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Abstract 

Background Engraftment arrhythmias (EAs) are observed in large animal studies of intramyocardial 

transplantation of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) for myocardial 

infarction. Although transient, the risk posed by EA presents a barrier to clinical translation. 

Objectives We hypothesized that clinically approved antiarrhythmic drugs can prevent EA-related 

mortality as well as suppress tachycardia and arrhythmia burden.  

Methods hPSC-CM were transplanted into the infarcted porcine heart by surgical or percutaneous 

delivery to induce EA. Following a screen of antiarrhythmic agents, a prospective study was conducted 

to determine the effectiveness of amiodarone plus ivabradine in preventing cardiac death and 

suppressing EA.  

Results EA was observed in all subjects, and amiodarone-ivabradine treatment was well-tolerated. None 

of the treated subjects experienced the primary endpoint of cardiac death, unstable EA or heart failure 

compared to 5/8 (62.5%) in the control cohort (hazard ratio 0.00; 95% confidence interval, 0–0.297; p = 

0.002). Overall survival including two deaths in the treated cohort from immunosuppression-related 

infection showed borderline improvement with treatment (hazard ratio 0.21; 95% confidence interval, 

0.03–1.01; p = 0.05). Without treatment, peak heart rate averaged 305 ± 29 beats per min (bpm), 

whereas in treated subjects peak daily heart rate was significantly restricted to 185±9 bpm (p = 0.006). 

Similarly, treatment reduced peak daily EA burden from 96.8 ± 2.9% to 76.5 ± 7.9% (p = 0.003). 

Antiarrhythmic treatment was safely discontinued after approximately one-month of treatment without 

recrudescence of arrhythmia.  

Conclusions The risk of engraftment arrhythmia following hPSC-CM transplantation can be reduced 

significantly by combined amiodarone and ivabradine drug therapy.  
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Condensed Abstract 

Engraftment arrhythmia (EA) is a transient but serious complication of cardiac remuscularization 

therapy. Using a porcine model of cardiac remuscularization and EA, ivabradine and amiodarone were 

independently effective in suppressing tachycardia and arrhythmia, respectively. Baseline amiodarone 

combined with adjunctive ivabradine successfully prevented cardiac death, unstable EA and heart failure 

(hazard ratio 0.00; 95% confidence interval, 0–0.297; p = 0.002) and significantly suppressed peak daily 

heart rate and arrhythmia burden (p=0.006 and 0.003, respectively). Antiarrhythmic treatment was 

successfully discontinued after one-month without recrudescence of arrhythmia. We conclude that EA 

can be suppressed by combined amiodarone and ivabradine drug therapy. 
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Abbreviations 

CI  Confidence interval 

EA  Engraftment arrhythmia 

ECG  Electrocardiogram 

hESC-CM Human embryonic stem cell-derived cardiomyocyte 

hPSC-CM Human pluripotent stem cell-derived cardiomyocyte 

MI  Myocardial infarction 

NHP  Non-human primate 

PF  Purkinje fiber 

VF  Ventricular fibrillation  
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Introduction 

Ischemic heart disease including myocardial infarction (MI) and heart failure remains the leading cause 

of death in the United States and around the world (1). Approximately one billion cardiomyocytes are 

permanently lost during MI (2) and an increasing proportion of MI survivors—an estimated 20 to 40% 

(3,4)—later develop heart failure. Current treatments can slow the initiation and progression of heart 

failure, but none replaces lost myocardium, short of orthotopic heart transplantation, which remains 

restricted in availability and indication (5). Human pluripotent stem cells (hPSCs, comprising embryonic 

stem cells [ESCs] and their reprogrammed cousins, induced pluripotent stem cells [iPSCs]) are a 

renewable source of cardiomyocytes (CMs). Transplantation of hPSC-derived cardiomyocytes (hPSC-

CMs) into infarcted myocardium of small animals—mice, rats, and guinea pigs—has shown stable 

engraftment (6-10). More recently, our group and others have shown remuscularization and functional 

benefit in infarcted non-human primates (NHP) following transplantation of pluripotent stem cell-

derived cardiomyocytes (11-13). In addition to functional remuscularization, the human graft 

vascularizes and electromechanically couples with the host myocardium within one-month post-

transplant and remains durable up to three months, the longest time tested. 

Although no arrhythmias were observed in smaller animals, we and others consistently observe 

ventricular arrhythmias following hPSC-CM transplantation in NHPs (11-13) and pigs (14) which we 

have called “engraftment arrhythmias” (EAs). EAs are generally transient, occurring within a week of 

transplantation and typically resolve spontaneously after approximately one-month. Based on electrical 

mapping, overdrive pacing, and cardioversion studies, EAs appear to originate focally in the graft or 

peri-graft myocardium and function as automatous foci rather than reentrant pathways (12,14). Although 

EA is reasonably well-tolerated in NHPs, the Laflamme group (14) reported that EA can be lethal in 
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pigs. For this reason, EA has emerged as the biggest impediment to the clinical translation of human 

cardiomyocyte transplantation (15).  

