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Abstract. Space and time are key elements for many computer-based
systems and often elevated to first-class abstractions. In tuple-based coor-
dination, Linda primitives have been independently extended with space
(with tuples and queries spanning spatial regions) or time information
(mostly for tuple scoping). However, recent works in collective adaptive
systems and aggregate computing show that space and time can natu-
rally be considered as two intertwined facets of a common coordination
abstraction for situated distributed systems. Accordingly, we introduce
the Spatiotemporal Tuples model, a natural adaptation of Linda model
for physically deployed large-scale networks. Unlike prior research, spa-
tiotemporal properties – expressing where and when a tuple should range
and has to be deposited/retrieved – naturally turn into specifications of
collective adaptive processes, to be carried on in cooperation by the de-
vices filling the computational environment, and sustaining tuple opera-
tions in a resilient way, possibly even in mobile and faulty environments.
Additionally, the model promotes decentralised implementations where
tuples actually reside where they are issued, which is good for supporting
peer-to-peer and mobile ad-hoc networks as well as privacy. In this paper,
we (i) present and formalise the Spatiotemporal Tuples model, based on
the unifying notion of computational space-time structure, (ii) provide
an implementation in the ScaFi aggregate computing framework, turn-
ing tuple operations into aggregate processes, and finally (iii) provide
evaluation through simulation and a rescue case study.

Keywords: tuple-based coordination; spatial tuples; self-organisation; aggre-
gate computing; ScaFi

1 Introduction

Space and time are fundamental aspects of our reality. Space, logical or physical,
plays a fundamental role for many computer-based systems. This has been recog-
nised, e.g., in the Dagstuhl seminar on space-oriented computation [20], where
(i) coping with space for computational efficiency, (ii) embedding in space, and
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(iii) representing space are shown to be dimensions characterising a wide range of
computing applications. Accordingly, several research fields have elevated space
to a first-class abstraction [7]. A notable example in the coordination field, and
specifically in tuple-space coordination [21], is the Spatial Tuples model [30],
where tuples are situated in regions of space and Linda coordination primitives
also depend on the spatial situation of the coordinating agents. Dually, time has
also been investigated as an explicit abstraction, leading to notions of time for
tuple-based systems [26,25]. However, recent works in collective adaptive systems
and field-based coordination/aggregate computing [8,32,6] show that space and
time can naturally be considered as intertwined facets of a common coordination
abstraction for situated distributed systems.

Therefore, in this paper we introduce a tuple-based coordination model that
considers space and time in combined form. Differently from prior research,
spatiotemporal properties – expressing where and when a tuple should range and
has to be deposited/retrieved – naturally turn into specifications of collective
adaptive processes, to be carried on in cooperation by the devices filling the
computational environment, and sustaining tuple operations in a resilient way
even in mobile and faulty environments. Most specifically, an out creates a tuple
that spreads in a dynamically changing region of space, rd similarly spreads a
query that unblocks the initiator if a match is found in the intersection of a
tuple region, and finally in performs like rd but additionally disables/removes
the tuple, making it inaccessible to other queries. Therefore, our contribution is
threefold3:

1. we present the Spatiotemporal Tuples model, in terms of a declarative seman-
tics of coherent tuple space evolution, and a compliant protocol solution by
a set of processes running on a computational space-time structure;

2. we describe an implementation in the ScaFi aggregate computing
toolkit [13,14], where tuple operations and spatiotemporal properties are
expressed as aggregate processes [15] creating so-called computational fields;
and

3. we evaluate model and implementation by means of simulation.

A major merit of the overall approach is that it fosters implementations that are
inherently suitable to different kinds of system deployments, ranging from fully
peer-to-peer systems to centralised, cloud-based architectures.

The paper is organised as follows. Section 2 provides background and related
work in the area of tuple-based and space-based coordination. Section 3 describes
the Spatiotemporal Tuple model. Section 4 describes an implementation of the
model in terms of aggregate processes in ScaFi. Section 5 provides evaluation.
Finally, Section 6 provides conclusion and future work.

3 This work extends the workshop paper in [17] with formalisation, full implementa-
tion, and evaluation.
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2 Background and Related Work

Tuple-based coordination is a coordination paradigm where a collection of pro-
cesses coordinate by reading and writing tuples (ordered groups of values) on a
shared tuple space [21]. Tuple-based coordination logic can be expressed in a lan-
guage, such as the progenitor Linda [21], specifying process evolution in terms of
operations on tuples (e.g., write, read, removal). Tuple-based coordination has
been subject of extensive research, giving rise to several variants, extensions, and
implementations. In particular, in distributed and pervasive computing scenar-
ios, issues with the notion of a centralised tuple space tend to promote alternative
models with several local tuple spaces [22]. In the following literature review, we
survey the main contributions focussing on spatiotemporally situated systems.

