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Metamaterials and photonic/phononic crystals have been successfully developed in recent years to achieve advanced
wave manipulation and control, both in electromagnetism and mechanics. However, the underlying concepts are yet to
be fully applied to the field of fluid dynamics and water waves. Here, we present an example of the interaction of surface
gravity waves with a mechanical metamaterial, i.e. periodic underwater oscillating resonators. In particular, we study a
device composed by an array of periodic submerged harmonic oscillators whose objective is to absorb wave energy and
dissipate it inside the fluid in the form of heat. The study is performed using a state of the art direct numerical simulation
of the Navier-Stokes equation in its two-dimensional form with free boundary and moving bodies. We use a Volume
of Fluid interface technique for tracking the surface and an Immersed Body method for the fluid-structure interaction.
We first study the interaction of a monochromatic wave with a single oscillator and then add up to four resonators
coupled only fluid-mechanically. We study the efficiency of the device in terms of the total energy dissipation and
find that by adding resonators, the dissipation increases in a non trivial way. As expected, a large energy attenuation
is achieved when the wave and resonators are characterised by similar frequencies. As the number of resonators is
increased, the range of attenuated frequencies also increases. The concept and results presented herein are of relevance
for applications coastal protection.

I. INTRODUCTION

In recent years, the field of mechanical metamaterials and
phononic crystals has seen a rapid development and captured
increasing interest1. They are engineered materials that have
been developed to alter the standard properties of wave propa-
gation such as dispersion, refraction or diffraction. Metamate-
rials are usually arranged in periodic patterns, at scales that are
comparable or smaller than the wavelengths of the phenomena
they influence. The simplest effect is that when waves prop-
agate in a periodic structure the dispersion relation displays
banded structures with frequency regions that are forbidden,
called band gaps. This effect, for example, can be obtained in
phononic biatomic materials2. The concept of metamaterials
was first developed in the field of optics3 and later extended to
phononic crystals and elastic waves2. Some work on the inter-
action of gravity waves with a macroscopic periodic structure
(a sinusoidal floor) was already considered (see4,5). Results
indicated the existence of a mechanism of resonant Bragg re-
flection occurring when the wavelength of the bottom undula-
tion is one half the wavelength of the surface wave. Further
studies on the interactions of waves with periodic structures
can be found in6–8. Other examples of wave manipulation
properties, for example cloaking, can be obtained by employ-
ing an engineered elastic buoyant carpet placed on water9 or
by a radial arrangment of vertical cylinders10.

The interaction of ocean waves with structures is a long
standing problem in fluid mechanics11. A theoretical ap-
proach based on the direct use of the equations of motion, even
in their simplified version, is not always feasible, especially

a)Electronic mail: francesco.devita@poliba.it

when geometries are not simple and bodies are moving be-
cause of hydrodynamical forces. In the latter cases, an exper-
imental approach is not easy as the measurement of pressures
and of the velocity field around the moving bodies may not be
straightforward. Numerical methods, despite their complex-
ity, often offer an important alternative for studying wave-
structure interaction and designing structures. With respect
to standard fluid mechanics, the main complication arises be-
cause of the presence of a free surface which substantially in-
creases the difficulty of the numerical treatment. Some stud-
ies in the literature assume that the flow is irrotational and
inviscid so that the potential flow equations can be solved and
forces are limited to pressure12,13. However, when the goal is
to study the overall effect of wave attenuation and the energy
dissipated in the bulk of the fluid, vorticity and viscosity can-
not be neglected and the full Navier-Stokes equations need to
be computed: recent works14,15 have provided evidence that
viscosity plays an important role, especially close to resonant
conditions. To this end, Direct Numerical Simulation (DNS)
of a free surface flow interacting with a structure represents a
powerful tool that can provide a detailed representation of the
flow field and of the fluid-structure interaction.