We hypothesized that the risk of EA may be mitigated by treatment with clinically available anti-

arrhythmic drugs. Because the pig shows heightened sensitivity to EAs, is a well-established model in 

cardiovascular research (16) and cell therapy (17), whose larger heart permits the use of percutaneous 

delivery catheters, we chose to test the hypothesis in this large animal model. In the first phase of our 

study, we screened a panel of seven anti-arrhythmic agents. The broad-acting (class III) antiarrhythmic 

amiodarone and the pacemaker inhibitor (class 0) ivabradine emerged independently as the most 

promising agents for control of rhythm and rate, respectively. We therefore performed a second phase to 

test the effect of combined amiodarone and ivabradine treatment. We found that this regimen reduced 

sudden cardiac death, as well as suppressed tachycardia and arrhythmia.  

 

Methods 

hESC-CM production 

These studies were approved by the University of Washington Stem Cell Research Oversight 

Committee. Two lines of hESCs were used in this study. Initial subjects received H7 (WiCell)-derived 

cardiomyocytes that were cultured, expanded, and differentiated in suspension-culture format by 

collaborators at the Center for Applied Technology Development at the City of Hope in California, all as 

previously described (11,12,18). Most subjects received RUES2 (Rockefeller University)-derived 

cardiomyocytes produced in our laboratory in stirred suspension culture format. Briefly, RUES2 hESC 

were cultured to form aggregates and were expanded in commercially available media (Essential 8, 

Gibco). For cardiac differentiation, suspension adapted pluripotent aggregates were induced to 

differentiate in RPMI-1640, MCDB-131, or M199 supplemented with B-27 (all from Gibco) or serum 
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albumin, by timed use of small molecule GSK 3 inhibitors and Wnt/β-catenin signal pathway inhibitors 

(Tocris). Twenty-four hours prior to cryopreservation, RUES2 hESC-CMs were heat-shocked to 

enhance their survival after harvest, cryopreservation, thaw, and transplantation. Cardiomyocyte 

aggregates were dissociated by treatment with Liberase TH (Fisher) and TrypLE (Gibco) and were 

cryopreserved in CryoStor CS10 (Stem Cell Technologies) supplemented with 10 μM Y-27632 (Stem 

Cell Technologies) using a controlled-rate liquid nitrogen freezer. Approximately 3 h before 

transplantation, cryopreserved hESC-CM were removed from cryogenic storage (-150 ˚C to -196 ˚C) 

and thawed in a 37 °C water bath (2 min ± 30 s). RPMI-1640 supplemented with B-27 and ≥200 Kunitz 

Units/mL DNase I (Millipore) was added to the cell suspension to dilute the cryopreservation media. 

Subsequent wash steps were done using RPMI-1640 basal media in progressively smaller volumes to 

concentrate the cell suspension. For the last centrifugation step, the cell pellet was resuspended in a 

sufficient volume of RPMI-1640 to achieve a target cell density for injection of ~3 x109 cells/mL in 1.6 

mL. The final volume of the cell suspension was determined by the results of a count sampled before the 

final centrifugation step. Cell counts were performed as described previously to achieve a final total 

dose of 500x106 live cells per transplant (12). 

Study design 

The objective of this study was to identify a pharmacological regimen to attenuate arrhythmias 

following cardiac remuscularization therapy. This study was designed in two phases: the first to observe 

the natural history of EA in the minipig model and screen various antiarrhythmic agents for possible 

efficacy, and the second to rigorously test for efficacy of selected candidates (Fig. 1). All subjects were 

30–40 kg castrated male Yucatan minipigs between 6–13 months of age (Premier BioSource). In Phase 

1, nine subjects underwent cardiac remuscularization therapy with 500 x 106 hESC-CMs delivered by 

direct surgical trans-epicardial injections or, later by percutaneous trans-endocardial injections (Table 1). 
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The first four subjects (one non-infarcted and three infarcted) were followed to learn the natural history 

of EA and establish clinical endpoints and parameters for the Phase 2 drug trial. The subsequent five 

subjects underwent systematic dosing with antiarrhythmic agents with continuous electrocardiography 

(ECG) monitoring to determine effect on rhythm and rate (Online Table 1, Online Methods). Among the 

nine subjects in Phase 1, we observed high mortality, with six out of nine experiencing ventricular 

fibrillation (VF) or tachycardia-induced heart failure requiring euthanasia. VF typically followed 

frequent episodes of unstable EA >350 beats per minute (bpm), and tachycardia-induced heart failure 

requiring euthanasia was characterized by chronically elevated heart rates >150 bpm.  

In Phase 2, we conducted a two-drug antiarrhythmic study with amiodarone and ivabradine, enrolling an 

additional 17 subjects (9 treated, 8 untreated) that underwent MI and percutaneous transplantation with 

hESC-CMs at two weeks post-MI. Two additional subjects underwent MI with sham vehicle injection to 

serve as sham transplant controls (Fig. 1, Online Fig. 1). The primary endpoint was prespecified as 

combined cardiac death (either spontaneous death from arrhythmia or heart failure, or clinically directed 

euthanasia necessitated by sustained tachycardia >350 bpm or signs of heart failure). Prespecified 

secondary endpoints were suppression of tachycardia, percent time in arrhythmia (arrhythmia burden) 

and resolution of arrhythmia, termed “electrical maturation” and defined as arrhythmia burden <25% for 

48 consecutive hours. Antiarrhythmic therapy was discontinued after electrical maturation or post-

transplantation day 30, whichever was earlier. To prevent tachycardia-induced cardiomyopathy, we 

titrated ivabradine treatment to maintain target heart rate <150 bpm. Based on early experience that 

tachycardia >350 bpm often degenerated to VF, subjects were euthanized humanely if heart rates >350 

bpm were reached. Continuous telemetric ECG was monitored for eight weeks total (two weeks post-MI 

and six weeks post-transplantation). Of note, subjects 1 and 2 (untreated) and 3 and 4 (treated) received 

H7 hESC-CM and subjects 1, 2 and 3 were transplanted surgically prior to adopting percutaneous 
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delivery. Subject 5 was euthanized on day 37 as a prespecified endpoint following electrical maturation, 

prior to extending the study duration to 6 weeks post-transplantation for extended treatment washout and 

monitoring. 

