
On the reduction of the type-free computational λ-calculus

Ugo de’Liguoro and Riccardo Treglia

Università di Torino, Turin, Italy
ugo.deliguoro@unito.it

riccardo.treglia@unito.it

Abstract

We study the reduction of the computational λ-calculus in the untyped case. To this
aim, we consider a minimal fragment of the λ-calculus with monads as introduced by
Wadler, and define a notion of call-by-value reduction just by orienting the three monad
equational laws. We then prove confluence of its compatible closure. Finally, we show
factorization of any reduction sequence into essential and inessential steps.

1 Introduction

The computational λ-calculus, called λc, was introduced by Moggi [Mog89, Mog91] as a meta-
language to describe non functional effects in programming languages via an incremental ap-
proach. Much as for ordinary λ-calculus, the equational theory of λc can be modelled by the
convertibility relation induced by a reduction relation. Building the reduction theory of λc is
however quite challenging. A first attempt is in §6 of [Mog89], where the defined notion of
reduction consists of six rules plus η. Proving confluence of this reduction relation revealed to
be quite hard; it was studied in the context of call-by-need calculi, e.g. in [MOTW99, AFM+95]
obtaining partial results, but a full proof has been achieved only recently in [Ham18].

Aiming at a logical analysis of the semantics of the untyped λc in terms of an intersection
type assignment system, we proposed in [dT19] a simplified syntax, which is derived from
Wadler’s λ-calculus with monads, and defined reduction just by orientating the three monad
laws in [Wad92, Wad95]. We dub λuc our calculus, and −→λC the reduction relation. This is
the content of section 2 of the present note.

Although one can translate Moggi’s syntax into ours, preserving and reflecting the respective
reduction relations, the inverse translation just preserves conversion, so that confluence in our
calculus cannot rest on the same property of the original λc, and the proof had to be reworked
anew. We sketch the proof from [dT19] in section 3.

Confluence is not the only fundamental property of reduction in λ-calculi; further examples
are standardization and the existence of normalizing strategies. Toward the study of these
properties in the case of λuc and −→λC, we explore here in section 4 factorization for our
calculus by adapting results in [AFG19].

While the confluence proof is included in a revised version of [dT19] and has been submitted
for publication, the factorization results are new.

2 Untyped λc-calculus

The syntax of the untyped computational λ-calculus, shortly λuc , and its reduction relation as
introduced in [dT19], are reported below:

On the reduction of the type-free computational λ-calculus de’Liguoro, Treglia

Definition 2.1 (Terms of λuc). The terms of the untyped computational λ-calculus, shortly
λuc , consist of two sorts of expressions:

Val : V,W ::= x | λx.M (values)

Com : M,N ::= unit V |M ? V (computations)

where x ranges over a denumerable set Var of variables. We set Term = Val ∪ Com; FV(V)
and FV(M) are the sets of free variables occurring in V and M respectively, and are defined
in the obvious way. Terms are identified up to clash avoiding renaming of bound variables
(α-congruence).

With respect to Moggi’s λc-syntax, we do not have the let construct, which is considered as
syntactical sugar for bind and abstraction:

let x = N in M ≡ N ? λx.M

Notably we do not have application in the syntax, since it is definable (see below).

Definition 2.2 (Reduction). Define the following reduction relation 7→λC = 7→βc ∪ 7→id ∪ 7→ass

over Com by:

βc) unit V ? (λx.M) 7→ M [V/x]

id) M ? λx.unit x 7→ M

ass) (L ? λx.M) ? λy.N 7→ L ? λx.(M ? λy.N) for x 6∈ FV (N)

where M [V/x] denotes the capture avoiding substitution of V for x in M . Finally define the
relation −→λC as the compatible closure of 7→λC.