2.1 Tuple-based coordination in pervasive systems and space(-time)

Works have been proposed in the literature implementing tuple-based coordi-
nation for peer-to-peer (P2P) and mobile ad-hoc networks (MANETs) [23]. In
these scenarios, challenges and opportunities include mobility, dynamicity, lo-
cality, openness. Such features are often found in nature-inspired systems (cf.
SwarmLinda [31]) and can be exploited to build scalable systems exhibiting col-
lective intelligence [16]. These challenges require proper middleware support and,
sometimes, model and language extensions to deal with specific aspects includ-
ing situatedness and mobility. When a device is physically situated, it also acts
as a representative of a space-time region, providing a means for representing,
measuring, computing space—as exploited by spatial computing approaches [7].

στ -Linda [33] is an approach where Linda operations can be combined with
time- and network-oriented operations. Example constructs include neigh (to
spread an operation to the neighbourhood), next (to post-pone an operation to
the next program evaluation), and finally (to run an operation after a barrier of
other operations). A further extension proposed by στ -Linda is spatiotemporally
limited tuple operations, which this paper develops in a principled way.

LIME [27] provides a support for Linda in MANETs. It distinguishes between
logical and physical mobility of agents and hosts, to model both component
situation as well as topology change. Agents own a tuple space locally, and group
with other co-located and neighbour-host agents to consolidate tuple spaces,
supporting access to the overall tuple space of the entire group by a transient
sharing mechanism. In this paper, we also leverage a notion of “group”, to mean
the set of devices cooperating to support a space-time tuple operation.

The TOTA approach [24] views tuples as dynamic elements, which can be
copied and change both their location and shape. Specifically, scope, transfor-
mation, and maintenance rules can be specified to define and control how tuples
are to be propagated in a network, and how these must evolve and react to
environmental events along the path. In this paper, we leverage similar ideas to
propagate tuple operations (rather than tuples). The idea in TOTA that tuples
automatically propagate to neighbours is also at the basis of the approach of this
paper, where aggregate processes deal with propagation control (cf. Section 4.1).
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In GeoLinda [28], tuples spaces are distributed and geometry-aware: both
tuples and reading operations have a volume (spatial extension). They call the
volume of a tuple its shape, and the volume of a reading operation its addressing
shape. Shapes can take various geometric forms (spheres, cones, etc.) and are
expressed relatively to a device’s location and orientation. In this paper, we
leverage the same idea of giving tuple operations a space-time extension, and also
define a way to express them in spatiotemporally situated networks of devices.

2.2 Spatial Tuples

Spatial Tuples [30] is a coordination model combining tuple-based with space-
based coordination. Its idea is to decorate tuples with spatial information, in
order to situate them to some point in space or some spatial region (in which
case, the tuple is said to have a spatial extension). The Spatial Tuples approach
comprises multiple languages for working with spatial tuples: a communication
language is used to express tuples and tuple templates (for matching), a space
description language is used to express spatial information, and a coordination
language is used for process interaction and evolution. The latter consists of the
following main spatial primitives [30]:

– out(t @ r) — for situating a tuple t to a spatial location or region r.
– rd(tt @ r) — for blocking until a tuple t matching template tt and inter-

secting region r is read (with non-deterministic choice).
– in(tt @ r) — for blocking until a tuple t matching template tt and inter-

secting region r is removed (with non-deterministic choice).

The space description language is application- or domain-specific and may
allow expressing geographic locations and regions. The situation of a tuple, how-
ever, does not need to be constant. For instance, a tuple can be attached to
another situated component, and hence its position would be defined indirectly.
Given a component id, t @ id would express that tuple t is bound to id. Such
a notion of binding is especially relevant in scenarios with mobility. Locations
and bindings could also be specified implicitly:

– t @ here: situates tuple t at the current position of the running component;
– t @ me: the location of tuple t is bound to that of the running component.

The Spatial Tuples approach fosters space-oriented coordination through mecha-
nisms for situated/stigmergic communication, where processes deposit and sense
data at specific locations, and spatial synchronisation, where the actions multiple
interacting processes are ordered depending on their spatial situation.

In Spatial Tuples, the key idea is to use spatial information to annotate
and retrieve tuples. There are parallelisms with attribute-based coordination [1],
whereby attributes are used to form and let ensembles interact. In this work,
however, we consider spatial information not just as a mere annotation to tu-
ples or components but as a specification driving and evolving spatiotemporally
situated computational processes.
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3 A Model for Spatiotemporal Tuple-based Coordination

3.1 Requirements

The Spatiotemporal Tuples model is designed to address the following concerns:

– Space. The model should capture situations in space, and provide suitable
spatial abstractions to capture diverse situations. Namely, we mean to pro-
vide a computational notion of space, where space locations are associated
with computational nodes, and proximity of locations matches the ability of
a device to directly perceive its context, there including message reception.