Cardiac remuscularization therapy 

Cell transplantation for our three initial subjects (1–3) was performed by direct transepicardial injection 

into the peri-infarction region as previously described for NHP with minor modification (12). Briefly, a 

partial median sternotomy was performed to expose the infarcted anterior left ventricle. Purse-string 

sutures were preplaced at five discrete locations subtended by the LAD, targeting the central ischemic 

region and lateral border zones. After cinching the purse-string tightly around the needle, three 

injections of 100 µL each were performed by partial withdrawal and lateral repositioning, for a total of 

15 injections to deliver total dose of 500 x 106 hESC-CMs. All subsequent subjects (4–19) received cell 

transplantation via percutaneous trans-endocardial injection using the NOGA-MyoStar platform 

(BioSense Webster) to first map the infarct region in the left ventricle, and then to deliver 16 discrete 

endocardial injections of 100 µL each for total dose of 500 x 106 hESC-CMs. Injections were only 

performed with excellent location and loop stability, ST-segment elevation and presence of premature 

ventricular contraction (PVC) with needle insertion in an appropriate location by electroanatomical map 

and unipolar volage. For both surgical and percutaneous cell transplantation, two-thirds of injections 

were placed into the peri-infarct border zone defined by unipolar voltage of 5–7.5 mV and the remaining 

one-third into the central ischemic region defined as unipolar voltage of < 5 mV. Two subjects (9 and 

10) were infarcted as per protocol but received sham injections of RPMI-1640 vehicle without cells to 

serve as sham transplant controls. 
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Antiarrhythmic treatment 

The treated cohort was loaded with oral amiodarone 1000–1200 mg orally twice daily starting seven 

days prior to cell transplantation followed by maintenance dose of 400–1000 mg orally twice daily to 

maintain a steady-state plasma level of 1.5–4.0 µg/mL (Online Fig. 2). Ivabradine was started at 2.5 mg 

orally twice daily when sustained tachycardia reached ≥ 150 bpm and titrated every 3 days up to 15 mg 

twice daily for goal heart rate < 125 bpm. All but one subject (1) required adjunctive ivabradine for 

additional heart rate control. Antiarrhythmics were discontinued after electrical maturation was achieved 

or post-transplantation day 30, whichever was earlier, to allow for treatment washout and assess for 

recrudescence of arrhythmia. All subjects tolerated the antiarrhythmic regimen without complication. 

Untreated and sham transplant control subjects did not receive antiarrhythmic agents following the MI 

procedure, but otherwise received all immunosuppression and standard care. 

Statistical analysis 

Statistical analyses and graphing were performed using Prism 8.4.2 software (GraphPad) and Stata 15 

(StataCorp, College Station, Texas). Data are presented as mean ± standard error of the mean (SEM). 

Comparisons were performed using Mann-Whitney test with significance threshold of P < 0.05 unless 

otherwise specified. The sample size to demonstrate a difference in mortality rate of 67% (untreated 

group) versus 0% (treatment group), with alpha 0.05 and 90% power, was estimated to be 8 per cohort. 

Kaplan-Meier plots show survival curves for the primary endpoint of cardiac death, unstable EA or heart 

failure, and for all-cause mortality. Cox proportional regression models are used to estimate the hazard 

ratio (HR) between the two treatment groups, for the primary outcome and for mortality. Significance is 

based on the likelihood ratio test and confidence intervals on HR are computed by inverting the 

likelihood test, based on varying the offset term in the stcox procedure in Stata. 
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Results 

Clinical history of engraftment arrhythmia  

A flow chart for all subjects in the study is shown in Fig. 1 and clinical summaries are provided in Table 

1. No significant arrhythmias were noted in the two untreated sham transplant control subjects (9 and 

10) that underwent myocardial infarction and percutaneous intracardiac injection of vehicle. All subjects 

that received human cardiomyocyte grafts developed EA between 2–6 days following cell 

transplantation. Initiation of EA was characterized by salvos of non-sustained VT, and this typically 

progressed to periods of sustained VT with rates ranging from 110 to 250 bpm (Fig. 2). The VT was 

often polymorphic, with the same subject showing different electrical axes and both wide- and narrow-

complex tachycardia at different times. In four of the eight untreated subjects, EA was either fatal or 

necessitated euthanasia due to a prespecified endpoint of unstable tachycardia (defined as sustained 

heart rate > 350 bpm). In one additional untreated case (subject 12), acute heart failure was noted 

clinically shortly after initiation of EA at a rate of 300 bpm, and based on recommendations from 

veterinary staff, the subject was euthanized. Signs of heart failure were subsequently confirmed on 

necropsy. In all other cases, EA was noted with a rapid acceleration to > 350 bpm (subjects 11 and 12) 

and, in two cases, deterioration to VF prior to euthanasia (subjects 1 and 2) (Table 1). Three out of four 

arrhythmic endpoints occurred within the first three days of developing EA, and they occurred when 

tachyarrhythmia was nearly constant. Mean heart rate peaked at day 8 post-transplantation and began to 

decline after that, whereas the arrhythmia burden plateaued from days 8–16 and began to normalize 

thereafter. Of the three survivors in the untreated cohort, two did not normalize rhythm and experienced 

on average 42% arrhythmia burden at the end of study (subjects 15 and 17). The single subject in the 

untreated cohort that normalized heart rate and rhythm did so on day post-transplant day 26 (subject 11).  
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Screening drugs for anti-arrhythmic effects 

