Since we noticed that the sea-
son showing evidence of EDW in all three regions is SON, 
for simplicity in the following we will discuss in detail the 
results of application of the multiple linear regression model 
for SON only, while qualitatively discussing the EDW driv-
ers in all cases.

–	 Rockies: The most robust signal emerging from our anal-
ysis is found in SON, where the EC-Earth GCM identi-
fies in Δalbedo and Δrlds∕rlds0 the two main EDW driv-
ers for both Δtasmin and Δtasmax and across all model 
resolutions except the coarsest. In the other seasons either 
no EDW is found (as in DJF) or none of the variables 

turned out to be one contributing significantly to EDW 
according to conditions (2) and (3) outlined in Sect. 2.3, 
or Δalbedo and Δrlds∕rlds0 emerge as important but the 
signal is not robust at the different resolutions. Using the 
multiple linear regression equation (Eq. 1) with Δalbedo 
and Δrlds∕rlds0 as drivers, we can quantify the explained 
variance (R2 ) and the AICc values associated with the 
two regression models having a single predictor (either 
Δalbedo or Δrlds∕rlds0 ) and with the regression model 
accounting for the combination of the two predictors, as 
summarized in Table 2. The single-predictor model with 
Δrlds∕rlds0 has higher R 2 than the single-predictor model 
with Δalbedo . While, as expected, the two-predictors 
model has the highest R 2 for all EC-Earth resolutions 
which we considered, we also observe that the coarser 
the resolution the higher the R 2 . This is an indication 
that at high resolution additional small-scale processes, 
not included in simulations at lower resolutions and not 
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Fig. 6   Correlation coefficient (called R3 in Sect.  4) between each 
of the seven possible EDW drivers and the minimum temperature 
change, in the three regions (columns) and four seasons (rows). The 
drivers are displayed along the x-axis. Grey boxes indicate the cases 
in which there is no EDW or it is not statistically significant. White 

boxes identify the cases in which R2 is negative or not statistically-
significant and the spatial correlation between a possible driver of 
EDW and the temperature change is negative. See also the text for 
details
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related to the simple predictors considered here, are at 
work. We also note that Δalbedo contributes in a non-
negligible way to the explained variance only at T255, 
while at the other EC-Earth resolutions the value of R 2 
associated with the two-predictors model is similar to the 
value of R 2 associated with the model with Δrlds∕rlds0 
as single predictor.

	   Overall, the same considerations apply to the predic-
tion of Δtasmax (see Table 2, right columns). The low 
R 2 value shown by the regression model at T1279, in 
particular, indicates that the two predictors, Δalbedo and 
Δrlds∕rlds0 , are not able to explain a large proportion of 
the variance of Δtasmax in SON, and that some other 
relevant drivers which we are neglecting may contribute 
to EDW.

–	 GAR: The three drivers of the changes in tasmin in JJA 
and SON (in DJF and MAM EC-Earth did not show 
EDW) are Δalbedo , Δrlds∕rlds0 , and Δhuss∕huss0 (see 
Fig. 6). The only EC-Earth resolutions able to iden-
tify the simultaneous contribution of all three drivers 
are T1279 and T799 and we apply the multiple linear 

regression model only for these two resolutions and in 
SON (we recall that three predictors give rise to seven 
regression models). The results are summarized in 
Table 3, left columns. At T1279, the four models includ-
ing Δrlds∕rlds0 as a predictor show the highest values 
of explained variance (R2 ) among the seven regression 
models. At T799 the first three models and the fifth in the 
rank include Δrlds∕rlds0 , the model combining Δalbedo 
and Δhuss∕huss0 ranking fourth. At both resolutions, 
among the three single-predictor models, the one with 
Δrlds∕rlds0 shows the highest R 2 . The three multi-pre-
dictor models including Δrlds∕rlds0 in conjunction with 
any other driver are capable of accounting for more than 
half the variance of the predictand at T799 (more than 
20% at T1279). Therefore, Δrlds∕rlds0 is found, among 
the drivers which we considered, essential to drive the 
changes in tasmin in SON.

