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Abstract 5 

Classic optimization models explain adaptive behaviours in terms of optimal cost-benefit trade-offs. They 6 

assume flexibility and make testable predictions about what animals should do in order to maximize their 7 

fitness.  But they usually do not ask how animals can do it. Since flexible behaviours can be globally optimal 8 

but locally sub-optimal, the optimality models should directly focus on the underlying mechanisms of 9 

behavioural flexibility, such as learning and decision making. In this paper, I use the classic “diet” model of 10 

Optimal Foraging Theory (OFT) to investigate the evolution of decision-making mechanisms at both the 11 

computational and the algorithmic level. At the computational level, I define benefits (the expected rate of 12 

net energy intake) and costs (lost opportunity) and formalize the decision rule. At the algorithmic level, I 13 

present two sequential-sampling models, which differ in the way information is internally represented and 14 

used.  The first model represents the prospective items along a one-dimension scale of values (benefit-cost 15 

differences) and it uses a fixed amount of sensory information (and time) to make decisions. The second 16 

model represents items in the 2-dimension plane of benefits and costs, and it uses a variable amount of 17 

information. I test the models along a gradient of resource abundance. In each environment, I use OFT to 18 

classify resources as either profitable or unprofitable, and describe the model performance in terms of 19 

decision time and accuracy. At high resource density, both models predict foraging choice to be more 20 

selective, but less accurate than at low density, because decisions are strongly biased in the false-positive 21 
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direction.  At low resource density, the 2-dimension model performs better than the 1-dimension 22 

alternative, because it takes less time to make more accurate decisions. These differences, however, 23 

disappear when resources are abundant. 24 

 25 

Keywords: behavioural plasticity, decision-making, evo-mecho, heuristics, speed-accuracy trade-offs 26 

  27 
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Perhaps the most glaring attribute of behaviour is flexibility, which makes animals capable to cope with the 28 

uncertainty and the unpredictability of their lives. What permits animals to behave flexibly are the decision 29 

mechanisms, implemented in their nervous system, which allows them to use internal and external stimuli 30 

when choosing among alternative behaviours (Fawcett et al. 2013). While classic ethology was mainly 31 

interested on the mechanistic aspects of these behaviours (Dewsbury 1989), behavioural ecology shifted 32 

the focus on their ultimate functions. Behavioural ecologists started investigating the adaptive roles of 33 

behaviours and, doing so, they settled the bases for a new paradigm, which was based on the economic 34 

consideration of costs and benefits of alternative actions (Krebs and Davies 1978).  35 

Undoubtedly, the greatest success of this new approach was due to the tight link between theoretical and 36 

empirical research, which allowed testable predictions of adaptive behaviours. An emblematic example of 37 

such a success is Optimal Foraging Theory (OFT) (Stephens and Krebs 1986; Krebs and Kacelnik 2007; 38 

Stephens et al. 2007). OFT uses normative models to predict foraging strategies that maximize the rate of 39 

net energy intake. For example, the “diet-model” (Stephens and Krebs 1986) predicts clear-cut foraging 40 

decisions, which are flexibly adjusted to the environment where choice is made. Specifically, in a given 41 

environment, the model predicts that a consumer that optimizes the long term rate of energy intake should 42 

choose to feed on a resource only when the rate of benefits of this resource exceeds that of the diet 43 

comprised only with items with higher values (Stephens and Krebs 1986, and see below). Although the 44 

“diet model” was based on some unrealistic assumptions (i.e. no uncertainty and no errors in resource 45 

assessment), it made testable predictions and, most importantly, it helped the empirical research to focus 46 

on the right questions and, thus, it contributed to broaden and deepen the field (Krebs and Kacelnik 2007).  47 

The “diet model”, as well as many other OFT models, by focusing on the functional aspects of behavioural 48 

flexibility, paid very little attention to its underlying psychological and cognitive mechanisms (Kacelnik 49 

2012). This neglecting of causal mechanisms has been dubbed the “behavioural gambit” (Giraldeau and 50 

Dubois 2008; Fawcett et al. 2013), because, like the “phenotypic gambit” (Grafen 1984), it makes the 51 

simplifying assumption that mechanisms play a marginal role in the adaptive evolution of phenotypes. 52 

However, there are several reasons why it might not be worth it to make such an improbable bet. First, for 53 
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flexible behaviours, the rules that govern flexibility are the indirect target of selection and, thus, the 54 

optimality approach should focus on their function rather than on the function of single behaviours 55 

(McNamara and Houston 2009). Second, decisions are made under uncertainty and they are prone to error. 56 

Optimal behaviours depend on the effective use of uncertainty, that is, on the optimal trade-offs between 57 

the risks and the costs of different type of errors (Johnson et al. 2013). Finally, to limit the costly effects of 58 

uncertainty, animals need to process large amounts of information from the environment. But this takes 59 

time and thus optimality depends also on the mechanisms of information processing and on the trade-offs 60 

between speed and accuracy in decision making (Chittka et al. 2009). 61 

Behavioural ecologists have long been aware of the risks that neglect of mechanisms might weaken the 62 

functional analysis of behaviour. In deterministic OFT models, such as the “patch model”, researchers find 63 

optimal decisions by computing first derivatives on the curve of diminishing returns (Stephens and Krebs 64 

1986), whereas in stochastic OFT models (i.e. foraging decisions under uncertainty, Stephens 2007) they 65 

apply Bayesian computation of prior and posterior probabilities. But animals do not have access to 66 

computational devices that can implement algorithms of such a level of complexity. Nevertheless they 67 

manage to solve these problems effectively. How can animals be functionally optimal if they can afford only 68 

limited computational resources?  69 

One of the first attempts to answer to this question and resolve the function-mechanism dichotomy, in 70 

behavioural ecology, has been the rules-of-thumb approach (RoT), which assumes natural selection to 71 

favour the evolution of simple rules that approximate the optimal strategies identified by theoreticians 72 

through optimisation (Kacelnik 2012). Interestingly, a similar approach, the heuristic research program, has 73 

been adopted by cognitive psychologists to study human decision making (Gigerenzer et al. 2002). 74 

Heuristics and RoTs have evolved under natural selection and, as all adaptive traits, they are expected to 75 

perform optimally (or satisfactorily) in the ecological context where they have been selected. In this sense, 76 

they are expression of ”ecological rationality” (Goldstein and Gigerenzer 2002, Stephens 2008). Since the 77 

heuristic and the RoT approaches do not consider the mechanisms underlying decision rules, they 78 

contributed to reinforce the idea that cognitive mechanisms can be justifiably ignored, because natural 79 
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selection somehow or other will be able to implement context-dependent optimal rules in the neural 80 

machinery of decision makers (Bateson and Healy 2005). However, by ignoring the psychological 81 

mechanisms of decision making, proponents of this approach failed to provide convincing evidence that 82 

these rules do actually exist. 83 

More recently, McNamara and Houston (2009) proposed a new line of research, named ‘evo-mecho’, which 84 

approaches the function-mechanism dichotomy from a different perspective. Instead of focusing on 85 

narrow-domain rules, which are implicitly assumed to evolve ‘ex-novo’ and solve specific tasks under 86 

simple environmental conditions, they suggest to focus on simple, general mechanisms that perform well in 87 

complex and variable environments (Fawcett et al. 2014). Like anatomical traits that show adaptive 88 

variation on a common structural plan, the psychological mechanisms that control behaviour can be tuned 89 

by natural selection to solve specific tasks, but maintain the same general structure, which may reflect 90 

either constraints or adaptations at the anatomical level of the cognitive machinery. Unlike the RoT 91 

approach, the ‘evo-mecho’ model does not view mechanisms and functions as independent levels of 92 

behavioural analysis, but as the two interconnected components of a multi-level approach. The “evo-93 

mecho” approach not only addresses questions about the functional role of behavioural flexibility, but also 94 

about the functional role of the rules that govern behavioural flexibility, and the functional role of the 95 

psychological mechanisms that implement such rules (McNamara and Houston 2009). According to 96 