– Time. The model should dually capture temporal situations, while abstract-
ing over the notion of time, and hence of system evolution. Also, since we
expressly target fully distributed systems, for which no general notion of
global time exists [19], the model should provide the expressiveness to spec-
ify what/how notions of local time can be used and propagated. Menezes et
al. [25] discuss the issues with using external notions of time in Linda-based
systems, and propose to measure time locally to observers of fadeable tuples.

– Consistency. The model should adhere to the general Linda semantics,
namely, ensuring safe interaction of primitives out/rd/in as formalised in
[11]. Unfortunately, in distributed settings, the CAP theorem [10] enters the
picture, asserting that you may pick only two among the three properties:
consistency, availability, and partition tolerance. This is an issue when imple-
menting atomic consumption of tuples (for in operation). However, designers
can leverage the many nuances in these properties and combinations.

– Heterogeneous deployments. The model should provide for a direct im-
plementation for different kinds of underlying platforms, such as MANETs,
P2P networks, client/server, and cloud-based architectures. Namely, it
should be sufficiently general to capture diverse settings, also considering
the architectures and constraints of modern distributed systems.

3.2 Computational space-time model

Defining a spatiotemporal model for Linda primitives requires a suitable under-
lying notion of computability, since there is need of tracking information propa-
gation in space and time. Thus, we base our model on the notion of space-time
computability of [2], which in turn founds on the event structure framework [34].
In this section, we recall this framework, tailored for the needs of this paper.

Definition 1 (Augmented Event Structure [2]). An augmented event
structure is a quadruple E = 〈E, , d, s〉 where E is a countable set of events,
 ⊆ E × E is a messaging relation, d : E → ∆ is a mapping from events to

the devices where they happened, s : E → S is a mapping from events to sensors
status (for any choice of a representation of sensors status σ ∈ S), such that:

– for any δ ∈ ∆, the set of events Eδ = {ε ∈ E | d(ε) = δ} forms a sequence
of chains, i.e., there are no distinct ε, ε1, ε2 ∈ Eδ such that either ε εi for
i = 1, 2 or εi  ε for i = 1, 2,
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Fig. 1: An augmented event structure
E. It depicts events (circle nodes), mes-
saging relations (curly arrows), devices
δ0, ..., δ4 (y-axis) and each circle node
is labelled with the depicted event of
E. Colours denote the causal relation
w.r.t. the reference event ε21 (doubly-
circled, blue), partitioning events into
causal past (red), causal future (green)
and concurrent (non-ordered, in black).

– the transitive closure of  forms an irreflexive partial order < ⊆ E × E,
called causality relation,

– the set Xε = {ε′ ∈ E | ε′ < ε} ∪ {ε′ ∈ E | ε ε′} is finite for all ε (i.e.,
 and < are locally finite).

We say that event ε′ is a supplier of event ε iff ε′  ε.

The intuition of this definition is that the messaging relation between events
on the same device represents one-step passage of time, while the messaging
relation between events on different devices represents proximity in space (and
ability to directly interact). Figure 1 depicts a sample augmented event struc-
ture E = 〈E, , d, s〉 where E = {ε00, ..., ε04, ε10, ..., ε15, ε20, ..., ε24, ε30, ..., ε33, ε40, ..., ε45}
consists of 24 events such that d(εij) = δi.

In this model, spatio-temporal tuple regions are definable subsets of the aug-
mented event structure with a unique originating event.

Definition 2 (Spatio-temporal Region). Let E = 〈E, , d, s〉 be an aug-
mented event structure. A spatio-temporal region r is a definable4 predicate
associating a Boolean value r(ε, ε′) ∈ {>,⊥} to every pair of events ε, ε′ ∈ E,
such that r(ε, ε′) = > implies that ε ≤ ε′.

We write rε = {ε′ | r(ε, ε′) = >} ⊆ E for the set of events that belong to
the spatio-temporal region described by r and originating from ε. We say such a
set is connected if for every ε′ ∈ rε with ε′ 6= ε, there exists an ε′′ ∈ rε such that
ε′′  ε′. We say predicate r is connected if rε is connected for every ε ∈ E.

In the definition above, ε can be understood as the event originating the
region, and ε′ as another event which is being checked for belonging to the region.
Connected regions can be used to guide the local propagation of a spatial process,
which can expand from the originating event to neighbours filtering out those
outside of the region, and reach every event in the region this way. Propagation

4 We do not give an explicit syntax for spatio-temporal regions, in order to cover
applications with any such syntax. Definable corresponds to space-time computable
[2], thus requiring the existence of a computational procedure deciding whether the
predicate r(ε, ε′) holds in some event ε′ using only information in the past of ε′.
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in non-connected regions r′ needs to be handled by providing a connected region
r to guide the propagation of the spatial process, such that r′ε ⊂ rε, making the
process inactive in events outside of r′. As a paradigmatic example, consider the
following two region predicates:

– mek, which holds on future events within k hops of the originating device:
mek(ε, ε′) ⇔ ∃ε0 . . . εk ∈ E. d(ε) = d(ε0) ∧ ε ≤ ε0  . . . εk = ε′;

– herek, which holds on future events within k hops of the originating location:
herek(ε, ε′) ⇔ ∃ε0 . . . εk ∈ E. `(ε) = `(ε0) ∧ ε ≤ ε0  . . . εk = ε′, where
` : E → L is a given map associating a location (from a finite set of locations
L) to each event. Notice that multiple devices may be simultaneously in the
same location (unlike the me region).