	   As for the changes in tasmax (see Fig. 7), we identify 
as drivers in DJF Δalbedo , Δrlds∕rlds0 , and Δhuss∕huss0 
at T255 and Δalbedo and Δhuss∕huss0 at T159. In JJA, 
the drivers are Δalbedo and Δrlds∕rlds0 and the sig-
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Fig. 7   The same as Fig. 6, for maximum temperature
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Table 2   Application of the regression equation (Eq.  1, repeated in 
the header for convenience) including the two predictors ( Δalbedo 
and Δrlds∕rlds0 ) of the minimum (left) and maximum (right) tem-
perature change in the Rockies in SON. For each of the three regres-
sion models obtained from the combination of the two predictors, the 
table shows the values of the regression coefficients a1 (referring to 
Δalbedo ) and a2 (referring to Δrlds∕rlds0 ), of the coefficient of deter-

mination R 2 and of the AICc. For each EC-Earth model resolution 
(from T1279 to T255, see text for details), the regression models 
are ranked according to AICc value, from the lowest (Rank 1) to the 
highest (Rank 3). In this application, ranking of the three regression 
models is the same for all cases which we analysed, with the first 
model in the rank including both predictors, the second model includ-
ing only Δrlds∕rlds0 and the third only Δalbedo

Rockies, SON

Δ(tasmin, tasmax) = a1Δalbedo + a2Δrlds∕rlds0

Rank Δtasmin Δtasmax

Δalbedo Δrlds

rlds0

R
2 AICc Δalbedo Δrlds

rlds0

R
2 AICc

a1 a2 a1 a2

T1279 1 0.018 0.434 0.186 − 0.068 0.076 0.364 0.131 − 0.049
2 – 0.431 0.186 − 0.068 – 0.354 0.125 − 0.042
3 − 0.041 – 0.002 0.136 0.026 – 0.001 0.091

T799 1 0.044 0.556 0.311 − 0.124 0.065 0.574 0.334 − 0.136
2 – 0.556 0.309 − 0.122 – 0.574 0.330 − 0.130
3 0.041 – 0.002 0.246 0.061 – 0.004 0.266

T511 1 − 0.129 0.705 0.493 − 0.236 − 0.088 0.710 0.499 − 0.235
2 – 0.690 0.476 − 0.205 – 0.701 0.491 − 0.220
3 − 0.051 – 0.003 0.440 − 0.009 – 0.000 0.455

T255 1 − 0.633 0.906 0.850 − 0.996 − 0.749 0.858 0.881 − 1.174
2 – 0.700 0.491 0.222 – 0.616 0.379 0.474
3 − 0.340 – 0.116 0.774 − 0.471 – 0.222 0.700

Table 3   Application of the regression equation (Eq.  1, repeated in 
the header for convenience) including the thee predictors ( Δalbedo , 
Δhuss∕huss0 and Δrlds∕rlds0 ) of the minimum (left) and maximum 
(right) temperature change in the GAR in SON. For each of the seven 
regression models obtained from the combination of the three predic-
tors, the table shows the values of the regression coefficients a1 (refer-

ring to Δalbedo ), a2 (referring to Δhuss∕huss0 ) and a3 (referring to 
Δrlds∕rlds0 ), of the coefficient of determination R 2 and of the AICc. 
For each EC-Earth model resolution (T1279 and T799, see text for 
details), the regression models are ranked according to AICc value, 
from the lowest (Rank 1) to the highest (Rank 7)

GAR, SON

Δ(tasmin, tasmax) = a1Δalbedo + a2Δhuss∕huss0 + a3Δrlds∕rlds0

Rank Δtasmin Δtasmax

Δalbedo Δhuss

huss0

Δrlds

rlds0

R
2 AICc Δalbedo Δhuss

huss0

Δrlds

rlds0

R
2 AICc

a1 a2 a3 a1 a2 a3

T1279 1 − 0.424 − 0.170 0.456 0.356 − 0.168 − 0.511 − 0.854 0.340 0.443 − 0.361
2 − 0.354 – 0.385 0.339 − 0.144 − 0.500 − 0.672 – 0.359 − 0.221
3 – 0.054 0.442 0.223 0.018 – − 0.584 0.323 0.250 − 0.065
4 – – 0.470 0.221 0.020 – − 0.417 – 0.174 0.031
5 − 0.409 0.074 – 0.203 0.043 − 0.156 – – 0.024 0.197
6 − 0.447 – – 0.200 0.047 − 0.160 – − 0.017 0.025 0.198
7 – 0.283 – 0.080 0.186 – – 0.021 0.001 0.221