Rule βc is reminiscent of the left unit law in [Wad95]; we call it βc because it performs call-
by-value β-contraction in λuc . In fact, by reading ? as postfix functional application and merging
V into its trivial computation unit V , βc is the same as βv in [Plo75]. Now, let V,W ∈ Val and
M,N ∈ Com; then define:

VW ≡ unit W ? V MV ≡ M ? (λz.unit V ? z)

V N ≡ N ? V MN ≡ M ? (λz.N ? z)

where z is fresh. Then it is easy to see that, if M
∗−→λC unit (λx.M ′) and N

∗−→λC unit V

then MN
∗−→λC M ′[V/x].

3 Confluence

Following a strategy used in case of call-by-need calculi with the let construct (see [AFM+95,
MOTW99]), and more recently with the variant of call-by-value λ-calculus in [CG14], we split
the proof in three steps, proving confluence of βc∪ id and ass separatedly, eventually combining
these results by means of the commutativity of these relations.

In the first step we adapt the parallel reduction method, originally due to Tait and Martin
Löf, and further developed by Takahashi [Tak95]. See e.g. the book [Ter03] ch. 10. Let’s define
the following relation ◦−→:

Definition 3.1. The relation ◦−→ ⊆ Term× Term is inductively defined by:

2

On the reduction of the type-free computational λ-calculus de’Liguoro, Treglia

i) x ◦−→ x
ii) M ◦−→ N ⇒ λx.M ◦−→ λx.N

iii) V ◦−→ V ′ ⇒ unit V ◦−→ unit V ′

iv) M ◦−→M ′ and V ◦−→ V ′ ⇒M ? V ◦−→M ′ ? V ′

v) M ◦−→M ′ and V ◦−→ V ′ ⇒ unit V ? λx.M ◦−→M ′[V ′/x]
vi) M ◦−→M ′ ⇒M ? λx.unit x ◦−→M ′

By i) - iv) above, relation ◦−→ is reflexive and coincides with its compatible closure. Also
−→βc,id⊆ ◦−→; intentionally, this is not the case w.r.t. the whole −→λC. Now, by means of

Lemma 3.2 one easily proves that ◦−→ ⊆ ∗−→βc,id .

Lemma 3.2. For M,M ′ ∈ Com and V, V ′ ∈ Val and every variable x, if M ◦−→ M ′ and
V ◦−→ V ′, then M [V/x] ◦−→M ′[V ′/x].

The next step in the proof is to show that the relation ◦−→ satisfies the triangle property:

TP : ∀P ∃P ∗ ∀Q. P ◦−→ Q ⇒ Q ◦−→ P ∗

where P, P ∗, Q ∈ Term. TP implies the diamond property, which for ◦−→ is:

DP : ∀P,Q,R. P ◦−→ Q & P ◦−→ R ⇒ ∃P ′. Q ◦−→ P ′ & R ◦−→ P ′

In fact, if TP holds then we can take P ′ ≡ P ∗ in DP, since the latter only depends on P . We
then define P ∗ in terms of P as follows:

i) x∗ ≡ x
ii) (λx.M)∗ ≡ λx.M∗
iii) (unit V)∗ ≡ unit V ∗

iv) (unit V ? λx.M)∗ ≡M∗[V ∗/x]
v) (M ? λx.unit x)∗ ≡M∗, if M 6≡ unit V for V ∈ Val
vi) (M ? V)∗ ≡M∗ ? V ∗, M 6≡ unit W for W ∈ Val and V 6≡ λx.unit x

Lemma 3.3. For all P,Q ∈ Term, if P ◦−→ Q then Q ◦−→ P ∗, namely ◦−→ satisfies TP.

According to [Bar84], Def. 3.1.11, a notion of reduction R is said to be confluent or Church-

Rosser, shortly CR, if
∗−→R satisfies DP; more explicitly for all M,N,L ∈ Com:

M
∗−→R N & M

∗−→R L⇒ ∃M ′ ∈ Com. N
∗−→R M

′ & L
∗−→R M

′

Corollary 3.4. The notion of reduction βc ∪ id is CR.