Castellano (2015), in the “evo-mecho” models, the optimality approach should still play a central role and 97 

should be applied at all levels of analysis, in a way similar to that proposed by Marr’s pioneering work in the 98 

neurosciences (Marr 1982). In the present paper, I adopt this approach to study optimal decisions in 99 

foraging. By focusing on the “diet model” (Stephens and Krebs 1986), I explore how this fundamental 100 

model could be used to address multi-level functional questions on the computational mechanisms of 101 

foraging decisions. 102 
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The model 103 

Imagine an insect hovering above a meadow searching for nectar. While flying, it approaches a brightly 104 

yellow flower, which captures its attention. The insect begins to collect sensory information about the 105 

prospective source of food and, after a while, it lands on the flower and starts foraging. The insect decides 106 

to exploit the flower because it recognizes it as a worthy source of food, and it does so because it has a 107 

cognitive machinery that is adapted to process noisy sensory information effectively and to provide 108 

economically valuable decisions.  109 

To model the insect’s cognitive machinery of decision making, I adopt the approach suggested by Marr 110 

(1982) and analyse the information-processing system at two distinct levels: (i) at the computational-theory 111 

level, by responding to the questions of ‘what is being computed’ and ‘why the computation is carried out’ 112 

and (ii) at the algorithm level, by addressing the questions of ‘how information is represented’ and ’which 113 

algorithms are used’. 114 

THE COMPUTATIONAL-THEORY LEVEL 115 

To understand what type of computation the insect should carry out in order to maximize its long-term 116 

fitness benefits, I first make the following assumptions: (i) during foraging, the insect encounters N flowers, 117 

sequentially, each flower is a potential resource, that is, an item that can be exploited by the insect (notice 118 

that throughout the paper, I use “resource” and “item” as synonyms) ; (ii) searching and exploiting are 119 

mutually exclusive; (iii) the optimal decision rule depends only on the economic values of the available 120 

resources and it is independent of both the state of the foraging insect and of the predation risk it faces 121 

when foraging.  122 

Let us assume that the N items are randomly distributed in the foraging patch. Let s be the average 123 

searching time and Ts the total searching time (𝑇𝑠 = 𝑁𝑠̄). The economic value of an item i is assumed to 124 

depend on two attributes (Stephens and Krebs 1986): hi, its expected handling, and qi, its expected net 125 

energy, if the insect decided to exploit the item i. Natural selection is assumed to favour the evolution of 126 

decision rules that maximize the rate of net energy intake: 127 
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 128 

𝑊 =
∑ 𝑝𝑖𝑞𝑖
𝑁
𝑖 −𝛾𝑇𝑠

𝑇𝑠+∑ 𝑝𝑖ℎ𝑖
𝑁
𝑖

,          (Eq. 1) 129 

 130 

where 𝑝𝑖  is the probability that the item i is exploited (Stephens and Krebs, 1986), and 𝛾 is the cost of 131 

search per unit time. OFT shows that, within the set of the N available resources, the probability 𝑝𝑖  must be 132 

either 0 (rejection) or 1 (acceptance).  133 

Let the N resources be ranked by their “profitability” such that  
𝑞1

ℎ1
>

𝑞2

ℎ2
> ⋯ >

𝑞𝑟

ℎ𝑟
> ⋯ >

𝑞𝑁

ℎ𝑁
 . When the 134 

insect adopts, as a decision rule, the threshold (𝜃𝑂𝐹𝑇
𝑘 ), it is expected to exploit only the first k items of the 135 

list and to reject the others. In this case, the expected rate of energy intake is:  136 

𝑊(𝑘) =
∑ 𝑞𝑟
𝑘
𝑟 −𝛾𝑇𝑠

𝑇𝑠+∑ ℎ𝑟
𝑘
𝑟

 .             (Eq. 2) 137 

Natural selection is expected to favour the evolution of a decision rule that maximizes W. Suppose the 138 

insect knew the maximum rate of energy intake in a given environment (𝑊∗). In this case, the optimal 139 

decision rule would be to exploit only those items with profitability (𝑞𝑟 ℎ𝑟⁄ )  equal to or higher than 140 

𝜃𝑂𝐹𝑇
∗ = 𝑊∗ (Stephens and Krebs 1986). In the real world, however, two problems are likely to reduce the 141 

effectiveness of foraging decisions. The first problem is uncertainty. When the insect evaluates an item, the 142 

sensory information it processes is prone to error. The insect can reduce error and improve accuracy by 143 

processing several independent pieces of information. But this requires time and an increase in the 144 

assessment time inevitably reduces the rate of energy intake. For this reason, to make optimal decisions, 145 

the insect should be able to control not only the decision threshold, but also the decision time. How can it 146 

do this? The second problem is flexibility. Since the optimal decision threshold (𝜃𝑂𝐹𝑇
∗ ) depends on the 147 

entire set of the available resources, which varies over time and space, the insect should be able to adjust 148 

the threshold to the local conditions. How can it do this? 149 

To answer to the questions of uncertainty and flexibility, I impose two constraints on the decision model. 150 

The first is the inevitability of uncertainty. This means that when the insect is evaluating the i item, with 151 

quality 𝑞𝑖 and handing time ℎ𝑖, the sensory information it receives is described by the stochastic variables 152 
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𝑄𝑖 = 𝑞𝑖(1 + 𝜀𝑞) and 𝐻𝑖 = ℎ𝑖(1 + 𝜀ℎ), where 𝜖𝑞and 𝜖ℎ are two normally distributed stochastic variables 153 

with zero mean, zero covariance, and 𝜎𝑞
2and 𝜎ℎ

2 variances. The second constraint concerns what the 154 

insect “knows” about the available resources. As mentioned above, OFT assumes that animals “know” the 155 

optimal threshold, which depends on the position of each resource along the ordinal scale of profitability. 156 

This means that when the insect visits a new habitat with unknown resource distribution, to adjust its 157 

decision threshold, it should acquire information on the entire new set of the available resources. To 158 

provide flexibility to the decision rules, I assume the insect to adjust the decision threshold on the basis of 159 

three, easily assessable descriptors of the distribution of both profitable and unprofitable resources: the 160 

average quality (𝑞̅), the average handling time (ℎ̅), and the average searching time (𝑠̅).  161 

Suppose the insect encounters a random sequence of the prospective resources 1, 2, …, N, with quality q1 , 162 

q2…, qN and handling time h1 , h2…, hN. Given the available information, I assume that the insect exploits the 163 

resource i if the following inequality is true: 164 

𝐸[𝑄𝑖]