In this work, we consider the interaction of gravity waves
with a periodic structure composed by “internal” resonators,
i.e. waves interact with submerged harmonic oscillators which
are coupled only fluid-mechanically. To begin with, we work
in a two dimensional framework; therefore, strictly speak-
ing, our waves are characterised by infinitely long crests and
the oscillators are cylinders whose axes are parallel to the
crests. We solve the full Navier-Stokes system of equations
coupled with the Volume of Fluid (VoF) method for the inter-
face tracking and the Immersed Boundary Method (IBM) for
the fluid-structure interaction. The cylinders undergo the hy-
drodynamic forces (pressure and viscous stress) of the wave
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motion and an elastic force which tends to restore the system
back to the equilibrium position. The analysis has been con-
ducted for a variable number of resonators per wavelength and
varying their natural frequency. It is worth mentioning that
the system we are considering is similar to systems for wave
energy conversion, on which there is a rich literature rang-
ing from point-absorbers15–17 to a full modeling of the solid
structure12,18. However, the focus here is on the interaction of
a wave with a periodic structure rather than the conversion of
energy from a single oscillator.

II. METHODOLOGY

A. The numerical method

We solve the full Navier-Stokes system of equations

ρ(∂tu+u ·∇u) =−∇p+∇ · (µD)+ρg+ f (1)
∇ ·u = 0 (2)

with u = (u,w) the velocity field, p the pressure field, D the
deformation tensor defined as Di j = (∂iu j + ∂ jui)/2, g the
gravity vector and f the IBM force which enforces the no-slip
boundary condition at the solid boundary. The material prop-
erties ρ and µ are related to the volume fraction field F (x, t)
as

ρ(F ) = Fρ1 +(1−F )ρ2 (3)
µ(F ) = F µ1 +(1−F )µ2, (4)

where ρ1, ρ2, µ1 and µ2 are the density and viscosity of the
two fluids; the volume fraction field (defined as the volumetric
ratio of the two fluids in each computational cell) is advected
by the flow with the following equation

∂tF +∇ · (Fu) = 0. (5)

The motion of the resonators is given by Newton’s law

mi
d2Xi

dt2 +κi(Xi−X0,i) = Fi (6)

where Xi is the position of the centre of mass of the i-th res-
onator, mi its mass, κi is the elastic constant, X0,i the equilib-
rium position and Fi the integral of the hydrodynamic forces
acting on it.This force is computed by integrating the pressure
(p) and the viscous stress tensor (τ ) over the surface of the
solid body as follows:

F =
∫

S
(τ − pI) ·ndS. (7)

By computing the force in this way, all terms typically used
in the description of point-absorbers (such as viscous damp-
ing and radiation damping) are included, and eq.(7) provides
a more general and accurate description of the solid body mo-
tion.

Modelled in this way, the resonator has a natural frequency
ωr =

√
k/m. In the real system, resonators would correspond

FIG. 1: Sketch of the periodic structure of resonators
interacting with a surface gravity wave

to reversed pendula anchored at the bottom; for waves of small
amplitude, as in this study, the vertical motion of the res-
onators can be neglected, hence, we solve equation (6) only
for the horizontal motion, with Fi being the horizontal com-
ponent of the integral of the hydrodynamic loads acting on
the i-th resonator; the motion in the vertical direction is set to
zero.

The Navier-Stokes equations are advanced in time using
a 2-nd order Adams-Bashforth scheme and a fractional step
method is employed19 for the coupling with the pressure; the
resulting Poisson equation for the pressure is solved employ-
ing a Fast Direct Solver. All derivatives are discretized with
a second order central difference scheme apart for the diffu-
sion term in the Navier-Stokes equations, for which a WENO
scheme is used20. The IBM is implemented using the direct
forcing approach21 with interpolations performed in the di-
rection normal to the interface. For the fluid-structure inter-
action, a strong coupling is adopted with an iterative solver
based on the Hamming method22. The solver is limited to
non-deformable solid bodies, which allows for more efficient
computations. A detailed description of the solver with vali-
dations and preliminary results can be found in23. A sketch of
the periodic structure of four resonators immersed in a fluid
and forced by surface gravity waves is displayed in Fig. 1.

B. Initial conditions

The initial wave profile η and velocity field u = (u,w) are
taken from linear theory and are, respectively:

η(x,0) = acos(kx) (8)

and

u(x,0) = aωekz cos(kx) (9)

w(x,0) = aωekz sin(kx), (10)
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(a) t/T = 0.5. (b) t/T = 1.