To prove confluence of ass we use Newman Lemma (see [Bar84], Prop. 3.1.24). A notion of
reduction R is weakly Church-Rosser, shortly WCR, if for all M,N,L ∈ Com:

M −→R N & M −→R L⇒ ∃M ′ ∈ Com. N
∗−→R M

′ & L
∗−→R M

′

Lemma 3.5. The notion of reduction ass is WCR.

Recall that a notion of reduction R is strongly normalizing, shortly SN, if there exists no
infinite reduction M −→R M1 −→R M2 −→R · · · out of any M ∈ Com.

Lemma 3.6. The notion of reduction ass is SN.

Corollary 3.7. The notion of reduction ass is CR.

3

On the reduction of the type-free computational λ-calculus de’Liguoro, Treglia

Proof. By Lem. 3.5, 3.6 and by Newman Lemma, stating that a notion of reduction which is
WCR and SN is CR.

Finally we show that −→βc,id and −→ass commute. The following definitions are from
[BN98], Def. 2.7.9. Relations −→1 and −→2 strongly commute if, for all M,N,L: N 1←−
M −→2 L ⇒ ∃P. N

=−→2 P 1
∗←− L where

=−→2 is −→2 ∪ =, namely at most one reduction
step.

Lemma 3.8. Reductions −→βc,id and −→ass strongly commute, then commute.

Proof. By Lemma 2.7.11 in [BN98], two strongly commuting relations commute, and commu-
tativity is clearly symmetric; hence it suffices to show that

N βc,id←−M −→ass L⇒ ∃P ∈ Com. N
=−→ass P βc,id

∗←− L.

We can limit the cases to the critical pairs. For a full development see [dT19].

By the commutative union lemma (see [BN98], Lem. 2.7.10 and [Bar84], Prop. 3.3.5), if
−→βc,id and −→ass and are both CR (Cor. 3.4 and 3.7), and commute (Lem. 3.8) follows:

Theorem 3.9 (Confluence). The notion of reduction λC is CR.

4 Factorization

Specializing the definition of factorization in [AFG19], we say that an abstract reduction system
(Term,−→) factorizes via −→e,−→¬e if −→ = −→e ∪ −→¬e and for all M,N ∈ Term,

M
∗−→ N implies that there exists L ∈ Term such that M

∗−→e L
∗−→¬e N . We abbreviate the

last condition by M
∗−→e ·

∗−→¬e N .
Now, we take −→ = −→λC and construct the relations −→e,−→¬e, called the essential and

inessential in [AFG19], by closing 7→λC under two sorts of contexts:

Inessential contexts: ¬E ::= 〈·C〉 | unit λx.¬E |M ? λx.¬E | ¬E ? V
Essential contexts: E ::= 〈·C〉 | E ? V

where the hole 〈·C〉 can be filled by terms in Com only. Then −→e and −→¬e are the least
relations including 7→λC such that for all M,N ∈ Com, essential context E and inessential
context ¬E it holds:

M 7→λC N =⇒ E〈M〉 −→e E〈N〉 and M 7→λC N =⇒ ¬E〈M〉 −→¬e ¬E〈N〉

We highlight that relations −→e and −→¬e are actually not disjoint, as essential steps are also
inessential.

The factorization property ensures that any finite reduction can be re-arranged into an
essential reduction followed by some inessential steps. In our case, this corresponds to a weak
head reduction, with the twist that in a bind expression the argument appears to the left of
the function.

The key of the proof of the Factorization Theorem 4.4 is the construction of two further
auxiliary relations ⇒¬e and ⇒λC, such that the conditions in Proposition 4.3 hold.