𝐸[𝐻𝑖]
>

𝑞̅−𝛾𝑠̅

𝑠̅+ℎ̅
.              (Eq. 3) 165 

On the left-hand side of the inequality, there is the expected rate of energy intake (profitability) if the 166 

insect decided to exploit the i item. On the right-hand side, there is the expected rate of energy intake if it 167 

decided NOT to exploit the i item (i.e. the opportunity costs): the numerator is the expected quality of the 168 

next-encountered (i+1) item (that is, the average quality 𝑞̅), discounted by the costs of finding it, the 169 

denominator is the expected time needed to find (𝑠̅) and to handle (ℎ̅) the next encountered item.  170 

THE REPRESENTATION-ALGORITHM LEVEL 171 

To model the decision process at the algorithmic level, we need to make some biologically plausible 172 

assumptions about two issues. The first is about how information is handled and internally represented by 173 

the cognitive machinery of decision making. The second issue is about uncertainty. Since sensory 174 

information is uncertain and prone to error, how can the cognitive machinery integrates independent 175 

pieces of information over time to increase reliability? 176 

I start with the representation issue. In Eq. 2 and Eq. 3, the variables involved in the decision process are 177 

expressed in Watts (Joules/s). This follows the assumptions that the rate of the long-term energy intake is 178 
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what natural selection maximizes and that the rate is also the criterion to compare the efficacy of 179 

alternative decision strategies. Although the ultimate function of the decision process is to maximize rates 180 

of energy intake, I assume that the algorithm of decision making is not based on a comparison of rates and 181 

that benefits and costs are internally represented in terms of relative differences between perceived and 182 

expected values of energy and time. By defining 𝑞̃ = 𝑞̅ − 𝛾𝑠̅ and by using simple algebra, Eqn. 3 can be 183 

rearranged in the equivalent form of Eqn. 4, which shows, on the left hand side, the relative difference 184 

between the perceived and the expected value of a resource, whereas, on the right hand side, it shows the 185 

relative difference between the perceived handling time of the inspected resource and the expected time 186 

to find and handle another resource (see also the supplementary materials for more details): 187 

𝐸 [
𝑄𝑖−𝑞̃

𝑞̃
] > 𝐸 [

𝐻𝑖−(𝑠̅+ℎ̅)

𝑠̅+ℎ̅
].          (Eq. 4) 188 

I assume that, when the insect assesses the value of a resource i, it sequentially collects several pieces of 189 

sensory information relative to the energetic quality (𝑄𝑖(1), 𝑄𝑖(2)…𝑄𝑖(𝜗)) and the handling time 190 

(𝐻𝑖(1), 𝐻𝑖(2)…𝐻𝑖(𝜗)) of the resource,. Each piece of information 𝑄𝑖(𝑗) and 𝐻𝑖(𝑗) is then converted, by 191 

two linear filters into a context-dependent representation of the energetic benefits (𝐵𝑖(𝑗) =
𝑄𝑖(𝑗)−𝑞̅

𝑞̅~
) and 192 

opportunity costs (𝐶𝑖(𝑗) =
𝐻𝑖(𝑗)−(𝑠̅+ℎ̅)

𝑠̅+ℎ̅
). The insect perceives as “useful” a resource if 𝐸[𝐵𝑖] > 𝐸[𝐶𝑖], that 193 

is, if its benefits are greater than its costs. 194 

As mentioned above, since sensory information is noisy, the insect is expected to integrate several pieces of 195 

information to obtain a reliable evaluation of benefits and costs. My next assumption is thus about how 196 

such an integration is carried out. Specifically, I consider two computational mechanisms.  197 

The first, is the one-dimension-static-sampling model of decision making (1-DSS). The mechanism (Fig. 1a) 198 

views decisions as the outcome of a three-step process: deliberation, commitment, and motor response. In 199 

terms of abstract neural computation, the model can be described as a three-layer neural circuit. The first 200 

layer is composed by two neural modules, the b-  and c-module, which linearly transform sensory 201 

information into the perceived benefits (𝐵 = 𝑏(𝑄)) and costs (𝐶 = 𝑐(𝐻)). The pieces of sensory 202 

information are then sent to a second-layer module (U), which integrates them over time: the input from 203 
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the b-module increases the neural activity of U, whereas the input from the c-module decreases the neural 204 

activity of U. The number of pieces of information (𝐽𝑚𝑎𝑥) and the decision time (𝜗 = 𝐽𝑚𝑎𝑥 𝜏⁄ , where 𝜏 is the 205 

rate at which information is collected) are fixed and independent of the value of the resource. Once all the 206 

pieces of sensory information have been collected, the neural activity of the U module will be proportional 207 

to the difference between the perceived benefits and costs of an item and, thus, U is the internal 208 

representation of its economic value, which I call “utility”: 209 

𝑈𝑖 = ∑ 𝐵𝑖(𝑗) −
𝐽𝑚𝑎𝑥
𝑗 ∑ 𝐶𝑖(𝑗)

𝐽𝑚𝑎𝑥
𝑗 .          (Eqn. 5) 210 

𝑈𝑖  is a stochastic variable with expectation 𝐸[𝑢𝑖] = 𝐽𝑚𝑎𝑥 (
𝑞𝑖

𝑞̃⁄ −
ℎ𝑖

(ℎ̅ + 𝑠̅)
⁄ ) and with variance 211 

𝑉𝑎𝑟[𝑢𝑖] = 𝐽𝑚𝑎𝑥 (
𝜎𝑞

2

𝑞̃2
⁄ +

𝜎ℎ
2

(𝑠̅ + ℎ̅)
2⁄ )  (Fig. 2a,b). The coefficient of variation of 𝑢 (the ratio between 212 

its standard deviation and mean) decreases with 𝐽𝑚𝑎𝑥 and the accuracy of decisions increases. 213 

The second step of the decision process is commitment. It involves a third-layer of gate-neurons, which 214 

compare U with an internal standard 𝜃: if 𝑈 ≥ 𝜃, then the resource is accepted; if 𝑈 < 𝜃, it is rejected. The 215 

third and final step of the decision process is action: once the decision is made, the insect prepares and 216 

carries out the appropriate motor response to accomplish the established goal. In the 1-DSS, decision time 217 

is fixed and cannot be flexibly adjusted to the difficulty of choice. If the insect has evolved such a static 218 

decision mechanism, it is expected to spend the same amount of decision time independent of the quality 219 

of the resource being inspected.  220 

The second model I consider belongs to the class of sequential sampling models (reviewed by Bogacz et al. 221 

2006), which views decisions as the accumulation over time of noisy information that lasts until evidence is 222 

so strong that it crosses a pre-defined threshold. In the sequential sampling models, the number of samples 223 

(and the decision time) is not fixed, but it depends on the items under assessment. I call the second model 224 

the “2-Dimension Sequential Sampling” model of decision making (2-DRW), because it no longer assumes 225 

that the insect makes a 1-dimension internal representation of the resource economic value, rather, that it 226 

integrates information of benefits and costs independently into the two neural modules, the b- and the c-227 

module, as described by the following recursive equations: 228 
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{
𝐵𝑖(𝑗) = 𝐵𝑖,(𝑗 − 1) +