T799 1 − 0.361 0.144 0.504 0.612 − 0.295 − 0.538 − 0.376 0.546 0.411 − 0.256
2 − 0.419 – 0.575 0.601 − 0.270 − 0.387 – 0.363 0.337 − 0.140
3 – 0.350 0.459 0.516 − 0.076 − 0.459 – – 0.210 0.032
4 − 0.304 0.459 – 0.442 0.067 − 0.476 − 0.035 – 0.211 0.034
5 – – 0.658 0.432 0.084 – − 0.068 0.479 0.197 0.052
6 – 0.610 – 0.373 0.184 – – 0.440 0.193 0.053
7 − 0.533 – – 0.284 0.313 – 0.203 – 0.041 0.226
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nal is robust across all EC-Earth resolutions (T1279, 
T799, T511) at which EDW is found. In SON, the driv-
ers are Δalbedo and Δrlds∕rlds0 at T511 and Δalbedo , 
Δrlds∕rlds0 and Δhuss∕huss0 at T1279 and T799. For 
the latter two resolutions we discuss the results of appli-
cation of the multiple linear regression model to study 
the relative contribution of the three identified drivers 
(see the right columns in Table 3). Δhuss∕huss0 emerges 
as the most important driver at T1279, while Δalbedo 
is the most important driver at T799. In both cases the 
proportion of the maximum variance explained by the 
best-performing regression model is quite low (44% at 
T1279 and 41% at T799).

–	 HKKH–TP: Δalbedo , Δrlds∕rlds0 and Δhuss∕huss0 are 
identified as EDW drivers at almost all model resolu-
tions in SON for both Δtasmin and Δtasmax . As shown 
in Figs. 6 and 7 (right column plots), the R3 coefficient 
associated with Δrlds∕rlds0 and that associated with 

Δhuss∕huss0 vary in the same way with the model reso-
lution, though having a different intensity for the two 
drivers. This is not surprising since these variables are 
related to each other, in that increases in downward 
longwave radiation occur in conjunction with globally 
increasing specific humidity. This is a non-linear rela-
tionship, however, with the sensitivity of a change in rlds 
being higher for lower initial water vapor concentration, 
a situation typically found at high elevations during the 
cold season (e.g., Rangwala and Miller 2012). Table 4 
shows the results of the application of the multiple lin-
ear regression model for the prediction of Δtasmin and 
Δtasmax in SON. We have applied the regression model 
only to the EC-Earth resolutions able to identify all 
three variables mentioned above ( Δalbedo , Δrlds∕rlds0 
and Δhuss∕huss0 ) as drivers, that is T1279, T511 and 
T255 for tasmin and T511 and T255 for tasmax. Over-
all, Δalbedo emerges as the most important driver of 

Table 4   Application of the regression equation (Eq.  1, repeated in 
the header for convenience) including the thee predictors ( Δalbedo , 
Δhuss∕huss0 and Δrlds∕rlds0 ) of the minimum (left) and maximum 
(right) temperature change in the HKKH–TP in SON. For each of the 
seven regression models obtained from the combination of the three 
predictors, the table shows the values of the regression coefficients 

a1 (referring to Δalbedo ), a2 (referring to Δhuss∕huss0 ) and a3 (refer-
ring to Δrlds∕rlds0 ), of the coefficient of determination R 2 and of the 
AICc. For each EC-Earth model resolution (T1279, T511 and T255 
for Δtasmin ; T511 and T255 for Δtasmax ), the regression models 
are ranked according to AICc value, from the lowest (Rank 1) to the 
highest (Rank 7)