Definition 4.1 (Inessential parallel reduction). The relation⇒¬e ⊆ Term×Term is inductively
defined by:

4

On the reduction of the type-free computational λ-calculus de’Liguoro, Treglia

i) x⇒¬e x
ii) M ⇒λC N ⇒ λx.M ⇒¬e λx.N

iii) V ⇒λC V ′ ⇒ unit V ⇒¬e unit V ′

iv) M ⇒¬e M ′ and V ⇒¬e V ′ ⇒M ? V ⇒¬e M ′ ? V ′
v) L⇒¬e L′ and M ⇒λC M ′ and N ⇒λC N ′ ⇒ (L?λx.M)?λy.N ⇒¬e L′?λx.(M ′?λy.N ′)

Definition 4.2 (Indexed parallel reduction). The relation
n
=⇒ ⊆ Term × Term is inductively

defined by:

i) x
0
=⇒ x

ii) M
n
=⇒ N ⇒ λx.M

n
=⇒ λx.N

iii) V
n
=⇒ V ′ ⇒ unit V

n
=⇒ unit V ′

iv) M
n
=⇒M ′ and V

m
=⇒ V ′ ⇒M ? V

n+m
===⇒M ′ ? V ′

v) M
n
=⇒M ′ and V

m
=⇒ V ′ ⇒ unit V ? λx.M

n+|M ′|x·m+1
=========⇒M ′[V ′/x]

vi) M
n
=⇒M ′ ⇒M ? λx.unit x

n
=⇒M ′

vii) L
n
=⇒ L′ and M

m
=⇒M ′ and N

p
=⇒ N ′ ⇒ (L?λx.M)?λy.N

n+m+p
=====⇒ L′ ?λx.(M ′ ?λy.N ′)

where |M |x is the number of free occurrences of x in M .

Note that
0
=⇒ is the identity relation on Term,

1
=⇒ is −→λC defined in 2.2, and

n
=⇒⊆−→n.

Define ⇒λC := ∪n∈N
n
=⇒. Observe that the above definition is essentially the same as that one

of ◦−→ in Def. 3.1, but for clause vii): adding the latter to ◦−→ would break property DP, that
indeed is not satisfied by ⇒λC.

An abstract reduction system that satisfies the following conditions is called a macro-step
system in [AFG19].

Proposition 4.3 (λC Macro-step system).
i) Merge: if M ⇒¬e · −→e M

′ then M ⇒λC M ′

ii) Indexed split: if M
n
=⇒M ′, then M ⇒¬e M ′, or n > 0 and M −→e ·

n−1
===⇒M ′

iii) Split: If M ⇒λC M ′, then M
∗−→e · ⇒¬e M ′.

Once we have established that (Term,−→e ∪ −→¬e) is a macro-step system with respect to
⇒λC and⇒¬e. Since in [AFG19] is proved that every Macro-step system satisfies factorization,
we have the following theorem.

Theorem 4.4 (Factorization). The reduction system (Term,−→λC) factorizes via −→e,−→¬e
namely

M −→λC M ′ ⇒M
∗−→e ·

∗−→¬e M ′

References

[AFG19] Beniamino Accattoli, Claudia Faggian, and Giulio Guerrieri. Factorization and normal-
ization, essentially. In APLAS 2019: Programming Languages and Systems, volume 11893
of Lecture Notes in Computer Science, page 159–180. Springer Verlag, 12 2019.

5

On the reduction of the type-free computational λ-calculus de’Liguoro, Treglia

[AFM+95] Zena M. Ariola, Matthias Felleisen, John Maraist, Martin Odersky, and Philip Wadler. The
call-by-need lambda calculus. In Ron K. Cytron and Peter Lee, editors, Conference Record
of POPL’95: 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, San Francisco, California, USA, January 23-25, 1995, pages 233–246. ACM
Press, 1995.

[Bar84] H. Barendregt. The Lambda Calculus: its Syntax and Semantics. North-Holland, Amster-
dam, revised edition, 1984.

[BN98] Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge University
Press, 1998.