𝑄𝑖(𝑗)−𝑞̃

𝑞̃

𝐶𝑖(𝑗) = 𝐶𝑖(𝑗 − 1) +
𝐻𝑖(𝑗)−(ℎ̅+𝑠̅)

ℎ̅+𝑠̅

.         (Eq. 6) 229 

The 2-DRW considers that the b- and the c-module have lower (𝜃𝐵
𝑙 = 𝑓(𝐶), 𝜃𝐶

𝑙 = 𝑓(𝐵)) and upper (𝜃𝐵
𝑢 =230 

𝑓(𝐶), 𝜃𝐶
𝑢 = 𝑓(𝐵)) thresholds, which are described by the following set of equations: 231 

𝜃𝐵
𝑢 = 𝑇 + 𝐶𝑖

𝜃𝐶
𝑙 = −𝑇 + 𝐵𝑖
𝜃𝐵
𝑙 = −𝐿 + 𝐶𝑖
𝜃𝐶
𝑢 = 𝐿 + 𝐵𝑖

.       (Eq. 7) 232 

Where T and L are parameters of the model and represent the thresholds for either the acceptance or the 233 

rejection when no information has been yet acquired. Mathematically speaking, the 2-DRW describes a 234 

random walk in the Cartesian plane defined by the C and B axes (Fig. 2c, d). After processing the first piece 235 

of information of the item i, the random walk reaches the point [Ci(1), Bi(1)]. At this stage, the acceptance 236 

thresholds are 𝜃𝐶
𝑙 (1) = −𝑇 + 𝐵𝑖(1) and 𝜃𝐵

𝑢(1) = 𝑇 + 𝐶𝑖(1), whereas the rejection thresholds are 𝜃𝐶
𝑢(1) =237 

𝐿 + 𝐵𝑖(1) and 𝜃𝐵
𝑙 (1) = −𝐿 + 𝐶𝑖(1). The acceptance and the rejection thresholds define two consensus 238 

areas, one for the acceptance (where both 𝑥 ≤ 𝜃𝐶
𝑙 (1) AND 𝑦 ≥ 𝜃𝐵

𝑢(1)) and one for the rejection of the 239 

resource (where both 𝑥 ≥ 𝜃𝐶
𝑢(1) AND 𝑦 ≤ 𝜃𝐵

𝑙 (1) ). If the random walk falls into one of these areas, then 240 

the assessment terminates and the choice is made, otherwise a new piece of information is collected. 241 

Suppose now that the item is indeed useful and, thus, that the amount of evidence for the benefits 242 

increases faster than the amount of evidence for the costs. The random walk and the acceptance-243 

consensus area move closer to each other and, after j pieces of information, they eventually converge to a 244 

point on the threshold line 𝑦 = 𝑇 + 𝑥, where 𝜃𝐶
𝑙 (𝑗) = −𝑇 + 𝐵𝑖  and 𝜃𝐵

𝑢(𝑗) = 𝑇 + 𝐶𝑖(j). At this exact 245 

moment, the decision is made and the resource is chosen (see also the IPython Notebook in the 246 

supplementary materials). T and L directly affects decision time and, thus, the speed-accuracy trade-off in 247 

decision making. If the insect sets the thresholds close to zero, decisions will be quick, but inaccurate. In 248 

contrast, if it sets the thresholds far from zero, decisions will be slow, but much more accurate.  249 
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It must be noticed that the 2-DRW can be converted into a one-dimension random walk by rotating the 250 

axes clockwise by 45° with respect to the origin, so that the decision thresholds are parallel to the rotated 251 

y-axis. The x-coordinates of the rotated random-walk are 
𝐵𝑖(𝑗)+𝐶𝑖(𝑗)

√2
, whereas the y-coordinates are 252 

𝐵𝑖(𝑗)−𝐶𝑖(𝑗)

√2
. Since displacements along the x-axis do not affect decision time, the dynamics of the decision 253 

process can be described as the bounded random walk 𝑈(𝑗) = 𝑈(𝑗) + (𝐵(𝑗) − 𝐶(𝑗)) √2⁄ , with decision 254 

thresholds 𝑇′ = 𝑇 √2⁄  and  𝐿′ = 𝐿 √2⁄ . While the one- and the two-dimension decision mechanisms are 255 

equivalent in terms of computational efficiency (the √2 parameter is a scale factor and has no effects on 256 

decision time), they are not equivalent in biological terms. In fact, the one-dimension random walk 257 

mechanism requires an additional neural layer (𝑈) for integrating benefits and costs and, thus, it is “neuro-258 

anatomically” less efficient than the 2-DRW (Fig. 1). 259 

OPTIMAL DECISION STRATEGIES  260 

I define with S the decision strategy of the foraging insect. In the 1-DSS model, S depends on the decision 261 

threshold 𝜃 and on the decision time 𝜏, which is independent of the resource qualities, 𝑆 = 𝑠(𝜃, 𝜏). In 262 

contrast, in the 2-DRW, the insect controls the decision time only indirectly, by adjusting the two decision 263 

thresholds. For this reason, decision time is no longer fixed, but it depends on the qualities of the resources 264 

and on the thresholds. The decision strategy is thus a function of the two decision thresholds (see Eqn. 7): 265 

𝑆 = 𝑠(𝑇, 𝐿).  266 

Let P be the probability that the foraging insect exploited a resource. P is a function of both S and the 267 

characteristics of the resource (i.e. 𝑃 = 𝑝(𝑆, 𝑞, ℎ)). Let A and R be the decision time, respectively, to accept 268 

and to reject an option. Since the sensory information is acquired at a constant rate, A and R are 269 

proportional to the number of pieces of information used to make decision. In the 1-DSS, A and R depend 270 

on the decision strategy and have the same value 𝜗 independent of the resource being assessed. In 271 

contrast, in the 2-DRW, A and R are a function of S, q, and h (i.e. 𝐴 = 𝑎(𝑆, 𝑞, ℎ), 𝑅 = 𝑟(𝑆, 𝑞, ℎ)).  272 

I define with 𝑊(𝑆) the fitness benefits of a decision strategy. I assume that during its daily foraging activity, 273 

the insect inspects N items. Each item i is fully described by its attributes 𝑞𝑖 and ℎ𝑖. For the sake of 274 

simplicity, I also assume that 𝑞 and ℎ are statistically independent of each other. 𝑊(𝑆) is the ratio between 275 
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the total caloric intake and the total foraging time (i.e. the time spent for searching, handling, and for 276 

deciding either to or not to exploit a resource). The expected fitness of both the 1-DSS and 2-DRW is 277 