(c) t/T = 1.5. (d) t/T = 2.

FIG. 2: Snapshot of the horizontal component u of the velocity field at four instants of time for the case with Ω = 1. The
vertical white line is located at the center of the domain and it is reported as reference to underline the motion of the resonator.

(Multimedia view)

with a the wave amplitude, k = 2π/λ the wavenumber, λ the
wavelength and z = 0 the still water level, and z pointing up-
ward. The wave frequency ω is given by the dispersion re-
lation for water waves in deep water ω =

√
gk. The initial

velocity field in air is equal to that in water with the horizon-
tal component u with a negative sign. To avoid high shear
stress across the interface at the beginning of the simulation,
the initial volume fraction is filtered with a bilinear interpola-
tion which results in a spread of the interface over three cells.
Note that this operation is performed only for the initial pro-
file. The computational domain is a square of lateral size λ ,
the radius of the resonators is r = 0.057λ and the distance
from the centre of mass of the resonators and the still water
level is d = 0.094λ . The Reynolds number based on the wave-
length and phase speed is set to Re = ρg1/2λ 3/2/µ = 105,
with ρ and µ the density and viscosity of the high density
phase. All simulations are performed with a grid of 512×512
computational nodes.

We performed simulations for different numbers of res-
onators per wavelength and different values of the ratio Ω =
ωr/ω . The different cases are studied by changing the proper
frequency and number of the oscillators, while keeping the
amplitude and the length of the initial sinusoidal wave un-

changed. This choice prevents a priori any change in the wave
steepness which would in turn affect the nonlinearity of the
wave dynamics.

III. RESULTS

We first consider a single resonator placed at the centre
of the domain where a monochromatic wave of wavelength
λ = 1 (in non dimensional units) propagates. In figure 2 we
report the snapshot of the horizontal velocity component u,
the interface location and the oscillator position for the case
Ω = 1 at four instants of time, t/T = 0.5,1,1.5,2, with T the
wave period. Wave motion forces the resonator to move due to
pressure and viscous stresses distribution; the resonator, then,
is pulled back to its original position by the elastic force and
starts to oscillate around its equilibrium position. This motion
induces perturbations on the interface, clearly visible at later
stage of the process (figure 2d), leading to vorticity production
at the surface which enhances the energy dissipation.

In figure 3 we show the time history of the displacement
of the centre of mass of the resonator for Ω = 1, i.e. when
the frequency of the wave is about the frequency of the res-
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FIG. 3: Time history of the center of mass displacement of
one resonator placed in the middle of the domain for two

different values of Ω; the inset shows the wave amplitude vs.
time for the same cases.

onator, and for Ω = 0.25, i.e. the frequency of the wave is 4
times the frequency of the resonator. In one period the wave
has travelled the full domain. Due to the periodic bound-
ary conditions, the wave re-enters the domain from the left
with a reduced amplitude, both because of its natural decay
due to viscosity and because of the interaction with the res-
onators. Therefore, the resonator oscillates with a decreasing
amplitude (as highlighted in figure 3), since they are forced
by waves whose amplitude is decreasing in time. In the in-
set of the figure we plot the wave amplitude (computed as the
difference between the maximum and minimum value of the
surface elevation) vs. time for the same cases: the simulation
with Ω = 1 exhibits a stronger decrease of wave amplitude
which is in line with an increase of dissipation, as discussed
below.

We find very instructive to show the space-time plots of the
surface elevation, displayed in figure 4. The presence of the
resonator induces a local perturbation of the surface elevation;
this is clearly visible in the top panel of figure 4, correspond-
ing to the case with a fixed cylinder located at x/λ = 0.5. Ad-
ditionally, when the solid body oscillates, the interaction with
the propagating surface gravity wave leads to the generation of
a wave travelling in the opposite direction with respect to the
original one. This is highlighted in the middle panel of figure
4 by a brown line. For this simulation the period of the res-
onator is four times the wave period (Ω = 0.25) and after ap-
proximately four non-dimensional times there is an inversion
of the direction of propagation of the wave, which is again
recovered after four more wave periods. For the case Ω = 1,
bottom panel of figure 4, a similar dynamics takes place on a
shorter time scale but the evolution of the free-surface is less
regular.