HKKH–TP, SON

Δ(tasmin, tasmax) = a1Δalbedo + a2Δhuss∕huss0 + a3Δrlds∕rlds0

Rank Δtasmin Δtasmax

Δalbedo Δhuss

huss0

Δrlds

rlds0

R
2 AICc Δalbedo Δhuss

huss0

Δrlds

rlds0

R
2 AICc

a1 a2 a3 a1 a2 a3

T1279 1 − 0.793 0.147 0.508 0.664 − 0.554
2 − 0.748 – 0.605 0.657 − 0.532
3 − 0.848 0.556 – 0.554 − 0.270
4 − 0.568 – – 0.323 0.147
5 – − 0.363 0.655 0.204 0.310
6 – – 0.382 0.200 0.379
7 – 0.130 – 0.080 0.520

T511 1 − 0.510 0.090 0.580 0.698 − 0.477 − 0.543 0.216 0.384 0.643 − 0.395
2 − 0.519 – 0.646 0.695 − 0.466 − 0.565 – 0.544 0.622 − 0.340
3 − 0.469 0.523 – 0.548 − 0.072 − 0.517 0.503 – 0.577 − 0.226
4 – 0.205 0.501 0.444 0.134 – 0.338 0.300 0.355 0.195
5 – – 0.652 0.425 0.167 − 0.571 – – 0.326 0.238
6 – 0.575 – 0.330 0.319 – 0.560 – 0.314 0.256
7 − 0.527 – – 0.277 0.396 – – 0.550 0.303 0.272

T255 1 − 0.760 0.053 0.447 0.682 − 0.581 − 0.560 – 0.421 0.420 − 0.264
2 − 0.752 – 0.468 0.680 − 0.577 − 0.564 0.027 0.410 0.421 − 0.262
3 − 0.732 0.238 – 0.516 − 0.171 − 0.538 0.198 – 0.284 − 0.053
4 − 0.682 – – 0.466 − 0.067 − 0.497 – – 0.247 − 0.005
5 – − 0.083 0.391 0.132 0.420 – − 0.073 0.369 0.118 0.155
6 – – 0.355 0.126 0.424 – – 0.337 0.114 0.157
7 – 0.084 – 0.007 0.552 – 0.084 – 0.007 0.271
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both tasmin and tasmax changes. For the prediction 
of Δtasmin (left columns of Table 4), the four models 
including Δalbedo as a predictor show the highest values 
of explained variance at T1279 and T255, and the same 
is true at T511 except for the model where Δalbedo is the 
only predictor. The maximum variance explained by the 
model combining all three predictors is about 70% . These 
results corroborate a previous study focused on assess-
ment of EDW characteristics and drivers in the Tibetan 
Plateau-Himalayas using the CMIP5 model ensemble 
(Palazzi et al. 2017). Similarly for Δtasmax , Δalbedo 
emerges as the most important driver. It appears in the 
first three regression models and in the fifth model at 
T511 and in the first four regression models at T255; 
the model having Δalbedo as single predictor has an R 2 
larger than that of the other single-predictor regression 
models.

In general, our analysis shows that the more frequent EDW 
drivers in all regions and seasons are the changes in albedo 
and in downward thermal radiation and this is reflected in 
both daytime and nighttime warming. In HKKH–TP, and 
to a lesser extent in the GAR, an additional EDW driver is 
the change in specific humidity. In autumn, the change in 
albedo is found to be the most important driver of EDW 
in the HKKH–TP, while in the Rockies and in the GAR, 
EDW appears to be mainly driven by changes in downward 
thermal radiation. Still, it is also clear that our picture omits 
other factors which may contribute to EDW in the different 
regions.