derived from Eqn. 1: 278 

𝑊(𝑆(𝜃, 𝜏)) =
∑ 𝑝(𝑆,𝑞𝑖,ℎ𝑖)∙𝑞𝑖
𝑁
𝑖 −𝛾∙𝑁∙𝑠̅

𝑁∙(𝑠̅+𝜏)+∑ 𝑝(𝑆,𝑞𝑖,ℎ𝑗)∙ℎ(𝑗)
𝑁
𝑖

 ,         (Eq. 8a) 279 

𝑊(𝑆(𝑇, 𝐿)) =
∑ 𝑝(𝑆,𝑞𝑖,ℎ𝑖)∙𝑞𝑖
𝑁
𝑖 −𝛾∙𝑁∙𝑠́

𝑁∙𝑠̅+∑ [𝑝(𝑆,𝑞𝑖,ℎ𝑖)∙(𝑎(𝑆,𝑞𝑖,ℎ𝑖)+ℎ𝑖)+(1−𝑝(𝑆,𝑞𝑖,ℎ𝑖))∙𝑟(𝑆,𝑞𝑖,ℎ𝑖)]
𝑁
𝑖

   (Eq. 8b) 280 

The optimal strategy, 𝑆∗, is the one that maximizes 𝑊(𝑆), so that 𝑊(𝑆∗) > 𝑊(𝑆) for all possible decision 281 

strategies.  282 

SOLUTION PROCEDURE 283 

The optimal solutions were derived numerically. In order to compute choice probabilities and acceptance 284 

and rejection decision times, for each type of resource, I run 5000 random-walk simulations, each with a 285 

maximum number of time steps 𝐽𝑚𝑎𝑥. This set of simulations was used to compute the optimal decision 286 

strategy and the expected maximum rate of energy intake for both the 1-DSS and 2-DRW.  287 

To find the optimal 1-DSS strategy, I first created a list of evenly spaced threshold values 288 

(𝜃 = [𝜃1, 𝜃2…𝜃𝑚𝑎𝑥]) and decision times (𝜏 = [𝜏1, 𝜏2…𝜏𝑚𝑎𝑥]), which define the set of feasible strategies 289 

to be optimised. Then, for each threshold in 𝜃, for each time in 𝜗, and for each type of resource i, I 290 

computed  the choice probability 𝑃(𝑖, 𝜃, 𝜏) = 𝑝(𝑆(𝜃., 𝜏), 𝑞𝑖, ℎ𝑖) as the frequency of random-walk 291 

simulations with  𝑈𝑖 ≥ 𝜃. The P  values were used in the Eq. 8a to calculate 𝑊(𝑆) and derive 𝑊(𝑆∗). 292 

To find the optimal 2-DRW strategy, I created not one, but two lists of evenly spaced thresholds: the list of 293 

acceptance thresholds (𝑇 = [𝑇1, 𝑇2…𝑇𝑚𝑎𝑥]), with  0 ≤ 𝑇𝑗 ≤ 𝑇𝑚𝑎𝑥, and the list of rejection thresholds 294 

(𝐿 = [𝐿1, 𝐿2…𝐿𝑚𝑎𝑥]), with  0 ≤ 𝐿𝑗 ≤ 𝐿𝑚𝑎𝑥. For all possible combinations of 𝑇 and 𝐿, I computed the 295 

relative frequencies of simulations that reached the acceptance threshold 𝑇𝑗 and I assumed them to be 296 

equivalent to the choice probabilities 𝑃(𝑇𝑗, 𝐿𝑘 , 𝑖) = 𝑝(𝑆(𝑇𝑗, 𝐿𝑘), 𝑞𝑖, ℎ𝑖). I further assumed that the rejection 297 

probabilities was 1 − 𝑃 and thus that absence of evidence to support acceptance was evidence to support 298 

rejection. For each simulation, I also computed either the acceptance or the rejection time and averaged 299 
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them over the 5000 simulations to obtain, respectively 𝑎(𝑆(𝑇𝑗, 𝐿𝑘), 𝑞𝑖, ℎ𝑗) and 𝑟(𝑆(𝑇𝑗, 𝐿𝑘), 𝑞𝑖, ℎ𝑗) to be 300 

used in Eqn. 8b. 301 

Results 302 

OFT assumes information to be complete and free of errors and costs. My model has been designed to 303 

investigate what happens when these implausible assumptions are relaxed. To this purpose, I had to 304 

impose some constraints on the model and to make specific assumptions on how information is internally 305 

represented and processed. The first question that I address, thus, is about the effects of these 306 

assumptions. Specifically, I ask how the assumed representation affects the ranking of resource profitability 307 

and the ability to discriminate between profitable and unprofitable items.  308 

In Figure 3 and 4, I analyse the relationship between profitability (𝑞𝑖 ℎ𝑖⁄ ) and utility (𝐵𝑖 − 𝐶𝑖) under two 309 

different foraging conditions. The energetic quality (q) and the handling time (h) were generated from two 310 

independent, random, uniform distributions (ranges: q = (100, 2000); h = (10, 200)). The profitability and 311 

the utility of the items were computed by setting the mean searching time (𝑠̅) either equal to (Figure 3, 𝑠̅ ≅312 

ℎ̅) or much lower than the mean handling time (Figure 4, 𝑠̅ ≅ 0.2ℎ̅). I used Eqn. 2 and Eqn. 4 to discriminate 313 

between acceptable and unacceptable items according to the criteria of profitability (vertical lines) and 314 

utility (horizontal lines). The two thresholds divide the plane in four regions. (i) In the top-left area, there 315 

are the items that are perceived useful, but which are actually unprofitable. Since they will be erroneously 316 

included in the diet, I call this region the area of false positives. (ii) In the bottom-right region, there are the 317 

items that are profitable, but perceived as useless. This is the region of false negatives. (iii) The top-right 318 

and (iv) the bottom-left regions include, respectively, the true positives (items that are both profitable and 319 

useful) and the true negatives (items that are both unprofitable and useless). Although utility increases 320 

monotonically with profitability, the ranking along the two ordinal scales differ markedly and the 321 

differences increases at the extremes of the distributions. Profitability is a context independent property of 322 

a resource, whereas utility depends on the average quality and on the average handling and searching time 323 
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of the entire sample of available resources. Moreover, independent of the context, utility often provides a 324 

biased representation of profitability. In fact, two resources that differ in quality and handling time, but 325 

that have the same profitability (i.e. 𝑞1 ℎ1 = 10 5⁄⁄  and 𝑞2 ℎ2 = 100 50⁄⁄ ) differ in their perceived utility, 326 

because the item with the highest energetic quality (i.e. 𝑈2 with 𝑞2 > 𝑞1) will always be of higher perceived 327 

utility than the other.  328 

Despite these marked differences, the utility and profitability representations may lead to very similar 329 

foraging behaviours, in particular, when the environment favours unselective foraging strategies.  In the 330 

simulation of Figure 3, the optimal foraging strategy makes the insect to choose about 70% of the available 331 

resources and reject the remaining 30% (i.e. moderate choosiness). In this case, no items fall into the false-332 

positive and false-negative regions (Figure 3a). Both the 1-DSS (Fig. 3b) and the 2-DRW (Fig. 3c) discriminate 333 

accurately between profitable and unprofitable resources. When the environment favours choosiness, 334 

however, the performance of both models decreases and discrimination becomes much less accurate. 335 

Figure 4 shows results of a simulation that assumes a highly selective environment (where the searching 336 

time is much shorter than the handling time). The OFT model predicts the insect to be much choosier than 337 

before and to include in the diet only 40% of the available resources. Under these strong selective 338 

conditions, many unprofitable items are perceived as useful (they reside in the false-positive region of Fig 339 