In the following we will quantify the dissipated power dur-
ing the wave propagation as a function of Ω and the num-
ber of resonators per wavelength. Due to the non-stationary
nature of the system, such measure must be described in a
time-dependent fashion. When a surface gravity wave of
small amplitude (i.e. small steepness ε = ak) propagates
freely, its total energy decays with an exponential rate equal

FIG. 4: Space-time evolution of the surface elevation: (top)
Ω = 0;(middle) Ω = 0.25; (bottom) Ω = 1. The two lines in

the middle panel highlight forward (black line) and backward
(brown line) propagating waves.
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FIG. 5: Time history of the total energy vs the frequency
ratio Ω for the case of one single resonator.

to E(t) = E(0)e−2γt , as described by Landau and Lifshitz24.
Here, the wave energy E(t) is the sum of the kinetic and po-
tential contribution defined as:

E(t) =K(t)+U(t) =

1
2

∫
λ

0

∫
η

−h
ρ|u|2dzdx+

∫
λ

0

∫
η

−h
ρgzdzdx−Ū

(11)

where z = −h is the position of the flat bottom, z = η(x, t) is
the displacement of the surface with respect to its equilibrium
position and Ū =

∫
λ

0
∫ 0
−h ρgzdzdx =−ρgλh2 the potential en-

ergy of the still water level. E(0) is the initial energy budget
of the wave and γ = 2νk2 is the decaying rate, ν being the
kinematic viscosity of the fluid. As mentioned, our aim is
to evaluate the effect of the resonator on the propagation of
the wave for different values of the frequency of the resonator
ωr. If the oscillator were in vacuum or in a low density fluid,
its frequency would simply be given by ωr =

√
κ/m; how-

ever, because of the presence of a dense fluid, a proper eval-
uation of the latter needs to account also for the added mass
given by the surrounding fluid which results in a frequency
ωr =

√
κ/(m+ρwV ), with V the volume of the resonator.

We start first by studying the interaction of a single res-
onator with the wave. Depending on the ratio Ω, the energy
transfer from the wave to the resonator can be more or less ef-
fective. The effectiveness of the energy transfer from waves
to the resonators is more clearly visible in the total energy
history of the wave displayed in figure 5. The plot shows
that small and large values of Ω are associated with smaller
dissipation, whereas values of Ω close to unity are more dis-
sipative. In these cases, a large amount of energy is dissi-
pated in few wave periods. To quantify the dissipation we
have performed a fit of these curves with an exponential form
E(t)∼ E(0)exp[−Dt]. The coefficients of the fit are reported
in figure 6, where we show the results for simulations with
up to 4 resonators. The curves show a clear peak of dissipa-
tion around Ω = 1. The plots include the results for arrays
of fixed cylinders, labelled by Ω = 0. Independently of the
number of resonators, we observe a range of frequency ratios,
between 0 and 1, for which the dissipation is smaller than for
the case of fixed resonators. Such dip is particularly evident
for the case with one resonator per wavelength and is reduced
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FIG. 6: Dissipation coefficient D normalised with the value
for simple travelling wave D0 vs the frequency ratio Ω for

different number of oscillators. In the inset the same data are
reported normalised with respect to the dissipation

corresponding to the case of fixed cylinders DΩ0 (computed
separately for each case).