In Phase 1 of the study, we screened six canonical antiarrhythmic agents broadly targeting sodium 

channels, potassium channels, and beta-adrenergic receptors: lidocaine (class Ib Vaughan-Williams-

Singh antiarrhythmic, sodium channel inhibitor), flecainide (Ic, sodium channel inhibitor), propafenone 

(Ic, sodium channel inhibitor), amiodarone (III, potassium channel inhibitor), sotalol (III, potassium 

channel inhibitor) and metoprolol (β1-adrenergic receptor inhibitor) for effect on EA heart rate and 

rhythm. In addition, the funny current/HCN4 channel antagonist, ivabradine, was tested (Online Table 

1). This series was not meant to be comprehensive but rather to rapidly identify candidate agents. 

Animals were brought into the laboratory while in EA, anesthetized, and the effects of short-term 

intravenous infusion or oral treatment of anti-arrhythmic agents were studied. In three instances, 

intravenous amiodarone successfully cardioverted unstable EA from >350 bpm to a lower heart rate, 

typically including brief episodes of sinus rhythm (Fig. 3A). Oral ivabradine demonstrated robust dose-

dependent effects on heart rate but did not restore sinus rhythm (Fig. 3B). Four of the other drugs had no 

significant effect in this screen (lidocaine, flecainide, sotalol, and metoprolol). Propafenone briefly 

reduced heart rate and restored sinus rhythm in two drug challenges, but this drug was associated with 

substantial gastrointestinal toxicity and not studied further (data not shown).  

Amiodarone-ivabradine enhance survival 

Given their distinct mechanisms of action and complementary effects on heart rate and rhythm, we 

formally tested the hypothesis that amiodarone along with ivabradine would reduce a combined primary 

endpoint of cardiac death, unstable EA >350 bpm and heart failure in Phase 2 of the study. A total of 

nine treated, eight untreated, and two sham transplant subjects were enrolled in the study with similar 

baseline and cell transplantation characteristics (Table 1). As detailed in the Methods, treated animals 

received bolus and maintenance doses of amiodarone, and ivabradine was given as needed to keep heart 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 16, 2021. ; https://doi.org/10.1101/2021.02.15.431108doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.15.431108


12 
 

rates <150 bpm. All treated subjects survived without the primary cardiac endpoint compared to 3/8 

(37.5%) of untreated subjects (Fig. 4A). The hazard ratio of the primary endpoint was 0.000 (95% CI, 

0.000–0.297; p = 0.002) with antiarrhythmic treatment. Of note, two of the treated subjects (3 and 6) 

experienced non-cardiac deaths at post-transplant days 19 and 26 due to immunosuppression-related 

complications (Pneumocystis pneumonia and porcine cytomegalovirus, respectively). Intention-to-treat 

analysis of overall survival also favored the treated cohort with hazard ratio of 0.212 (95% CI, 0.030–

1.007; p = 0.05) (Fig. 4B).  

Suppression of tachycardia and arrhythmia burden  

Pooled and individual subject-level data of heart rate and arrhythmia burden are provided in Figs 5A/5B 

and 5C/5D, respectively. The average heart rate was significantly lower with antiarrhythmic treatment 

compared to no treatment. Mean heart rates peaked at post-transplantation day 7 in untreated animals at 

163 ± 35 bpm, versus average heart rates of 90 ± 10 bpm in the treated cohort (p = 0.03) (Table 1 and 

Fig. 5). Heart rate in the treated animals was not significantly different than the normal resting heart rate 

prior to MI and transplant (84 ± 1 bpm, p = 0.21). Following transplantation, peak daily heart rate for the 

study duration averaged 305 ± 29 bpm in untreated animals, whereas treatment significantly attenuated 

peak heart rate to 185 ± 9 bpm (p = 0.005) (Fig. 5E). We defined arrhythmia burden as the percentage of 

the day spent in arrhythmia. Treatment reduced peak arrhythmia burden from 96.8 ± 2.9% to 76.5 ± 

7.9% (p = 0.003) (Fig. 5F). No differences in heart rate or arrhythmia burden were noted at post-

transplant day 30, as the majority of arrhythmia had resolved irrespective of treatment (Fig. 5A/B) (p = 

0.09 and p = 0.52, respectively). 

Antiarrhythmic treatment was safely discontinued between day 24–34 in all treated subjects that 

achieved electrical maturation without recrudescence of arrhythmia (Fig. 5). Two treated and two 

untreated subjects (3, 4 and 15, 17, respectively) failed to mature electrically and exhibited significant 
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arrhythmia at the end of study. In these four animals, heart rates were well controlled irrespective of 

treatment, and they survived until the study’s completion. Average serum amiodarone was sub-

therapeutic at 0.42 ± 0.12 µg/mL within 1 week of discontinuation (Online Fig. 2).  