4a) and the optimal decision strategy of both the 1-DSS (Fig. 4B) and 2-DRW (Fig. 4C) models provides a less 340 

accurate discrimination between profitable and unprofitable items.  341 

The next issue that I consider is performance. Specifically, I ask how the assumed internal representation of 342 

benefits and costs (see Eqn. 3) affects the optimal energy intake predicted by the 1-DSS and the 2-DRW. I 343 

compare the two models along a cline of resource density, from a high-density condition, where an 344 

unselective insect would spend about than 10% of the total foraging time in searching (that is, when 345 

𝑠̅ (𝑠̅ + ℎ̅) = 0.1⁄ ), to a low-density condition, where it would spend most of its foraging time in searching. 346 

Figure 5 shows the optimal performance predicted by the 1-DSS, by the 2-DRW and by the no-choice 347 

strategy (when all the resources are exploited indiscriminately). For each decision model and 348 

environmental condition, I calculated the optimal rate of energy intake and divided it by 𝑊𝑂𝐹𝑇 , the 349 
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optimal rate predicted by Eqn. 2, under the unrealistic assumptions that foraging decisions were always 350 

correct and that decision time was always negligible. These ratios were used as a measure of the relative 351 

efficiency of the decision strategy. When the percentage of searching time increases, the relative efficiency 352 

of all decision strategies increases as well. The efficiency will reach its maximum when the high searching 353 

costs will make all items profitable. The reason of this becomes clear when we consider the expected 354 

benefits and costs (Eqn.5). An increase in searching time reduces the average quality of the resources (𝑞̅ −355 

𝑐𝑠̅) and thus increases the expected benefits of the item that is being assessed, (𝑞𝑖 − 𝑞̅ + 𝑐𝑠̅) (𝑞̅ − 𝑐𝑠̅)⁄ . 356 

Moreover, the increase in searching time, by reducing the average encounter rate, reduces also the 357 

opportunity costs of a resource. As a consequence, the portion of useful items (for which benefits 358 

overcome costs) tends to increase with increasing searching time. While this trend is evident in both 1-DSS 359 

and 2-DRW, their patterns are slightly different. For very short searching time, 1-DSS and 2-DRW show 360 

similar efficiency, but 1-DSS becomes  less efficient than 2-DRW when searching time increases. Wald and 361 

Wolfowitz (1948) demonstrated that, among all the sample decision methods, the sequential tests are the 362 

most efficient, because they minimize random error rates with respect to the number of samples used. At 363 

low searching time, however, we have seen that a benefit-cost representation introduces a systematic 364 

error that increases the risk of false positives (Fig 4a). The effect of this bias increases with the decreasing 365 

of uncertainty in decision making (that is, with the decreasing of random errors). For this reason, in the 366 

absence of representation biases, the 2-DRW is (slightly) more efficient than the 1-DSS, because it needs 367 

less time to make similarly accurate decisions. But when representation biases are present (i.e. at low 368 

searching times, when the risk of false-positive errors is high), the higher precision of the 2-DRW (i.e. the 369 

ability to control random errors) plays against its ability to make accurate decisions and both models 370 

perform in a similar way.  371 

So far, I have emphasized the differences between the 1-DSS and the 2-DRW. These differences in 372 

performance, however, are admittedly small and one may ask whether selection can discriminate between 373 

the mechanisms. From a computational point of view, in fact, the models implement two different 374 

algorithms that both provide a “satisfactory” and flexible solution to the problem of optimal foraging.  375 
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Figure 6 shows how such flexible solutions are attained. When the resource density is high and the 376 

proportion of searching time is low, the decision thresholds are asymmetrically distributed to control for 377 

the high risk of false positives (Fig. 6a). Nevertheless, under these conditions, false positives are still more 378 

likely than false negatives (Fig. 6b), probably because of the “utility bias”, which overestimates profitability 379 

when resources are abundant. When the same type of resources are dispersed over a larger area, the 380 

searching time increases and the opportunity costs decreases. Since the expected benefits do not change, 381 

the increase of searching time causes an increase of the proportion of profitable resources and, 382 

consequently, a decrease of the risk of false positives. In these cases, the acceptance decision threshold of 383 

both models is predicted to decrease. In 1-DSS, it converges to zero, whereas in 2-DRW it is positive, but 384 

lower (in absolute terms) than the rejection threshold. The decreased asymmetry of the decision 385 

thresholds reduces the false-positive bias, which is, however, eliminated (1-DSS) or even slightly inverted 386 

(2-DRW) only when resource densities are very low (i.e. for proportion of searching time larger than 50%). 387 

With increasing searching time, 1-DSS model predicts no marked differences in decision time (Fig. 6c). In 388 

contrast, 2-DRW predicts an increase in decision time when the proportion of searching time decreases and 389 

most of the resources become unprofitable. In fact, in these selective environments, to avoid the high 390 

opportunity costs of false-positive decisions, the insect must assess expected benefits and costs accurately. 391 

Discussion 392 

 “Evo-mecho” models (McNamara and Houston 2009) aim at integrating the functional and the mechanistic 393 

approach in the study of animal behaviour. Castellano (2015) argues that the success of this research 394 

program will largely depend on its capacity to incorporate a coherent body of theory, which can guide the 395 

empirical research. By adopting the “evo-mecho” perspective in the study of mating decisions, Castellano 396 

(2015) presents a 2-steps approach, which aims at identifying, first, the optimal computational mechanism 397 

and, then, the algorithm that can implement it. These two steps correspond to the first two levels of 398 

analysis in the Marr’s (1982) neuroscience research program. In the present paper, I extend the 2-steps, 399 

“evo-mecho” approach to the investigation of the mechanisms of foraging decisions. In the complex 400 
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hierarchy of foraging choices (Stephens 2008), my model focuses on the most basic decision, that is, 401 

whether an encountered resource should be exploited or dismissed in favour of searching for the next, 402 

hopefully better item. The functional aspects of this decision have been thoroughly investigated by the 403 

classic “diet model” of the optimal foraging theory (Stephens and Krebs 1986). My model can thus be 404 

viewed as a mechanistic version of this classic model. Although some of the simplifying assumptions of the 405 

“diet model” might appear to constrain the reliability of its predictions (Sih and Christensen 2001), I will 406 

argue that they are nevertheless instrumental to the “evo-mecho” approach. In fact, the assumptions of 407 

the functional models define the type of information, but not how this information is processed. For 408 

example, my “evo-mecho” model shares with the “diet model” the assumption that neither the forager’s 409 

state nor the predation risk play a role in foraging decisions. To study the effect of predation and condition, 410 

these simplifying assumptions should be relaxed and a new fitness function should be defined (see for 411 

example Brown 1992; Clark and Dukas 1994). In this new model, the type of information used to define 412 

costs and benefits would change, but the computational mechanisms of decision making might remain the 413 

same. 414 

The “diet model” defines the “computational theory” of foraging decisions, in that it deals with the abstract 415 

computations that maximize the fitness of decision makers, expressed as the long-term rate of energy 416 

intake. In contrast, the 1-DSS and the 2-DRW define the theory of computational mechanisms, in that they 417 

focus on the algorithms used to process sensory information and to make decision. The “diet model” 418 

assumes that the sensory information about the quality of items is converted into an internal 419 

representation of their profitability, the rate of net energy intake (q/h). From this assumption it derives that 420 

the economic value is an intrinsic, context-independent attribute of the items. For example, variation in the 421 

relative abundance of items has no effect on their perceived profitability, but only on the decision rules 422 