We remark that the given theory can be applied to any other definable regions.

3.3 Specifications for spatio-temporal tuple operators

To provide a formalisation of spatio-temporal tuple operations, we specify
what an acceptable behaviour is for them, by mirroring the traditional non-
deterministic semantics of Linda in a distributed “event structures” setting.
This effectively constitutes a declarative semantics of the spatio-temporal tu-
ples language: a semantics at a denotational level is outlined in Section 3.4,
while a concrete operational implementation is given in Section 4.2. To state the
specification, we first need to define a notion of tuple space evolution, which is
ultimately built from the following grammar of processes.

Definition 3 (Extended Spatio-temporal Process). We define spatio-
temporal processes P and extended spatio-temporal processes Q according to the
following grammar:

P ::= outτ (t @ r)
∣∣ inτ (tt @ r).P

∣∣ rdτ (tt @ r).P

Q ::= P
∣∣ gotτo,τi

where t are tuples, tt tuple templates, r regions, τ unique identifiers.

In this grammar, we avoided an explicit mention to classic process operators
(parallel and non-deterministic composition, replication, etc.), as their treatment
is orthogonal to the scope of this paper. This grammar follows closely that in
Section 2.2, with few notable differences. First, every out, in and rd construct
is marked with a unique identifier τ , discriminating every process from every
other. Second, inert got processes are introduced in Q to mark the accesses of
tuples from the distributed space, issued in the events when agreement is first
reached about the matching of the out tuple with a corresponding in or rd

process. As we shall see in the following definition, these agreement events must
necessarily follow matching events (belonging to the intersection of the regions of
the corresponding out and in/rd processes) and precede the continuation of the
in/rd processes. These inert processes are of the form gotτo,τi where τo is the
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unique identifier of the out process introducing the tuple, and τi is the unique
identifier of the in or rd process accessing (and possibly removing) that tuple.
Notice that the got processes are necessary for the formal definition of which
matches are occurring in a computation. This information cannot be uniquely
reconstructed from the continuations alone: indeed, the same continuation P
may arise from reading/accessing (possibly) different tuples by different parent
processes.

In the remainder of this paper, we write name(P ) for the τ first occurring in
P and write name(gotτo,τi) = (τo, τi). We also write kind(P ) for the construct
first occurring in P (out, in or rd).

Definition 4 (Tuple Space Evolution). Let E = 〈E, , d, s〉 be an aug-
mented event structure, and let Q be the set of extended spatio-temporal processes
according to Definition 3. A tuple space evolution is a function TS : E → Q∗
associating a finite set of processes TS(ε) = {Q1, . . . , Qn} to each event ε.

The following definition of a consistent tuple space evolution thus provides a
specification of acceptable behaviours for spatio-temporal tuple processes.

Definition 5 (Coherent Tuple Space Evolution). Let TS : E → Q∗ be a
tuple space evolution on E = 〈E, , d, s〉 and Q. We say that TS is coherent if
it respects the following properties for any εx ∈ E where x = 1, 2, 3, g, i, o.

1. Identifier uniqueness: given Q1 ∈ TS(ε1) and Q2 ∈ TS(ε2), if
name(Q1) = name(Q2), then ε1 = ε2 and Q1 = Q2. Given an identifier τ ,
we write proc(τ) for the unique P appearing in TS such that name(P ) = τ .

2. Continuation markers: given Q1 = opτi(tt @ r).P ∈ TS(ε1) and Q2 ∈
TS(ε3) such that name(P ) = name(Q2), then there is τo such that gotτo,τi ∈
TS(ε2) where ε1 ≤ ε2 ≤ ε3.

3. Consistency: if gotτo,τi ∈ TS(εg), then:
– there exist Px = proc(τx) ∈ TS(εx) for x ∈ i, o;
– Pi = opτi(tt @ ri).P

′ with op ∈ {in, rd} and Po = outτo(t @ ro);
– there is ε′ ≤ εg in E such that ri(εi, ε

′) and ro(εo, ε
′) both hold;

– there exists a substitution σ such that tt[σ] = t;
– for every gotτo,τ

′ ∈ TS(ε′) with any ε′ ≤ εg in E, kind(proc(τ ′)) = rd.