Percutaneous delivery of hESC-CMs in infarcted porcine model 

Catheter-based endocardial delivery of hESC-CMs was safe and effective in remuscularizing the 

infarcted porcine heart (Online Fig. 3). No significant differences in myocardial infarct or 

cardiomyocyte graft sizes were observed between the treatment groups. The average infarct size for the 

treated and untreated cohorts were comparable at 11.7±1.1% and 10.5±2.0% of the left ventricle, 

respectively (p=0.59). Graft size relative to infarct size was also comparable at 2.3±0.7% and 2.8±1.3% 

for treated and untreated, respectively (p= 0.74). Delivery of hESC-CM successfully targeted the peri-

infarct border zone and central ischemic regions as intended and resulted in discrete hPSC-CM grafts 

transplanted into host myocardium, as previously reported (11-14). All grafts localized to the anterior, 

antero-septal and antero-lateral walls and as previously reported in pig (14), appeared structurally 

immature at early time points before two weeks post-transplantation with increasing maturity up to the 

end of study. 

Graft interaction with host Purkinje conduction system 

The narrow-complex tachycardia that resembles accelerated junctional rhythm (Fig. 2) was not observed 

in our previous NHP studies (11,12) but was common in the minipig. Pigs are known to have an 

extensive Purkinje fiber network that extends transmurally throughout the ventricular myocardium, 

whereas in macaques and humans the Purkinje network is subendocardial (19,20). We hypothesized that 

the narrow-complex VT resulted from graft automaticity conducting through intramural Purkinje fibers 

and propagating to the rest of the ventricle. Histology confirmed the mesh-like network of intramural 

Purkinje fibers (PFs) throughout the minipig left ventricle (Online Fig. 4A, Online Video 1). There were 
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multiple examples of hESC-CM grafts in direct contact with these intramural branches of the Purkinje 

system. (Fig. 6, Online Video 2). We used connexin 40 (Cx40) immunostaining to specifically stain 

Purkinje fiber gap junctions (19,21), and confirmed their identity by their reduced myofibril content and 

the absence of T tubules (Online Fig. 4B). This supports the hypothesis that the pig’s unique Purkinje 

network anatomy contributes to narrow-complex engraftment arrhythmia.  

 

Discussion 

Intramyocardial transplantation of hPSC-CM is a promising strategy to remuscularize the infarcted heart 

and restore function (5). Such a therapy to prevent and treat heart failure would be a seminal advance in 

addressing a large unmet clinical need. Studies in large animals have demonstrated long-term efficacy 

but also defined a significant safety signal of generally transient but potentially fatal arrhythmias. As 

demonstrated in earlier studies (12-14), EA is a predictable complication of cardiac remuscularization 

therapy for myocardial infarction (22). In the NHP, EA typically presents as a wide-complex tachycardia 

with a variable electrical axis (11,12), and this was reproduced in the minipig recently by Laflamme 

laboratory (14). Here, we further describe EA as polymorphic and interpret the changes in electrical axis 

as ectopy originating from different graft foci. Interestingly, in the pig we also observed a narrow-

complex VT that alternated with a wide-complex tachycardia, a pattern not seen in the NHP. Histology 

of native and grafted porcine myocardium support the hypothesis that the wide-complex beats originate 

from grafts interacting with the working cardiac myocytes with slow conduction, and that the narrow 

complex beats originate when grafts interact with the intramural Purkinje fibers that diffusely permeate 

the porcine heart (19,20).  

All 17 subjects transplanted with 500 x 106 hESC-CMs demonstrated significant burden of arrhythmia 

that, while typically transient, was associated with high mortality in pigs. We observed higher morbidity 
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and mortality related to EA than the recent study by Laflamme and colleagues (14), perhaps reflecting 

differences in our animal model including use of Yucatan minipigs, percutaneous cell delivery, or our 

cell product. Our experience with this model suggests two primary mechanisms of cardiac morbidity. 

Firstly, rapid EA > 350 bpm often degenerates to fatal ventricular fibrillation, and secondly, heart failure 

commonly ensues in pigs with chronic tachycardia > 230 bpm (23). Consequently, our primary endpoint 

included these parameters to limit excessive mortality in our antiarrhythmic trial. 

Combined antiarrhythmic treatment with baseline amiodarone and adjunctive ivabradine safely 

prevented the combined primary endpoint of cardiac death, unstable EA and heart failure in all treated 

subjects, indicating that the risk of EA may be mitigated through pharmacology. Treatment was 

associated with significantly decreased peak tachycardia and arrhythmia. Once subjects experienced 

sustained improvement in arrhythmia burden, termed electrical maturation, antiarrhythmic therapy was 

successfully withdrawn in all subjects. Thus, short-term amiodarone and ivabradine treatment promoted 

electrical stability until the grafts became less arrhythmogenic. 