5 � Discussion and conclusions

There is growing evidence that mountain areas are respond-
ing faster and more intensely, in comparison to the global 
mean and other regions, to climate change (MRI 2015). 
Among other indicators, elevation-dependent warming is an 
expression of this enhanced sensitivity. EDW occurs when 
a statistically significant dependence of the temperature 
trends on surface elevation exists. As shown by the avail-
able observations, this dependence can be either positive or 
negative and it can be linear or characterized by a more com-
plex pattern of altitudinal variability. There is not a unique 
and well-defined way to describe the relationship between 
warming rates and elevation which applies for all mountain 
regions of the world. However, there is increasing evidence 
that amplification of warming with elevation is the situa-
tion most often encountered in high-elevation areas. As yet, 
also model studies have indicated that the enhancement of 
warming rates with elevation is expected to continue and in 
some cases to be significantly amplified in the future (e.g., 
Rangwala et al. 2013, 2016; Palazzi et al. 2017).

Our analysis has focused on elevation-dependent warm-
ing in an ensemble of model simulations performed with one 
state-of-the-art GCM, the EC-Earth Earth System Model, 
run at five different horizontal resolutions, from 125 to 16 
km, over three different mountain areas of the northern hem-
isphere mid-latitudes, the Colorado Rocky Mountains, the 
Greater Alpine Region and the Himalayas-Tibetan Plateau. 
Our aims were to understand whether the representation of 
EDW and of its driving mechanisms is dependent on the 
model spatial resolution and to highlight possible differences 
among the different geographical areas which we analysed.

There is a lack of consistency in the methods used so far 
to quantify EDW (e.g., MRI 2015; Liu et al. 2009). When 
dealing with model data, the various methods include cor-
relating warming rates with elevation, either considering 
the data at each individual grid point or grouping them 
into elevation bands, or comparing high elevation averages 
with adjacent lowland (or global) averages. In this study 
we assessed the dependence of the temperature changes on 
elevation using the first two approaches and quantified the 
EDW intensity by calculating the slope of the linear regres-
sion between warming rates and elevation, which is the 
accepted method used by the scientific community. In most 
of the cases the linear model turned out to fairly reproduce 
the actual pattern of temperature changes with height. It is 
otherwise clear that when the data distribution shows differ-
ent slopes at different height ranges, a non-linear approach 
would be desirable. Here we assessed deviations from linear-
ity using a further regression approach based on a LOESS 
fitting.

The existence of various mechanisms, possible drivers of 
EDW, makes the picture even more complex and may in part 
explain why describing the dependence of warming rates 
on elevation through a linear relationship is not really pos-
sible and simplifies the reality. For example, the relationship 
between specific humidity and downward longwave radia-
tion is nonlinear and the percentage increase in downward 
longwave radiation following an increase in atmospheric 
water vapour amount is particularly large in dry regions, 
when the initial humidity is low, as found at high eleva-
tions during the cold season. The solar dimming effect of 
aerosol particles is most pronounced at low elevations and 
reduced in high elevation zones. Also, through deposition on 
snow surfaces, aerosol can reduce their albedo and enhance 
warming rates. On the other hand, aerosol is among the forc-
ing factors not usually accounted for in model evaluations 
of EDW, thus representing one of the missing components 
when quantifying the role of the different drivers.

We found that if the EC-Earth GCM simulates EDW (i.e., 
positive elevational gradients of warming) in one season and 
region, in most of the cases the signal is coherent throughout 
all model resolutions, though the simulated EDW intensity 
may be different and the response of the individual model 
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realisations at each resolution exhibits some spread. The 
ensemble spread shown in Figs. 3, 4 and 5 just measures 
the climate variability associated with the EDW representa-
tion in the EC-Earth model simulations which we analysed. 
The region which is found to be more prone to EDW is the 
HKKH-TP, while the season showing the most striking evi-
dence of EDW in both tasmin and tasmax in all regions is 
autumn. In mountain regions autumn is generally the “transi-
tion season” between snow-free and snow-covered surface. 
Climate warming is delaying the onset of snow cover at low 
and mid altitudes (Terzago et al. 2014, 2017) and this trend 
is expected to continue and intensify in the future, involv-
ing higher elevations. Therefore, larger snow free areas are 
expected in autumn, as many areas that used to be snow 
covered in the past might not be anymore in the future in 
this season. The decrease in snow cover lowers the surface 
albedo, resulting in increased absorption of solar radiation 
and enhanced warming. Our study identifies albedo changes 
as a driver of EDW in SON, even though other variables 
and mechanisms are also at play. Also the spring transition 
between snow-covered and snow-free areas is expected to 
happen earlier in the future, with a corresponding decrease 
in the surface albedo and enhanced warming, but we rarely 
found EDW significantly correlated with changes in albedo 
in MAM in our analysis, except in the HKKH-TP and to a 
lesser extent in the Rockies. It is interesting to observe that 
in the Alps, and at the coarsest horizontal resolutions only, a 
significant EDW signal related to albedo changes is observed 
in the DJF season. At the coarsest resolutions, the orography 
is smooth, and the highest elevations are not realistically 
represented in the climate model. This result seems to sug-
gest that the “model’s highest elevations” might undergo 
an earlier (winter) transition from being snow covered to 
being snow free in the future in winter months. Of course 
this signal is an artifact typical of the coarsest resolutions 
and disappears at finer resolutions when the orography is 
represented with more accuracy. On the contrary, the finest 
resolutions are the only ones able to catch the change in 
albedo as an EDW driver in SON in the GAR. This result 
would suggest an added value of the finest resolution simula-
tions in the Alpine area.