4. Atomicity: if gotτo,τi and gotτo,τ
′
i both appear in TS and kind(proc(τi)) =

kind(proc(τ ′i)) = in, then τi = τ ′i .

The above properties state that (1) operation identifiers are globally unique;
(2) a got process always exists between a rd/in request and it is unblocking; (3)
a rd/in unblocks if there is a properly intersecting (in space-time and by tuple
match) tuple (region); and finally (4) no pair of in can consume the same tuple.

3.4 Spatiotemporal tuple-based coordination

Note that the declarative specification of coherent tuple space evolutions just
introduced does not hint at which underlying protocol may be used to respect
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Fig. 2: Graphics illustrating the spatiotemporal tuple operations.

it. Here, we propose a sample such protocol, via a high-level denotational de-
scription (i.e., at a global event structure level instead of a local interaction level)
of the spatial processes that are created and propagated by each P , and how
they interact together. This protocol assumes that every region r is equipped
with leader predicate leadr(ε, ε′) which is satisfied for a set of events which
is a subset of the region leadr

ε ⊆ rε and consists of a single chain of events:
leadr

ε = {ε, ε1, . . . , εn} where ε ε1  . . . εn.

Write (Figure 2a). Operation out(t @ r) in an event εout emits tuple t to
spatio-temporal region r, corresponding to the set of events rεout

. The spatio-
temporal extension of the emitted tuple is bounded to region r (light and dark
areas together), which is a subset of the future event cone of εout (marked by the
wiggled lines coming out from it). The actual region where a tuple is available

may be smaller if a matching in operation occurs: tuple removal in event ε†out
results in removing the future event cone of ε†out (darker area) from the availabil-
ity region (lighter area). This behaviour can be implemented through a simple
broadcasting process bounded to region r.

Read (Figure 2b). Operation rd(tt @ r).P reads, non-deterministically and in
a blocking fashion, a tuple t matching template tt, situated in some spatio-
temporal region r′ intersecting with r. The operation is issued at event εrd,
and propagates through a process within region r (blue). When the process
enters the region r′ (red) of an out operation with a tuple t matching template
tt, notifications of the match(es) are propagated through broadcast in r (from
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events such as εM ). The first notification to reach the leader chain of r (horizontal

dashed line) is accepted (in event ε†rd), leading to the termination of the read

process, and starting the computation of the continuation process P in ε†rd.

Removal (Figure 2c). Operation in(tt @ r).P fetches, non-deterministically
and in a blocking fashion, a tuple t matching template tt, situated in some
spatio-temporal region r′ intersecting with r. This fetching leads to the ter-
mination of the out region, and no two different in operations are allowed to
receive the same t. The operation is issued at event εin, and propagates through
a process within region r (blue). Assuming the absence of partitions, atom-
icity and consistency can be guaranteed through a protocol involving a joint
acknowledgement of the match between the two leaders of the in and out re-
gions. This acknowledgement process is embodied by a chain of events of the
form εin ≤ εM ≤ εC ≤ ε†in ≤ ε

†
out. In εM a match is found: this is notified within

region r′ to reach for the leader chain (dashed lines) of the out operation in εC ,
which commits to the first arriving request (if any). The commitment is then
broadcast through both regions r′ and r until it reaches the leader chain of the
in operation. This leader chain also commits to the first arriving request (in

event ε†in) leading to the immediate termination of the in region and notifying

the out region, which is reached in event ε†out and terminates afterwards. It is
possible that after the leader chain of an out operation commits to an incoming
request (event εC), the leader chain of the accepted request does not accept the
commitment, since it has already received another one. This can be detected by
the out, given absence of partitions (cf. Section 6), in this case, the leader chain
of the out operation erases its commitment, opening to new incoming requests.
Notice that as multiple acknowledgements are necessary, concurrency of multiple
in and out operations may lead to none of them being served.

4 Spatiotemporal Tuples as Aggregate Processes

The model in Section 3 founds on the idea that tuple operations are tasks that are
collective, adaptive and situated, namely on-going, collaborative computations
run by devices interacting in some spatial environment. In field calculi [32], the
notion of aggregate process [15] has been recently proposed to capture dynamic,
concurrent field computations and hence providing a programming abstraction
for collective adaptive processes. In this section, we provide a brief recap of
aggregate processes and their implementation in ScaFi (Section 4.1), then we
describe an implementation of Spatiotemporal Tuples (Section 4.2) conforming
to the model of Section 3—whereas its correctness and usability will be empiri-
cally evaluated in Section 5.