The mechanism of benefit for our antiarrhythmic treatment may be related to suppression of 

automaticity, reducing both heart rate and arrhythmia burden. The drugs were particularly beneficial 

during the early phase of EA, which carries the greatest risk of deterioration to VF. Electrophysiological 

studies performed by our group and the Laflamme laboratory in NHP (12) and pig (14), respectively, 

suggests that the etiology of EA is increased focal automaticity, rather than macro-reentry typically 

observed with clinical ventricular tachycardia (24). As EA became unstable in the untreated animals, 

heart rates rapidly accelerate to >350 bpm, and we cannot exclude the possibility that this escalation 

could have a distinct mechanism, e.g., automaticity leading to reentry. This may explain why treatment 

successfully suppressed unstable and fatal arrhythmias but was unable to prevent EA altogether.  
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The efficacy of ivabradine to rate-control EA suggests that its pharmacologic target, the If current 

carried by the HCN4 channel, which is highly expressed in immature cardiomyocytes and hPSC-CMs 

(25), may be an important mediator. Ivabradine, by itself, never abrogated EA, suggesting that while the 

If current can accelerate the rate of EAs, If is not the current responsible for generating the ventricular 

automaticity triggered by engraftment. In contrast, amiodarone reduced the burden of EA chronically 

and clearly restored sinus rhythm in some acute infusion experiments (Fig. 3). Although classified 

principally as a K+ channel blocker (class III), amiodarone is well-known also to antagonize Na+ 

channels, Ca2+ channels, and β-adrenergic receptors (26). Thus, it is difficult to gain insights into the 

mechanism of EA from amiodarone’s efficacy. The disappearance of EA coincides with maturation of 

the stem cell-derived graft (11,12,27), and we with others have hypothesized that the window of 

arrhythmogenicity may reflect a period of in vivo graft maturation prior to reaching a state more similar 

to host myocardium (25,28-32). Additional strategies such as promoting maturation prior to 

transplantation, gene editing, and modulating host/cell interaction may provide additional means of 

arrhythmia control and a comprehensive protocol invoking multiple complementary mechanisms of 

action may ultimately be necessary to ensure safety. Further investigation of the etiology of EA would 

be accelerated by the development of higher throughput in vivo, ex vivo, in vitro and/or in silico 

platforms to perform genetic, pharmacological, electrophysiological and/or modeling studies before 

phenotyping in large animal models.  

Engraftment arrhythmia is the most significant barrier to clinical translation of cardiac remuscularization 

therapy. The natural history of EA emerging from the NHP and more recent porcine data suggests that, 

once EA resolves, there is low risk for further arrhythmia. This study provides a proof-of-concept that 

clinically relevant antiarrhythmic drug treatment can successfully suppress fatal arrhythmias and control 
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tachycardia to achieve electrical quiescence. This could be an important tool toward reaching an 

acceptable safety profile for clinical development.  

While this study demonstrates that EA is responsive to pharmacologic suppression, there are several 

limitations. It would be useful to perform a longer follow-up to establish the long-term effectiveness of 

EA mitigation as well as dosing studies to optimize the treatment regimen. We did not randomize 

enrollment of animals or assess whether sex is a biological variable. Although we took pains to 

administer clinically relevant doses of amiodarone and ivabradine, we cannot exclude the possibility that 

EA in itself is dependent on the dose of cells transplanted. The dose utilized is comparable to that 

utilized to demonstrate long-term function benefit in NHP (500 x 106 versus 750 x 106 hESC-CMs, 

respectively),(12) but dosing studies have not been reported. Future studies will also ideally include 

functional endpoints to determine mechanical efficacy with background guideline-directed medical 

therapy such as inhibitors of the renin–angiotensin–aldosterone and β-adrenergic systems.  

 

Conclusions 

In this study utilizing a porcine infarction model of cardiac remuscularization therapy, EA was 

universally observed and associated with significant mortality. Chronic amiodarone treatment combined 

with adjunctive ivabradine successfully prevented the combined primary endpoint of cardiac death, 

unstable EA and heart failure. Overall survival was significantly improved with antiarrhythmic 

treatment and associated with heart rate and rhythm control. The mechanisms of engraftment arrhythmia 

remain incompletely understood and merit concerted scientific inquiry.  
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Central Illustration 

Fig. 4. 

 

Clinical Perspectives 

Heart failure remains a significant cause of morbidity and mortality following myocardial infarction 

(MI). Cardiac remuscularization with transplantation of pluripotent stem cell-derived cardiomyocytes is 

a promising preclinical therapy to restore function. Recent large animal data, however, have revealed a 

significant risk of engraftment arrhythmia (EA). The present study provides proof-of-concept evidence 

that a combination of amiodarone and ivabradine can effectively prevent EA-related mortality and 

suppresses tachycardia and arrhythmia burden. Thus, pharmacologic suppression of EA may be a viable 

strategy to improve safety and allow further clinical development of cardiac remuscularization therapy. 
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Figures 

Fig. 1 Study Design 

Flowchart of the study design. Phase 1 consisted of nine total subjects, four untreated with any 

antiarrhythmic to study the natural history of engraftment arrythmia (EA) and five used to screen seven 

candidate antiarrhythmic agents. Amiodarone and ivabradine were found to have promising signals of 

effect and advanced for further study. Phase 2 consisted of 19 total subjects: nine treated with 

amiodarone and ivabradine and eight untreated following hESC-CM transplantation, and two untreated 

following sham transplantation. 

 

Fig. 2 Engraftment Arrhythmia 

Variable morphologies of engraftment arrhythmia (EA) in a single minipig. Examples of normal 

sinus rhythm (NSR) and three morphologies of EA resembling accelerated junctional rhythm (AJR), 

ventricular tachycardia (VT) and accelerated idioventricular rhythm (AIVR) are observed in a single 

untreated subject (12). Note the variation in rate, electrical axis, and QRS duration. A continuous rhythm 

recording below exhibits polymorphic EA with QRS complexes varying in rate, duration, and electrical 

axis. No sustained arrythmias were noted in surgical sham controls. 1 box vertical 200 mV, horizontal 

0.2 sec.  