[CG14] Alberto Carraro and Giulio Guerrieri. A semantical and operational account of call-by-
value solvability. In Anca Muscholl, editor, Foundations of Software Science and Compu-
tation Structures - 17th International Conference, FOSSACS 2014, volume 8412 of Lecture
Notes in Computer Science, pages 103–118. Springer, 2014.

[dT19] Ugo de’Liguoro and Riccardo Treglia. Intersection types for the computational lambda-
calculus. CoRR, abs/1907.05706, 2019.

[Ham18] M. Hamana. Polymorphic rewrite rules: Confluence, type inference, and instance valida-
tion. In Functional and Logic Programming - 14th International Symposium, FLOPS 2018,
Nagoya, Japan, May 9-11, 2018, Proceedings, volume 10818 of Lecture Notes in Computer
Science, pages 99–115, 2018.

[Mog89] E. Moggi. Computational Lambda-calculus and Monads. In Proceedings of Logic in Com-
puter Science (LICS), pages 14–23, 1989.

[Mog91] E. Moggi. Notions of Computation and Monads. Information and Computation, 93:55–92,
1991.

[MOTW99] John Maraist, Martin Odersky, David N. Turner, and Philip Wadler. Call-by-name, call-by-
value, call-by-need and the linear lambda calculus. Theor. Comput. Sci., 228(1-2):175–210,
1999.

[Plo75] G. D. Plotkin. Call-by-name, call-by-value and the lambda-calculus. Theoretical Computer
Science, 1:125–159, 1975.

[Tak95] M. Takahashi. Parallel reduction in lambda-calculus. Information and Computation,
118:120–127, 1995.

[Ter03] Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 2003.

[Wad92] P. Wadler. The essence of functional programming. In Conference Record of the Nineteenth
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
Albuquerque, New Mexico, USA, January 19-22, 1992, pages 1–14, 1992.

[Wad95] P. Wadler. Monads for Functional Programming. In Advanced Functional Program-
ming, First International Spring School on Advanced Functional Programming Techniques-
Tutorial Text, volume 925 of Lecture Notes in Computer Science, pages 24–52. Springer-
Verlag, 1995.

6

On the reduction of the type-free computational λ-calculus de’Liguoro, Treglia

A Proof of Factorization

Lemma A.1. (Substitutivity of
n
=⇒) If M

n
=⇒ M ′ and V

m
=⇒ V ′ then M [V/x]

k
=⇒ M ′[V ′/x]

where k = n+ |M ′|x ·m.

Proof. Proof by induction on the structure of M . We will show just notable cases:
Application: This case occurs when the last rule applied is

N
nN==⇒ N ′ W

nW==⇒W ′

M = N ?W
nN+nW======⇒ N ′ ? W ′ = M ′

by i.h. N [V/x]
k1==⇒ N ′[V ′/x] where k1 = nN + |N ′|x ·m

and W [V/x]
k2==⇒W ′[V ′/x] where k2 = nW + |W ′|x ·m

then

N [V/x]
k1==⇒ N ′[V ′/x] W [V/x]

k2==⇒W ′[V ′/x]

M [V/x] = N [V/x] ? W [V/x]
k
=⇒ N ′[V ′/x] ? W ′[V ′/x] = M ′[V ′/x]

where k = k1+k2 = nN+|N ′|x ·m+nW +|W ′|x ·m = n+|M ′|x ·m, in fact |M ′|x = |N ′|x+|W ′|x.

βc−step: This case occurs when the last step has the following shape:

W
nW==⇒W ′ N

nN==⇒ N ′

M = unit W ? λy.N
n
=⇒ N ′[W ′/y] = M ′

where n = nN + |N ′|y · nW + 1.
Assuming wlog x 6= y, |M ′|x = |N ′[W ′/y]|x = |N ′|x + |N ′|y · |W ′|x

M [V/x] = unit W [V/x] ? λy.N [V/x]
M ′[V ′/x] = N ′[V ′/x][W ′[V ′/x]/y]