4.1 Aggregate processes

In the field calculus (FC) [6], the formal model backing aggregate comput-
ing [8,32], dynamic collective behaviour is modelled as a functional manipulation
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of computational fields (i.e., maps from devices to values). A FC program en-
codes both computation and data exchange, and must be repeatedly evaluated
by each device against its local context (sensor values, state, and received mes-
sages). The output of evaluation is a message to be broadcast to neighbours for
coordination. So, when a device locally evaluates a FC expression, it can use data
from its neighbours that also evaluated that very expression—a notion known
as alignment [5]. In order to evaluate a dynamic number of expression, a mech-
anism is needed to properly deal with alignment. Also, whereas a FC program
is generally run by every device in the system, and branching mechanisms exist
to scope an expression on a partition of the system, dynamically controlling the
evolution of the scope of an expression tends to be tricky. A recent proposal is
to use a dedicated construct, called spawn, for generating and running dynamic
field computations [15]. Also called aggregate processes, their idea is to align on a
process identifier (like a pid in operating systems) and to let devices opt in/out
their execution and control the spreading of the process to neighbours.

Aggregate processes can be programmed in ScaFi as follows.

// 1. Define an aggregate process function, fixing types for pids, arguments, return values
val process: Pid => Args => (Return, Boolean) = ???
// 2. Define a field of pids for processes to be locally instantiated
val pids: Set[Pid] = ??? // e.g., reading a sensor for user commands, or via a FC expression
// 3. A field of arguments for the active process instances
val args: A = ???
// 3. A spawn expression is like a VM for processes of some kind
val map: Map[Pid,Return] = spawn[Pid,Args,Return](process _, keys, args)

The above program is evaluated by every device of the system repeatedly in
rounds of execution intervalled by sleeping periods where coordination messages
are also exchanged between neighbours, asynchronously. The execution and in-
teraction protocol is “fixed”, and dynamically gives rise to an augmented event
structure (cf. Figure 1); what changes is the payload of messages, which is a
result of a local evaluation of the program—namely, the program itself defines
both local behaviour and the data that needs to be exchanged for coordination.
As the evaluation proceeds, aggregate processes will be generated and managed
through spawn, and variable map will contain, at any device, the map of the
locally active processes (their IDs and local outputs).

Suppose the goal is to let the devices of the system emit messages within
some distance d from the emitter. Distances can be estimated by gradients [4],
i.e., algorithms mapping a Boolean field of sources to the floating-point field of
minimum distances from those sources. One gradient computation is not suffi-
cient, because any device would compute the minimum distance from its nearest
source. As dynamic field computations are required, aggregate processes can be
used. If, at some round, pids is locally non-empty, corresponding processes are
generated. Each time spawn is evaluated, function process is called for every
aggregate process that is locally active—newly generated processes, those run
(and preserved) in the previous round, or those acquired by neighbours. In this
example, the pids can be tuples of the emitter ID and the message; the argu-
ment can be a field d of a distance threshold; and process can be defined as a
field expression returning a tuple of (i) the message, and (ii) a Boolean stating
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whether the gradient value from the emitter is lower or equal d. When a process
is generated at the emitter device, it spreads as follows:

– the emitter evaluates the process expression; the gradient from itself is 0, so
it yields the result and propagates the process pid to all its neighbours;

– an emitter’s neighbour evaluates the process expression; it computes the
gradient from the emitter; if its distance is lower or equal d, it yields the
expression result and propagates the process pid to all its neighbours in
turn, otherwise it drops the process (which could still be re-evaluated in
future if some neighbour keeps propagating the same pid).

By repeated application of these steps, a d-radius bubble from the emitter hold-
ing the message is set-up, with devices 1-hop beyond it evaluating but dropping
the process. Such a continuous evaluation of the process border is essential for its
expansion and retraction—more details, also regarding process shutdown, can
be found in [15]. This example is very similar to what an out tuple operation
must be like, except that its aggregate process must close when interaction with
another aggregate process (of an in operation) leads to removal of the tuple.

4.2 Implementing Spatiotemporal Tuples via Aggregate Processes

We argue that aggregate processes are a suitable abstraction for implementing
the Spatiotemporal Tuples model because: (i) they are based on and extend
the FC, which is space-time universal [2] and a premier computational model
for systems situated in space and time; (ii) they enable an aggregate to run
a dynamic number of tuple operations concurrently; (iii) they define a tuple
operation as a collective adaptive process that is carried out collaboratively, in a
decentralised and self-organising way; and (iv) they enable each tuple operation
to have a dynamic scope that depends on its intended spatiotemporal situation.
In the following, we describe the essential elements of this implementation.

The basic idea is to map a tuple operation to a corresponding aggregate
process, and define how these should behave and interact. Most specifically:

– the problem of scoping a tuple operation to a certain spatiotemporal region
is mapped to the problem of scoping its aggregate process (i.e., specifying a
Boolean field to control what devices must opt in the aggregate process);

– the problem of matching tuple operations and non-deterministically selecting
tuples is mapped to the problem of letting aggregate processes interact and
reaching internal consensus;

– the problem of unblocking operations is mapped the problem of controlling
the lifetime of aggregate processes.