 

Fig. 3 Acute effects of amiodarone and ivabradine  

Acute effects of amiodarone and ivabradine on engraftment arrhythmia. Amiodarone was effective 

as an intravenous bolus to cardiovert engraftment arrythmia to normal sinus or a lower heart rate 

transiently in three separate instances (A, red line). Ivabradine administered orally significantly slowed 

EA but did not cardiovert two days following initiation (B). These data supported a combined 
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amiodarone and ivabradine antiarrhythmic strategy for rhythm and rate control of EA. 1 box vertical 200 

mV, horizontal 0.2 sec. 

 

Fig. 4 Kaplan–Meier Survival Curves 

Antiarrhythmic treatment with amiodarone and ivabradine for engraftment arrhythmia in pig. 

(A) Kaplan-Meier curve for freedom from primary outcome of cardiac death, unstable EA or heart 

failure was significantly improved in the treated compared to untreated cohort (p=0.002). Tic marks on 

treatment line indicate non-cardiac death due opportunistic infection (days 19 and 26) or a planned 

euthanasia (day 30). (B) Kaplan-Meier curve for overall survival shows statistically borderline 

improvement in the treated compared to untreated cohort (p=0.051). *Death due to Pneumocystis 

pneumonia. **Death due to porcine cytomegalovirus. Abbreviations: CI, 95% confidence interval. 

 

Fig. 5 Heart Rate and Engraftment Arrhythmia Burden 

Effect of antiarrhythmic treatment on heart rate and arrhythmia burden. Pooled daily average 

heart rate (A) and pooled daily average arrhythmia burden (B) in treated (blue) compared to untreated 

(red) cohort. The difference in heart rate or arrhythmia burden between treated and untreated cohorts 

was not significant (NS) by day 30 post-transplantation. Sham transplant (grey) did not induce 

tachycardia or arrythmia. Subject-level averaged daily heart rate (C) and arrhythmia burden (D) for 

antiarrhythmic treated (blue), untreated (red) and sham transplant (grey). Unexpected death or 

euthanasia denoted by black symbol. Overall peak and mean daily heart rate (E) and overall peak and 

mean daily arrythmia burden (F) were significantly reduced in treated (blue) compared to untreated (red) 

cohorts. No tachycardia or arrhythmias were noted in the sham transplant control cohort. ** p ≤ 0.01.  
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Fig. 6 Graft interaction with host Purkinje conduction system 

Transplanted hESC-CM grafts interact with a diffuse Purkinje conduction system in the porcine 

myocardium. hPSC-cardiomyocyte graft 2-weeks post-transplantation marked by human-specific slow 

skeletal cardiac troponin I (ssTnI, red) interact with Cx40-positive (white) Purkinje fibers. Purkinje-

transitional cell-graft (left panel) and direct Purkinje-graft (right panel) interaction are observed, scale 

bar 100 μm or 20 μm (magnified). 

 

Online Fig. 1 Study timeline 

Study timeline for Phase 2 drug trial of chronic amiodarone and adjunctive ivabradine therapy. 

Myocardial infarction (MI) was induced by 90-minute balloon occlusion of the mid-left anterior 

descending artery two weeks prior to human embryonic stem cell-derived cardiomyocyte transplantation 

(day 0). All subjects received multi-drug immunosuppression. Treated cohort received rate and rhythm 

control with combined oral amiodarone and adjunctive oral ivabradine.  

 

Online Fig. 2 Amiodarone Levels 

Plasma amiodarone levels in pigs. Amiodarone levels were measured in plasma by a custom liquid 

chromatography-mass spectrometry assay. Chronic oral amiodarone in six pigs was discontinued after 

achieving electrical maturation and stabilization of engraftment arrythmia. Serum through 

concentrations of amiodarone were assayed weekly including 3–4 weeks after discontinuation.
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Online Fig. 3 Graft Histology and Injection Location 

hESC-CM graft histology and location. Left panel: Histological sections stained with picrosirius red 

to identify collagen (infarct) and fast green to identify viable myocardium. Adjacent sections labeled 

with human cTnT (brown) identify transplanted hESC-CM graft within unstained porcine myocardium 

and scar tissue. Sections from both treated and untreated subjects were obtained on post-transplantation 

day 42. Right panel: Transplanted hESC-CM grafts were located similarly between treated (blue) and 

untreated (red) cohorts and successfully targeted the infarct and peri-infarct regions of the anterior wall. 
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Online Fig. 4 Purkinje fiber staining in native pig myocardium 

Purkinje fibers are distributed in a mesh-like network throughout the native porcine myocardium 

and are specifically marked by Connexin 40. Subendocardial and intramyocardial connexin 40 

(Cx40)-positive Purkinje fibers (PFs, white) in transverse section of left ventricular free wall, scale bar 2 

mm (A). Intramyocardial PFs are shown with higher magnification insets. Further magnified view of 

white boxed regions show Cx40 localizes to gap junctions of Purkinje cells that display lower sarcomere 

content (F-Actin, red) (i.) and lack T-Tubules (WGA, green) (ii.) in contrast to surrounding 

cardiomyocytes, scale bar 20 μm. Cx40 specifically marks myocardial Purkinje fibers (PFs) diffusely 

distributed in the anterior left ventricular wall cross section, scale bar 2 mm (B).  
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Online Video 1 

Purkinje fibers are distributed in a mesh-like network throughout the native porcine myocardium. 