when the number of cylinders is increased. The dissipation
then increases and has a peak for Ω ∼ 1. For Ω > 1 it de-
creases and appears to approach an asymptote close to the
value found for fixed cylinders. It is worth noticing that the
curves in figure 6 resemble the curves reported for a system
for wave energy conversion18 in which the focus is on max-
imising the extracted power. This seems to indicate that the
system of submerged resonators is a rather efficient system in
dissipating wave power. As the number of resonators is in-
creased, the dissipation also increases. However, this is not a
trivial effect due to the total viscous drag of the cylinders on
the fluid. Indeed, the ratio between the peak value of the dis-
sipation (around resonance) and the fixed-cylinder value in-
creases as the number of resonator increases between 1 and 3,
and appears to decrease with 4 resonators. This suggests that
non-trivial interaction effects are present. It is also interesting
to observe that the width of the dissipation peak, and therefore
the range of frequencies for which the dissipation is greater
than the fixed-obstacle case, becomes wider. Therefore, de-
creasing the ratio between the wavelength of the wave and
the wavelength of the periodic structures enlarges the range of
frequencies for which an array of resonators produces a gain
in dissipated power with respect to an array of fixed obstacles.
An example of the flow field with four resonators and Ω= 1 is
reported in figure 7. In this case the characteristic size of the
perturbations induced by the resonators on the interface is of
order of the size of the periodic structure. It is worth mention-
ing that, in the presence of a current, two main effects could
be expected: i) beacuse of the Droppler shift, the frequency of
the wave can be shifted with respect to the one without a cur-
rent; this would lead simply to an horizontal shift of figure 6;
ii) The current may result in an extra force on the cylinder due
to the exchange of the momentum between the current and
the resonator. Clearly if the current is small compared to the
velocities induced by the waves, the effect is negligible. How-
ever, in the case of strong current, the cylinder may enter into
an overdamped regime and may not oscillate anymore. How-
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FIG. 7: Snapshots of the horizontal velocity component u,
interface location and resonators position for the case with

four resonators and Ω = 1 after one wave period. Colors as in
figure 2. (Multimedia view)

ever, the present model can handle the presence of a current,
since it will be included in the rhs of (6)

In figure 8 we report the time history of the centre of mass
of the resonators for Ω = 1 and for different number of res-
onators. In the case of two oscillators (figure 8b), the curves
have a Pearson correlation index of about -0.94 indicating that
the oscillators are in phase opposition, as also clearly shown
by the plot. For the case of three oscillators, instead, the cor-
relation indexes of the curves are all about -0.5 because of a
phase shift in the motion of the resonators (figure 8c). Finally,
in the last case we find that the oscillators are correlated over
a distance equal to λ/2, since the correlation coefficients for
the first and third resonator, as well as that for the second and
fourth, are about -0.97, while for the other pairs the coefficient
is about 0.1.

IV. CONCLUSIONS

In this work, we have proposed to exploit the concept
of mechanical metamaterials in the field of fluid mechanics,
using of submerged resonators that interact with travelling
waves, absorbing and dissipating mechanical energy. In order
to properly describe the behaviour of the system, we have sim-
ulated the full Navier-Stokes equations for multiphase flows
with fluid-structure interaction; this approach allows for a
complete and detailed evaluation of hydrodynamic forces act-
ing on the resonators and of the energy dissipation.

We have performed simulations in a periodic square domain
of size equal to the wavelength of the wave, varying the elas-
tic force acting on the resonators (i.e. their natural frequency)
and the number of resonators per wavelength. We have com-
puted the time history of the wave energy and found a dissipa-
tion coefficient by fitting the energy decay with an exponen-
tial form, similar to that of the viscous dissipation of a simple

travelling wave. By doing so, we have found that there is a
peak of dissipation when the frequency of the wave and the
frequency of the resonators approximately coincide. The dis-
sipation observed at the peak is much larger that that caused
by an array of fixed cylinders, so that the width of the peak
represents the range for which the oscillatory dynamics (and,
possibly, the fluid-mediated interaction among the structures)
produces a gain in the dissipated power. Finally, the presence
of a dissipation peak centred around a characteristic frequency
suggests the presence of a band gap in the dispersion relations.
The width of such band gap should increase with the number
of resonators.

Future work will focus on coupling this system with a nu-
merical wave maker to properly evaluate the dispersion rela-
tion and also to investigate the effect of resonator masses on
the band gap. Additionally, the extension of the method to
deformable solid bodies could open the field of applications
also to flexible underwater structures. This work could open
new applicative possibilities to realize low-cost, minimally in-
vasive devices for ocean wave attenuation, contributing to re-
duced costal erosion or protection of infrastructure such as
offshore platforms or harbours.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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