(that is, the decision thresholds). In contrast, both the 1-DSS and the 2-DRW assume that the perceived 423 

value of items is context-dependent and, thus, that choice variation can be the consequence not only of 424 

flexible decision rules, but also of the flexible use of sensory information. Specifically, the two models 425 

assume that sensory information about the energetic value and handling time of a resource is processed in 426 
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a parallel fashion and converted into two context-dependent representations of benefits and costs. 427 

Benefits are the relative difference between the observed and expected energetic value of a resource. 428 

Costs are the loss of opportunity, measured as the relative difference between the observed and expected 429 

exploitation time. Such a representation of the item economic value is what provides flexibility to the 430 

decision mechanism. Suppose, in fact, that the foraging insect moves to a new environment, where the 431 

resources are more abundant than before. By direct experience, the insect can adjust its expectations and 432 

modify its choice: what in the previous environment was perceived as a profitable resource because it had 433 

a larger-than-average energetic income, now it is perceived as unprofitable because it falls below the 434 

average. In both environments the decision rule may remain the same, but the foraging behaviour changes.  435 

Expected benefits and costs are not abstract concepts invented by theoreticians to provide a formal 436 

description of complex decision processes. In recent years, in fact, several neuro-economics studies have 437 

been providing convincing evidence for their biological role (review in Glimcher 2011): humans, for 438 

example, have physically distinct neural representations of expected benefits (in the pre-frontal cortex) and 439 

expected costs (in the cingulate cortex) (Grabenhorst and Rolls 2011). 440 

When the “cost-benefit” and the “profitability” representations are compared, some discrepancies emerge. 441 

When resources are abundant and the optimal decision strategy is highly selective (that is, when less than 442 

50% of the available resources are included in the optimal diet), the cost-benefit representation tends to 443 

over-estimate the values of resources and makes the insect to exploit items that should have been avoided. 444 

As a consequence, the maximum rate of net energy intake that can be attained by adopting this type of 445 

representation is much lower than that predicted by the more efficient, but biologically less plausible 446 

representation of profitability. Furthermore, independent of the relative abundance of resources, the cost-447 

benefit representation tends to weigh proportionally more the benefits than the costs: for example, the 448 

profitability representation predicts that two items that have the same rate of energy intake, but differ in 449 

their energy value and handling time, will be perceived as having the same economic value. In contrast, the 450 

cost-benefit representation predicts that the item with larger energetic value and longer handling time will 451 
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be perceived of higher economic value than the other. Both these predictions can be experimentally tested 452 

and the results may provide useful insights into the information processing mechanisms of decision making. 453 

A theory of computational mechanisms must specify not only the type of representation, but also the 454 

algorithm used to process information. As for representation, also in this case there may be several 455 

possible solutions. Indeed, many researchers in decision science assume that natural selection has provided 456 

decision makers with a toolbox of heuristics each performing optimally (or satisfactory) in different 457 

contexts (Goldstein and Gigerenzer 2002). These rules and their implementing algorithms are often viewed 458 

as evolutionarily independent traits, which can be easily adjusted or ex-novo created by natural selection in 459 

response to new challenges. But the algorithms in the brain are not like the list of commands in a computer 460 

script. They have a physical and anatomical reality and new anatomical structures usually do not evolve ex-461 

novo, but from the modifications of ancestral traits (Cisek and Pastor-Bernier 2014). In accordance with this 462 

parsimonious idea of evolution, the 1-DSS and 2-DRW are actually two variants of the same general 463 

mechanism of information processing, which integrates over time independent pieces of information to 464 

reduce uncertainty. Despite the similarity, the two models show two important differences with respect to 465 

decision time and to the dimensionality of the decision space.  466 

As it concerns decision time, the 1-DSS, a variant of signal-detection models (e.g. Green and Sweet 1966, 467 

Stephens 2007, Wiley 1994, 2006), assumes decision time to be context independent and under the direct 468 

control of the decision maker (see Abbott and Sherratt 2013), while the 2-DRW assumes decision time to 469 

be context dependent and only indirectly controlled by the decision maker. The 2-DRW belongs to the 470 

category of sequential-sampling models, which were first developed by cognitive psychologists (review in 471 

Busemeyer and Townsend 1993, Bogacz et al. 2006, Ratcliff et al. 2016) and then used by neuroscientists to 472 

model the neuronal mechanisms of decision making (Gold and Shadlen 2001, 2007, Churchland et al. 2008). 473 

In these models, decision time depends on both the quality of the item being assessed and the threshold 474 

adopted to make decisions. Bogacz et al. (2006) showed that, in terms of decision time, the performance of 475 

these models approximates that of the Sequential Probability Ratio Tests (SPRT, Wald 1945), which is 476 

computationally optimal, because, for a given error rate, it provides the fastest response (i.e. lowest 477 
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decision time) (McNamara et al. 2009). To compare the performance of the 1-DSS and the 2-DRW, I have 478 

used the OFT as a benchmark. Specifically, I have described the relative efficiency of the two models as the 479 

ratio between the maximum rate of energy intake predicted by these models and that predicted by the OFT 480 

model. When the food is very abundant (i.e. when only 10% - 20% of foraging time is spent for searching), 481 

both efficiencies are relatively low, because the risk of false positives is high and the cost-benefit 482 

representation predisposes both models to make this error. When the abundance of food decreases, the 483 

risk of false positives decreases as well, and the 2-DRW becomes slightly more efficient than the 1-DSS, 484 

because it allows both faster and more accurate responses. 485 

Besides decision time, the 1-DSS and the 2-DRW differ in the way costs and benefits are used to make 486 

decisions. The 1-DSS assumes that the decision maker integrates the perceived benefits and costs into a 487 

single decision variable, which represents the subjective utility of the resource (sensu Savage 1954). In 488 

contrast, the 2-DRW supports a novel interpretation of the decision process. According to this view, sensory 489 

information is supposed to “influence” rather than to “inform” decision makers (Rendall et al. 2009). 490 

Decisions are not based on the internal representation of abstract values, but of action opportunities that 491 

compete against each other for execution (Cisek 2007, Cisek and Pastor-Bernier 2014): exploitation is 492 

supported by the accumulating evidence of benefits, exploration by the accumulating evidence of handling 493 

costs. The perceived benefits and costs can be viewed as two independent decision variables or, in 494 

geometrical terms, as the two axes of a multi-dimension decision plane. The assumption that alternative 495 

options are ordered along an ordinal scale of expected utilities implies that animals are rational decision 496 

makers and that their behaviours obey to the principles of transitivity (if A is preferred over B, and B over C, 497 

then A should be preferred over C) and independence (if A is preferred over B in the absence of C, A should 498 

be preferred over B also in the presence of C). By relaxing this assumption, we could develop new models 499 

of decision making, which help us to understand why animals (and humans as well) behave irrationally, 500 

when they are expected to do it, and which are the computational mechanisms underlying the cognitive 501 

biases responsible for irrational behaviours. In the process, these models could also provide insights into 502 

the unsolved question of the evolutionary significance of irrational behaviours (Houston et al. 2007, 503 
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Trimmer 2013, McNamara et al. 2014). In the present paper, the 2-DRW has been used to model one-504 

choice decisions, that is, decisions between alternative actions in response to a single option. The same 505 

decision mechanism, however, can be used in multiple-choice contexts, that is, to model choice among 506 

alternative actions in response to multiple options. While in one-choice context, the 2-DRW predicts 507 

rational behaviours, it may no longer do it under multiple-choice contexts (Castellano 2019).  508 
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FIGURE CAPTIONS 607 