Confocal z-stack of 28 images, z-step size 0.7 μm. Blue=DNA (Hoechst), Green=WGA, Red=F-Actin 

(phalloidin), White=CX40 

 

Online Video 2 

hESC-cardiomyocytes marked by slow skeletal troponin I (ssTnI) interact with connexin 40+ Purkinje 

fibers. Confocal z-stack of 56 images, z-step size 1 μm. Blue=DNA, Green= F-Actin, Red=ssTnI, 

White=CX40. 
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Table 1 

Characteristics of Study Subjects and Clinical History 

Subject Age – 
days 

Weight – 
kg MI Cell 

line Approach hESC-CM 
cTnT – % 

hESC-CM 
Viability – % 

Infarct size 
– %* 

Graft size – 
%** 

Graft 
mass (g) 

LV mass 
(g) 

HR  – bpm Arrhythmia burden – % of 
time Outcome 

Day 7 Day 30 Day 7 Day 30 
Treated 

3 231 34.7 Yes H7 Surg 98% 89% 6.8% 5.4% 0.5 125.9 73 n/a 2.0 n/a Euthanasia, day 26 (PCP) 
4 227 32.0 Yes H7 Perc 98% 89% 8.2% 7.3% 0.8 137.9 93 94 86.0 97.8 Survival 
5 236 33.0 Yes RUES2 Perc 91% 89% 7.1% 9.0% 0.5 84.0 163 81 25.6 0.5 Survival 
6 231 33.4 Yes RUES2 Perc 91% 90% 10.1% 1.4% 0.1 94.2 100 n/a 47.1 n/a Euthanasia, day 19 (pCMV) 
7 230 37.0 Yes RUES2 Perc 91% 93% 9.6% 0.3% 0.0 142.7 89 79 45.8 28.2 Survival 
8 299 33.5 Yes RUES2 Perc 86% 88% 15.9% 3.4% 0.8 153.3 73 77 67.6 4.7 Survival 
15 271 33.0 Yes RUES2 Perc 89% 88% 10.9% 4.2% 0.5 113.4 79 76 35.4 44.9 Survival 
16 263 34.0 Yes RUES2 Perc 88% 85% 14.6% 0.7% 0.1 136.7 74 69 43.9 7.6 Survival 
18 380 32.5 Yes RUES2 Perc 94% 75% 9.3% 3.7% 0.5 144.5 69 78 1.6 1.6 Survival 

Avg±SEM 263.1±16.8 33.7±0.5       92±1% 87±2% 10.3±1% 3.9±1% 0.4±0.1 125.8±8 90±10 79±3 39.5±9.2 26.5±13.4   
                   

Untreated 
1 267 32.0 No H7 Surg 98% 88% n/a n/a 0.3 75.10 328 n/a 100.0 n/a Primary endpoint day 7 (VF) 
2 314 32.0 Yes H7 Surg 98% 90% 5.8% 5.6% 0.3 92.80 120 n/a 62.7 n/a Primary endpoint day 18 (VF) 
11 283 33.5 Yes RUES2 Perc 82% 87% 9.7% 1.1% 0.1 112.4 166 n/a 94.0 n/a Primary endpoint day 12 (EA) 
12 284 35.0 Yes RUES2 Perc 86% 90% 13.2% 1.0% 0.2 134.9 n/a n/a n/a n/a Primary endpoint day 5 (EA) 
13 292 35.5 Yes RUES2 Perc 87% 83% 16.5% 1.7% 0.3 107.4 162 83 95.9 1.9 Survival 

14 270 33.0 Yes RUES2 Perc 87% 90% 4.6% 9.1% 0.4 93.2 n/a n/a n/a n/a Primary endpoint day 6 
(EA/HF) 

17 209 33.0 Yes RUES2 Perc 98% 70% 13.5% 0.4% 0.1 104.3 106 115 49.1 75.7 Survival 
19 192 33.5 Yes RUES2 Perc 92% 74% 5.4% 3.6% 0.3 139.2 98 84 71.5 51.7 Survival 

Avg±SEM 263.9±14.8 33.4±0.4       91±2% 84±3% 9.8±1.8% 3.2±1.2% 0.2±0 107.4±7.6 163±35 94±11 78.9±8.5 43.1±21.7   
P-value† 0.97 0.73       0.77 0.31 0.82 0.64 0.08 0.12 0.03 0.09 0.01 0.52   

                   
Sham Transplant Control 

9 8.30 33.5 Yes n/a Perc n/a n/a – n/a n/a n/a 71 68 0.8 0.0 Survival 
10 7.77 33.0 Yes n/a Perc n/a n/a – n/a n/a n/a 77 69 1.2 0.8 Survival 

Avg±SEM 8.0±0.3 33.3±0.3                   74±3 69±1 1.0±0.2 0.4±0.4   
* % of left ventricle 
** % of infarct area                
† Treated vs Untreated 

               
Abbreviations: bpm, beats per minute; CK, cytokeratin; EA, engraftment arrhythmia; hESC-CM, human embryonic stem cell-derived cardiomyocytes; HF, heart failure; HR, heart rate; MI, myocardial infarction; surg, surgery; PCP, pneumocystis pneumonia; pCMV, porcine 
cytomegalovirus; perc, percutaneous; VF, ventricular fibrillation 
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