An implementation sketch is given in Figure 3 (for the full sources, refer to the
repository provided in Section 5). For details on the FC/ScaFi language, refer
to [14,16]. The idea is to let the tuple operation processes evolve in collective
behaviour phases (like in a state-machine), commanded by the leader, ensuring
“transactional semantics”, and to use messages (appended via << to the phase
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def tupleOp(op: O)(arg: Map[O,R]): (R, Status) = op match {
case Out(...) => outLogic(...); case In(...) => inLogic(...); ...

}
rep[Map[O,R]](Map.empty())(ops => spawn(tupleOp _, newLocalOps(), ops))

(a) ScaFi field-calculus expression for spawning and executing tuple operations.

def outLogic(pid,t,r,ops,owner) = {
val inside = computeRegion(r)
val p = workflow(Available){

case curr @ Available => {
val requests = C(owner, ∪, request())
val choice = requests.headOption()
if(owner && choice.isPresent)

Serving(choice.get) else curr
}
case curr @ Serving(inP) => {

val ack = gossip(inOwnerAck())
(if(owner && ack) Done(inP) else curr)

<< Msg(ReservedFor(pid,inP))
}
case curr @ Done(inP) =>

{ curr << OutAck(pid,inP) }
}
(R(t,p.msgs), runOrNot(inside,p))

}

(b) Excerpt of ScaFi code for outs.

def inLogic(pid,tt,r,ops,owner) = {
val inside = computeRegion(r)
val p = workflow(Waiting){

case curr @ Waiting => {
val offers = C(owner, ∪, outOffers(ops))
val choice = offers.headOption()
(if(owner && choice.isPresent)

Removing(choice.get) else curr)
<< Msg(Request(pid,choice))

}
case curr @ Removing(outP) => {

val ack = gossip(outOwnerAck())
(if(owner && ack) Done(outP) else curr)

<< Msg(InAck(pid,outP))
}
case Done(outP) => { /* no-op */ }

}
(R(p.tupleIfAny(),p.msgs),runOrNot(inside,p))

}

(c) Excerpt of ScaFi code for ins.

Fig. 3: (Pseudo-)Implementation of tuple operations as ScaFi processes.

descriptor) to let aggregate processes within an individual device to interact. As
shown in Figure 3a, each aggregate process receives the overall map of processes
and corresponding results (ops, remembered from round to round via rep) as
an argument. Results R include a tuple (if any) and the messages. Function
computeRegion uses region description r to call a proper ScaFi function yielding
a Boolean field which is true only for the nodes that should belong to the region.
E.g., if r denotes the region within a range ρ from the leader, then field expression
gradient(mid()==leader)<=ρ is computed (where mid() returns the node ID);
or, if R is a geographic area, then GPScoordinates() ∈ R would do the job. Note
that devices opt for the process (runOrNot) based on inside and phase p.

5 Evaluation

With the goal of checking correctness in dynamic environments, and to discuss
applicability, in this section we evaluate the presented model and implementa-
tion by means of simulation, through synthetic experiments (Section 5.1) and a
rescue case study (Section 5.2). For the simulations, we leverage the ScaFi incar-
nation [13] of the Alchemist simulator [29]. Source code, tools, and instructions
for reproducing the experiments can be found in the attached public repository5.

5 https://github.com/metaphori/experiment-2021-spatiotemporaltuples

https://github.com/metaphori/experiment-2021-spatiotemporaltuples
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(a) A graphical view of the scenario
as simulated in the ScaFi-Alchemist
framework. The colours are used to de-
note different tuple operations (aggre-
gate processes), though actually a sin-
gle node may run several of them con-
currently. The smaller coloured dots
denote out processes, while the larger
halos denote in processes. The black
square symbols denote the devices that
generated any tuple operation.
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(b) Evolution in time of the number of
outs and ins spawned and closed.
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(c) Evolution in time of the number of
outs and ins in the different phases.

Fig. 4: Evaluation

5.1 Simulation-based Evaluation

Setup The scenario is shown in Figure 4a. We configure a square arena with 400
mobile devices displaced in a 1km2 grid: they interact with neighbours within a
100-metre connectivity range, and compute the ScaFi program asynchronously
about once per second. We let the devices generate random tuple operations,
either out or in operations, such that the system is engaged in multiple, con-
current operations that need to be carried out. Moreover, we generate tasks so
that for t < 400 there are more outs than ins in the system, and for t > 400
there are more ins than outs. These operations have an extension of 450 metres
to promote high contention and are generated so that they intersect (otherwise
they could not be matched). Then, we monitor the evolution of the system. We
keep track of the number of spawned operations and terminated operations, as
well as the phases that these transit on. We expect that a single in operation
pairs up with a single out operation, and vice versa. We perform 100 runs of the
system, with different random seeds affecting the actual positions of nodes, the
relative scheduling of the devices, and which devices generate the operations.

