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ABSTRACT
As the cost of computing devices continues to decrease, swarms
of low-end intelligent devices become a more interesting solution
for safety-critical applications. The safe execution of such systems,
however, usually requires mechanisms ensuring that relevant global
properties, expressed as logical formulas, are satisfied. These for-
mulas need to capture properties of the system evolution in time,
and of its distribution in space, thus requiring a mix of spatial and
temporal logic modalities. Furthermore, in scenarios where access
to the cloud might not be available, monitoring their validity should
be performed autonomously by the distributed system itself.

Previous works show that through the aggregate computing ap-
proach, and targeting the field calculus language, automatic transla-
tions of spatial or temporal logic formulas into distributed decentral-
ized monitors are possible. However, the definition and translation
of properties mixing space and time has not been considered so
far. In this paper, we start the investigation on integrating space
and time modalities through examples, outlining a roadmap for a
fully-fledged distributed monitoring of space-time properties.

CCS CONCEPTS
•Computingmethodologies→ Self-organization; •Computer
systems organization→ Embedded and cyber-physical systems; •
Theory of computation →Modal and temporal logics.
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1 DISTRIBUTED RUNTIME VERIFICATION
Runtime monitoring is a lightweight verification technique dealing
with the observation of a system execution with respect to a speci-
fication [12]. Specifications are usually trace- or stream-based, with
events mapped to atomic propositions in the underlying logic of
the specification language. Popular specification languages include
regular expressions and the Linear Time Logic (LTL). Distributed
runtime monitoring comprises both monitoring of distributed sys-
tems, and using distributed systems for monitoring. Distribution
is particularly challenging for verification purposes, as it requires
to deal with issues such as synchronisation, communication faults,
lack of global time, and so on.

In this paper, we address the design of distributed and decen-
tralised runtime monitors [8], assuming that every agent of the
system executes independently, and occasionally synchronizes or
communicates with other agents via a given communication plat-
form. Following Francalanza et al’s terminology, we model agents
as processes and consider any two processes as remote to each other.
Every process produces a local trace of events, which is a sequence
of sets of observable values derived from the agent’s sensors or be-
haviour. Agents are allowed to appear or disappear from the system,
thus different local traces are never aligned in time, i.e., events in the
same position of each trace do not necessarily happen at the same
time. Monitors check properties of the system by analysing their
traces. We follow an online evaluation strategy, where the monitors
are executed together with the processes themselves, being hosted
at the same location and communicating with neighbour monitors.
We assume that every agent is executing the same monitor, and
this allows us to connect with the traditional setup of runtime ver-
ification despite the distributed setting: from the perspective of
a single monitor, a single trace is evaluated, although this trace
may contain events from remote nodes. Our approach is able to
ignore failures, which usually make distributed systems harder to
manage: a non-responsive node does not disrupt the distributed
monitoring process, although influencing its verdict. We do not
explicitly address message corruption or faulty sensors, delegating
this issue to integrity measures on the communication layer. We
improve over previous works on distributed runtime verification [7]
by proposing an automated synthesis of monitors from high-level
specifications in a logic with modalities for both space and time.

2 AGGREGATE COMPUTING
Intensive research has revolved on the search for suitable program-
ming abstractions for ensembles of devices [4, 14]. Among those,
aggregate computing [5] has sprouted as a generalisation of the pre-
vious approaches, aiming to define a programming model able to ex-
press complex distributed processes through function composition,
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Figure 1: A sample event structure, split in events 𝜖 ′ in the
causal past of 𝜖 (𝜖 ′ < 𝜖, in red), events in the causal future
(𝜖 < 𝜖 ′, in green) and concurrent (non-ordered, in black).

with a semantics defined in terms of a gossip-like computational
process, and supporting reusability of collective adaptive behaviour.
Inspired by “fields” in physics, this aim is achieved through the
notion of computational field, defined as a global data structure
mapping devices of the distributed system to computational values.
Such fields can be computed from a set of input fields (e.g., from sen-
sors) either at a low-level, through simple programming language
constructs, or at a high-level by composition of general-purpose
building blocks of reusable behaviour, and can be ultimately fed to
actuators to realise a whole collective adaptive services.

The field calculus [3] is a minimal but universal [1] language
for aggregate computations over distributed networks of mobile
devices, each capable of asynchronously performing simple local
computations, and of interacting with a neighbourhood by local
exchanges of messages. The field calculus provides mechanisms
to express and compose such distributed computations, on a level
of abstraction that avoids the explicit management of message
exchanges, device position and quantity, and so on. In this context,
a single program is periodically and asynchronously executed on
every device, according to a cyclic schedule:

(1) first, the device gathers contextual information from sensors,
local memory, and recently collected messages; the latter
in the form of a neighbouring value, which is a map from
neighbour devices 𝛿 to values v;

(2) then, when a computation round starts, the device evaluates
the program with the information just gathered as input;

(3) finally, the computation result is stored locally, broadcast
to neighbours, and possibly fed to actuators (e.g., motors,
robotic arms, user interfaces, and the like).

Through the repetitive execution of rounds as above, across
space (where devices are located) and time (when devices start
a new cycle), a global behaviour emerges [13], which can be un-
derstood as occurring on the overall network of interconnected
devices, modelled as a single aggregate machine equipped with a
neighbouring relation. We give a formal semantics to field calculus
programs through the classical notion of event structure [10], which
we will also use later to interpret temporal logic formulas.

Definition 2.1 (Event Structure). An event structure E = ⟨𝐸,⇝⟩ is
a finite set of events 𝐸 together with an acyclic neighbouring relation

⇝⊆ 𝐸 × 𝐸 modelling message passing. We say that a sequence of
neighbour events 𝜖1 ⇝ . . .⇝ 𝜖𝑛 is a message path.