By i.h. N [V/x]
k1==⇒ N ′[V ′/x] where k1 = nN + |N ′|x ·m

W [V/x]
k2==⇒W ′[V ′/x] where K2 = nW + |W ′|x ·m, then M [V/x]

k
=⇒M ′[V ′/x] where

k = k1 + |N ′|y · k2 + 1 =
= nN + |N ′|x ·m+ |N ′|y · (nW + |N ′|x ·m) + 1 =
= nN + |N ′|y · nW + 1 + |N ′| ·m+ |N ′|y · |W ′|x ·m =
= n+ |M ′|x ·m

id−step:

N
n
=⇒ N ′

M = N ? λy.unit y
n
=⇒ N ′ = M ′

And M [V/x] = N [V/x] ? λy.unit y[V/x]

By i. h. N [V/x]
k1==⇒ N ′[V ′/x] where k1 = n+ |N ′|x ·m

7

On the reduction of the type-free computational λ-calculus de’Liguoro, Treglia

λy.unit y[V/x]
0
=⇒ λy.unit y.

N [V/x]
k1==⇒ N ′[V ′/x]

M [V/x] = N [V/x] ? λy.unit y[V/x]
k
=⇒ N ′[V ′/x] = M ′[V ′/x]

Then k = k1.

ass−step: M = (L ? λy.N) ? λz.P
n
=⇒ L′ ? λy.(N ′ ? λz.P) where L

nL==⇒ L′, N
nN==⇒ N ′,

P
nP==⇒ P ′ and n = Nl + nN + nP .

by i.h.

L[V/x]
k1==⇒ L′[V ′/x] where k1 = nL + |L′|x ·m

N [V/x]
k2==⇒ N ′[V ′/x] where k2 = nN + |N ′|x ·m

P [V/x]
k3==⇒ P ′[V ′/x] where k3 = nP + |P ′|x ·m

L[V/x]
k1==⇒ L′[V ′/x] N [V/x]

k2==⇒ N ′[V ′/x] P [V/x]
k3==⇒ P ′[V ′/x]

M [V/x] = (L[V/x] ? λy.N [V/x]) ? λz.P [V/x]
k
=⇒ L′[V ′/x] ? λy.(N ′[V ′/x] ? λz.P [V ′/x])

where k = k1 + k2 + k3 = nL + |L′|x ·m+ nN + |N ′|x ·m+ nP + |P ′|x ·m = n+ |M ′|x ·m.

Proposition A.2 (λC Macro-step system).
1. Merge: if M ⇒¬e · −→e M

′ then M ⇒λC M ′

2. Indexed split: if M
n
=⇒M ′, then M ⇒¬e M ′, or n > 0 and M −→e ·

n−1
===⇒M ′

3. Split: If M ⇒λC M ′, then M −→∗e · ⇒¬e M ′.

Proof. 1.Merge: by structural induction on M ⇒¬e N .
Following hypothesis, since N −→e M

′, M ′ cannot be unit V for any V ∈ Val , then there exists
an essential context E , computations N̄ , M̄ ′, such that N = E〈N̄〉 →e E〈M̄ ′〉 = M ′.
Hence N = N̄ ? V̄ =→e M̄ ′ ? V̄ ′ = M ′ and M ⇒¬e N is derived as follows

N0 ⇒¬e N̄ V0 ⇒¬e V̄

M = N0 ? V0 ⇒¬e N̄ ? V̄ = N

• if N̄ −→e M̄ ′ then M ′ = M̄ ′ ? V̄ .
The i.h. gives N0 ⇒λC M̄ ′, and M ⇒λC M ′ is derived as follows

N0 ⇒λC M̄ ′ V0 ⇒λC V̄

M = N0 ? V0 ⇒λC M̄ ′ ? V̄ = M ′

• if N 7→id M
′ this means that N̄ = M ′ and V̄ = λx.unit x, and M ⇒λC M ′ is derived as

follows (since ⇒¬e⊆⇒λC)

N0 ⇒λC N̄

M = N0 ? λx.unit x⇒λC N̄ = M ′

8

On the reduction of the type-free computational λ-calculus de’Liguoro, Treglia

• if N 7→βc M
′ then V̄ = λx.L and N̄ = unit W ′.