Results The results, averaging the data produced in the 100 runs, are shown
in Figure 4. In Figure 4b, we observe that the number of outs that get closed
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(a) Explorers start exploring and deposit-
ing breadcrumbs.

(b) Some explorers hit obstacles and be-
come impaired.

(c) The followers managed to reach the
victims.

Fig. 5: Snapshots of the simulated case
study. Notation: black discs (explor-
ers), cyan discs (followers), large blue
dots (victims), large red squares (ob-
stacles), small black dots (tactical net-
work nodes), coloured halos (bread-
crumbs), orange dots on the discs (im-
pairment). (Larger pictures are avail-
able at the provided repository)

and the number of ins that are satisfied grow equally. All the operations are
satisfied, provided there is still a matching one in the system, a condition that
does not hold approximately for t ∈ [200, 400] and t > 550 when no more
in and out processes are alive, respectively. In Figure 4c, we observe how the
processes transit from their “waiting a match” phase to their “match found”
phase. In particular, notice how the out processes immediately offer their tuple
to a matching in, but as the ins are exhausted they become available again
(approximately for t = [150, 400]).

5.2 Case Study: Rescue Scenario with Breadcrumbs

Like for Spatial Tuples, the Spatiotemporal Tuple model can be adopted in
applications requiring various forms of spatial coordination. Example applica-
tion scenarios providing motivation for this coordination approach can be found
in [30]. A benefit of Spatiotemporal Tuples is that it streamlines decentralised
implementation of such coordination patterns in logically ad-hoc or peer-to-peer
networks.

Here, we consider a simple rescue scenario: a set of rescuers have to explore a
territory to find victims needing assistance; in the area, however, there are some
hazardous elements (e.g., mines or blocks) that may impair the rescuers. The
area is partially covered by a tactical mesh network. We consider two teams:
explorers and followers. According to the breadcrumb pattern [30], the explorers
navigate the area and, from time to time, leave a spatiotemporally-tagged tu-
ple (a “breadcrumb”) at their location to keep track of their paths. Some time
later, the followers begin their expedition: they move by following the bread-
crumbs left by the explorers; however, if the breadcrumbs-path interrupts, they
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take a random detour and, after that, start exploring in turn. Screenshots of
the different phases of the simulation are in Figure 5, showing how the spatial
coordination pattern, backed by spatiotemporal tuples, allows the rescuers to
succeed in reaching the victims (assuming no further obstacles impair them).

6 Conclusion and Future Work

In this paper, we propose a model for spatiotemporal tuples where tuple op-
erations run on a computational space-time structure that logically bridges the
situation domain with the computation domain. This choice has a twofold ben-
efit: it enables locality and scalability of the tuple-based system and promotes
straightforward implementation in the aggregate computing paradigm.

Finally, we discuss the following aspects, to be fully investigated in the future.

– Properties and guarantees of the model and its implementations. Basic prop-
erties of the model are given in Definition 5: these ensure safety and liveness
of spatiotemporal tuple operations. A benefit of the proposed model with
respect to Spatial Tuples [30] is that it provides a convenient basis for de-
centralised implementations where the tuple space is fragmented in a collec-
tion of local tuple spaces owned by the individual devices. It also promotes
scalability through locality of tuples and operations: only the devices situ-
ated in the spatial region of a tuple operation would execute the aggregate
process sustaining that operation. So, what about sparse networks or posi-
tioning tuples in areas not covered by any device? The idea is that a device
should be aware of what tuple operations are where: it is sufficient that it
knows the aggregate process IDs and it will play them once it belongs to
their spatial region. So, for scalability, a decentralised middleware solution
could propagate those IDs to a larger spatial region (still smaller than the
entire application space), hence exploiting locality while ensuring operations
are not lost. Moreover, a distributed implementation of the Spatiotempo-
ral Tuple model has to decide how to deal with the CAP theorem [10], i.e.,
what kind of consistency and availability guarantees to provide when facing
failure and network partitions. For instance, the relative level of consistency
and availability (e.g., by introducing time-outs or priorities) might affect
scalability [9]. Design decisions should be taken according to the levels of
contention, variability (as induced by mobility, failure), and operation rates.

– Spatiotemporal property verification and monitoring. Potential for combining
the coordination language with spatial and temporal logics for verification
and monitoring, along the lines of [3], could also be investigated. Beside dis-
tributed runtime verification, statistical spatio-temporal model checking [18]
may be adopted for verifying implementations in simulated settings.

– Generality of the model w.r.t. deployments. A major merit of the approach
is that it supports both centralised, infrastructure-based deployments (cf.
cloud- or server-based systems) and decentralised, infrastructureless deploy-
ments (cf. MANETs). Indeed, since aggregate computing systems can be
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partitioned into different deployment units (a notion also known as pulveri-
sation [12]), applications can exploit available infrastructure and hosts to
promote different levels of performance and CAP guarantees.
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