In general, each study area considered in our paper 
shows a different dependence of the EDW intensity on the 
resolution. In the Rockies EDW is generally more intense 
at lower than at higher resolutions. The only season with 
a significant EDW at most resolutions in both tasmin and 
tasmax is SON, with no clear dependence on resolution. 
In the GAR, it is evident that the lower resolutions suffer 
from an underrepresentation of the highest altitudes, lead-
ing to a difficult estimate and comparison of EDW. This is 
particularly evident for summer and autumn where a strong 
warming dependence on altitude can be found at the high-
est resolutions (starting from 40 km) but not in coarse scale 

simulations. In the HKKH-TP, EDW intensity increases with 
the model resolution up to the intermediate resolution T511 
(in almost all cases) but then it decreases as the resolution 
increases. Whether this behaviour is related to a different 
representation of the snow cover extent (snow cover is not 
among the output variables of the EC-Earth simulations 
which we considered) at the different model resolutions or to 
the way other surface processes are simulated still remains to 
be understood and will be subject of further investigations.

Overall these results seem to indicate that model resolu-
tion plays a crucial role only in small areas such as the Alps, 
where a too coarse resolution would lead to an underrepre-
sentation of the highest altitudes. In fact, elevational depend-
ency of warming, as well as of other mechanisms or vari-
ables, could not be easily identified if the range of altitudes 
is too limited. There are two reasons why model resolution 
may play a role for EDW, in particular for the modelling 
setup used to produce the EC-Earth simulations employed 
in this study. On one hand model parameterizations, such as 
convective and microphysical schemes controlling clouds 
and the representation of surface processes, were developed 
for a specific resolution and most of them are not resolution 
aware, so that the same parameterization is used at all scales. 
As a consequence it is not entirely surprising that a complex 
phenomenon such as EDW which depends strongly on these 
processes, does not show great sensitivity to the resolution. 
On the other hand, as discussed in Davini et al. (2017), it 
has to be considered that when the model is pushed to the 
highest resolutions, it is very far from the resolution at which 
it was tuned (80 km, in the case of the EC-Earth model for 
the SPHINX experiment), with a possible impact on large 
scale-features of the model such as circulation patterns and 
climatology. This in turn may explain why the highest reso-
lutions seem often to behave differently in terms of EDW 
compared to other resolutions. It has also to be remembered 
that a larger uncertainty is associated with the highest reso-
lution results, since they are based on a smaller number of 
ensemble members in the model simulations which we used. 
Finally, in our opinion it is important to stress that enhanc-
ing the spatial resolution in climate models may be crucial 
especially in complex topography, but also improvements 
in model parameterizations, particularly those involving 
surface processes in high-mountain areas, the snow-albedo 
and cloud-radiation feedbacks, may allow for a better simu-
lation of EDW in the models. Considering the importance 
that mountains have as early warning indicators of the conse-
quences of global warming, EDW is a phenomenon that calls 
for further research and efforts, both in terms of observations 
and of model simulations.
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