Figure 1. Schematic representations of the neural circuits underlying (a) the one-dimension-static-sampling 608 

model (1-DSS) and (b) the two-dimension random walk model (2-DRW) of decision making. Sensory 609 

information about the energetic quality and the handling time of a resource is linearly transformed by, 610 

respectively, the benefit (B) and the costs (C) neurons. In the 1-DSS, the B- and C-neurons are connected 611 

with the U recursive neurons, which integrate information and accumulate neural activity for a fixed 612 

assessment time. The neural activity of the U-neurons represents the decision variable and they provide an 613 

internal representation of the economic value of the resource. Once assessment terminates the U 614 

integrators activate the gate-neurons (triangles) controlling for the motor response:  they elicit acceptance 615 

if their neural stimulation is greater than a threshold value, they elicit rejection if it is below the threshold. 616 

In the 2-DRW, U-neurons are missing and the B- and C-neurons play the role of recursive integrators. 617 

Assessment has not a fixed duration, but it terminates as soon as the difference in the activity of B- and C-618 

neurons is greater than some pre-determined values (T for acceptance, L for rejection, Eqn 7). The 619 

mechanism does not compute such difference, though it behaves as it did. Metaphorically speaking, the 620 

mechanism resembles a cycling pursuit race. In this type of races, two cyclists start simultaneously from 621 

opposite positions along the track and each of them rides as fast as he can to reach the opponent. The race 622 

terminates when the difference between the distances covered by the faster and the slower riders equals 623 

their starting distances. Similarly, in the 2-DRW, B- and C-neurons (the cyclists) accumulate independent 624 

pieces of evidence over time, supporting either the acceptance (B) or the rejection (C) response. Due to 625 

neural modulation, an increase in the B activity causes an increase of the C threshold, whereas an increase 626 

of the C activity causes an increase of the B threshold. As in the pursuit race, If B increases faster than C, B 627 

gets closer to its upper threshold and C to its lower threshold. When B will finally reach its upper threshold, 628 

the difference between B and C will be exactly T (Eqn. 7). In contrast, if C increases faster than B, the upper 629 

threshold of C will be reached and when this happens, the difference between C and B will be L (Eqn. 7). 630 

 631 
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Figure 2. A graphical representation of the one-dimension-static-sampling model (1-DSS) and the two-632 

dimension random walk model (2-DRW) of decision making. (a) The resources perceived utilities (U) are 633 

assumed to be normally distributed. An optimal decision maker should choose to exploit only resources 634 

with a positive value (“true” positives, green area) and avoid those with a negative value (“true” negatives, 635 

red area). The frequency of valuable resources is always larger than that of invaluable resources and the 636 

difference increases with the relative increase of searching time (see main text). (b) Since assessment is 637 

prone to error, the perceived distributions of “true” negatives and of “true” positives approximate two 638 

overlapping normal distributions. The probabilities of false-positives (red area) and false-negatives (green 639 

area) depend on the decision threshold. (c) In the 2-DRW, the internal representation of resources is a 640 

point in a 2-dimension plane, described by the costs and benefits axes. In this example, resources show a 641 

bi-normal distribution. The optimal decision maker should exploit the resources above the B = C line (green 642 

area) and avoid those below this line (red area). (d) Since assessment is uncertain (unsaturated red and 643 

green areas), decision makers collect a sequence of sensory information over time. The decision process is 644 

analogous to a random-walk (grey lines) in the two-dimension plane, bounded by an upper (green) and a 645 

lower (red) threshold line. Decision is made as soon the random walk reaches one of the two thresholds 646 

(i.e. the blue path). 647 

 648 

Figure 3. (a) Profitability and perceived utilities of a sample of items, randomly selected from a population 649 

with uniformly distributed energetic quality (q range: 10-2000 caloric units) and handling time (h range: 10-650 

200 time units), with average searching time of 100 time units, and with a cost of search per unit time,  = 651 

0.002. All profitable items (whose q/h was higher than the acceptance threshold predicted by the Optimal 652 

Foraging Theory) show positive utilities (benefits minus costs). The profitability and utility representations 653 

provides highly consistent choice criteria and no items falls either in the false-positive or false-negative 654 

regions. (b)  Choice probabilities of the 100 items predicted by the 1-DSS model of decision making. (c) 655 

Choice probabilities predicted by the 2-DRW model of decision making.  656 
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 657 

Figure 4. (a) Profitability and perceived utility of the same 100 items of Figure 3, under a much shorter 658 

average searching time (𝑠̅ = 20 time units) . Some items, which are just below the profitable threshold 659 

(𝜃𝑂𝐹𝑇), fall just above the benefit-cost threshold and are positively selected by the insect. (b) Choice 660 

probability of the 100 items predicted by the Signal-detection-model (1-DSS). (c) Choice probabilities 661 

predicted by the 2-Dimension-Dynamic Model (2-DRW) of decision making. 662 

 663 

Figure 5. A comparison of the relative efficiency of the 1-DSS (red line) and the 2-DRW (black line) as a 664 

function of the resource abundance (expressed as the percentage of the total foraging time spent in 665 

searching). The relative efficiency is computed as the ratio between the predicted maximum rate of net 666 

energy intake and that predicted by the optimal foraging theory (assuming no uncertainty and zero 667 

decision time). The no-choice line (green line) shows the relative efficiency expected when all the available 668 

resources are indiscriminately exploited. 669 

Figure 6. Optimal decisions rules under different relative searching times (%searching = 𝑠̅ (𝑠̅ + ℎ̅)⁄ ∙ 100). 670 

(a) At low searching time, when the risk of false positives is much higher than the risk of false negatives, the 671 

decision thresholds are strongly asymmetrical. In 1-DSS (red-filled squares), the threshold is positive and 672 

converges to zero only for searching time longer than 50%. In the 2-DRW (black-filled squares), the 673 

acceptance threshold is, in absolute, larger than the rejection threshold, but it becomes smaller when the 674 

increase of searching time, by making most of the resources profitable, also increases the risk of false 675 

negatives. (b) When searching is lower than 50%, false positives (solid lines) are more likely than false 676 

negatives (dashed lines) in both the 2-DRW (black dots) and the 1-DSS (red squares). When searching time 677 

increases,  false positives and false negatives are equally likely (1-DDS) or false negatives are slightly more 678 

likely than false positives (2-DRW). (c)  In the 2-DRW (black dotted line), the insect is predicted to decrease 679 

decision time when searching time increases, whereas, in the 1-DSS (red-square line), decision times is 680 
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independent of searching time. Vertical bars the standard errors. They have been computed by replicating 681 

100 times the entire sets of simulations. 682 
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