By definition of ⇒¬e the step V0 ⇒¬e V̄ ha the form

λx.L⇒¬e λx.L′ for some L such that L⇒λC L′

this means that M ⇒λC M ′ = L[W ′/x] following the next derivation

L⇒λC L′ W ⇒λC W ′

M = unit W ? λx.L⇒λC L′[W ′/x] = M ′

• if N 7→ass M
′ then N = N̄ ? V̄ = (P ? λx.Q) ? V̄ and M ′ = M̄ ′ ? V̄ ′ = P ? λx.(Q ? V̄).

Since N0 ⇒¬e N̄ = P ? λx.Q, it follows that N0 has the shape N0 = P0 ? λx.Q0 where
P0 ⇒¬e P and Q0 ⇒λC Q, then

P0 ⇒λC P Q0 ⇒λC Q V0 ⇒λC V̄

M = (P0 ? λx.Q0) ? V0 ⇒λC P ? λx.(Q ? V̄) = M ′

The associativity case follows similarly.

2. Indexed split: by induction on M
n
=⇒ M ′. We will show just notable cases concerning

to the reduction steps:
id−step: M = N ? λx.unit x

n
=⇒ N ′ = M ′. Then

N
n
=⇒ N ′

M = N ? λx.unit x
n
=⇒ N ′ = M ′

by i.h. either M ⇒¬e M ′ (but there is no ⇒¬e rule that can occur) or M 6⇒¬e M ′.

This means that M 6⇒¬e N ′ and by i.h. there exists N ′′ s.t. M →e N ′′
n−1
===⇒ N ′ so

M = N ? λx.unit x→e N
′′ ? λx.unit x

n−1
===⇒ N ′.

βc−step: M = unit V ? λx.N
k
=⇒ N ′[V ′/x] where k = n + |N ′|x · m + 1, where N

n
=⇒ N ′

and V
m
=⇒ V ′.

We have M = unit V ? λx.N →e N [V/x] and the substitutivity of
n
=⇒ gives M ′′ =

N [V/x]
n+|N ′|x·m
=======⇒ N ′[V ′/x].

ass−step: If M
n
=⇒M ′ where M = (L?λx.N) ?λy.P , M ′ = L′ ?λx.(N ′ ?λy.P ′) and L

nL==⇒ L′,

N
nN==⇒ N ′, P

nP==⇒ P ′. There are two sub cases: either it is the case M ⇒¬e M ′, and L⇒¬e L′,
N ⇒¬e N ′, P ⇒¬e P ′, then the claim holds.
Otherwise, if M 6⇒¬e M ′, L 6⇒¬e L′ and nL > 0 have to hold (otherwise M ⇒¬e M ′).

By i.h. there exists L̄ such that L −→e L̄
nL−1====⇒ L′. So M = (L ? λx.N) ? λy.P −→e

(L̄ ? λx.N) ? λy.P
n−1
===⇒M ′.

3. Split: if M ⇒λC M ′ then there exists n such that M
n
=⇒ M ′. By induction on n: by

indexed split property just proved there are two cases:

9

On the reduction of the type-free computational λ-calculus de’Liguoro, Treglia

1. M ⇒¬e M ′ and the statement is proved since
∗−→e is reflexive.

2. n > 0 and there exists M̄ such that M −→e M̄
n−1
===⇒M ′. By i.h. applied to M̄

n−1
===⇒M ′

there exists M ′′ such that M̄ −→e M
′′ ⇒¬e M ′ and so M

∗−→e M
′′ ⇒¬e M ′.

10

	Introduction
	Untyped c-calculus
	Confluence
	Factorization
	Proof of Factorization