Event neighbouring induces the causality relation <⊆ 𝐸 × 𝐸,
defined as the transitive closure of⇝ and modelling causal depen-
dence. An example structure is shown in Figure 1. In practice, event
structures arise from device neighbourhood graphs changing over
time. For instance, device 3 in Figure 1 appears at a certain point in
time, with devices 4 and 1 as neighbours, but after a few steps its
neighbours become devices 2 and 4.

In the following, we will present some small snippets of field
calculus code, exploiting standard programming language notation
together with the following two domain-specific constructs.

• nbr(e0){e}. Each device 𝛿 evaluates this expression by
broadcasting the value of e to neighbours, and producing a
neighbouring value mapping each neighbour 𝛿 ′ of 𝛿 (includ-
ing 𝛿 itself) to the latest value that 𝛿 ′ has shared for e. If this
is the first execution of the expression, there is no previously
shared value for 𝛿 , and the value of e0 is used in its place.
For example, consider program nbr(false){𝑞()} where 𝑞
is a Boolean built-in function returning an observable. In the
event 𝜖 of Figure 1, the program computes a map associating
devices 2, 3 and 4 to their value of 𝑞 in their last red event.
In the first event on device 3, the default value is used to
compensate the lack of a previous value, thus producing a
map associating device 3 to false.

• share(e0){(x) => e}. In each device, the result of such
an expression is obtained by first:
– gathering a neighbouring value 𝑛 similarly as nbr above;
– evaluating e by substituting 𝑛 to x, obtaining the overall
value v for e; and finally

– broadcasting v to neighbours, which will use it in their
following rounds to produce their neighbouring value 𝑛.

For example, consider the following function declaration:

def dist(source) {

share (infinity) { (d) =>
if(source) {0} else {minHood(d)+1}

} }

Function dist computes hop-count distances from the closest de-
vice where source holds, through a single share construct. This
construct gathers neighbours’ distance estimates into a neighbour-
ing value 𝑛 (mapping neighbour devices to their distance estimate),
which is then substituted for variable d. In the first round of execu-
tion, the distance estimate infinity is used for the current device,
modelling that no information about a source is yet available. The
share body returns zero on source devices, or the minimum across
neighbours’ estimates minHood(d) increased by one otherwise,
mimicking the classical Bellman-Ford routine.

3 TEMPORAL AND SPATIAL LOGICS
In order to express properties of systems distributed in space and
time, both spatial and temporal logics have been studied. On the
former, the SLCS spatial logic has been shown to be naturally trans-
latable into field calculus monitors [2]. On the latter, preliminary
results hint that the past-CTL temporal logic [9, 11] should also be
naturally translatable into field calculus monitors. However, the
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𝜙 ::=⊥
��⊤ ��𝑞 �� (¬𝜙) �� (𝜙∧𝜙) �� (𝜙∨𝜙) �� (𝜙⇒𝜙)

�� (𝜙⇔𝜙) logical�� (P𝜙) �� (AP𝜙) �� (EP𝜙) �� (H𝜙)
�� (AH𝜙)

�� (EH𝜙) temporal�� (Y𝜙) �� (AY𝜙) �� (EY𝜙) �� (𝜙 S𝜙)
�� (𝜙 AS𝜙)

�� (𝜙 ES𝜙)�� (□𝜙) �� (^ 𝜙)
�� (𝜕 𝜙) �� (𝜕- 𝜙) �� (𝜕+ 𝜙) spatial�� (𝜙 R 𝜙)

�� (𝜙 T 𝜙)
�� (𝜙 U 𝜙)

�� (G 𝜙)
�� (F 𝜙)

Figure 2: Syntax of past-CTL and SLCS.

interplay between the two logics has not been studied so far, as
their interpretation is apparently incompatible: SLCS is interpreted
on graphs, while past-CTL is interpreted on event structures. Section
4 will present a preliminary investigation on a combination of the
two. We now present the two logics together, but assuming for the
moment that temporal and spatial modalities are never mixed.

Figure 2 presents the syntax of the past-CTL and SLCS logics.
They are based on atomic propositions 𝑞 representing observables,
share usual logical operators, and enrich them with either temporal
or spatial modalities. The temporal modalities are almost identical
to those in traditional CTL, with two main differences:

• temporal operators are interpreted in the past (and thus their
names are changed accordingly), alongmessage paths that all
happened (and are not alternative realities); this ensures that
formulas have a definite truth value computable at runtime;

• there are un-quantified versions of the operators along with
quantified versions, which refer to the linear past on a same
device (and thus behave as past-LTL operators).

Past-CTL formulas can be interpreted in event structures (Fig. 1),
giving a truth value for each event. The modalities take inspiration
from the words Yesterday, Since, Previously, Historically. We choose
Y, EY, S,AS, ES as primitive, with the following informal meaning:

• Y𝜙 means “𝜙 held in the previous event on the same device”;
• EY𝜙 means “𝜙 held in some previous event on any device”;
• 𝜙 S𝜓 means “𝜓 held in some past event on the same device,
and 𝜙 has held on the same device since then”;

• similarly, 𝜙 AS𝜓 (resp. 𝜙 ES𝜓 ) mean “for all paths (resp. ex-
ists a path) of messages reaching the current event,𝜓 held
in some event of the path and 𝜙 has held since then”.

The other operators can be derived from them by usual means,
through AY𝜙 ≜ ¬EY¬𝜙 ; P𝜙 ≜ ⊤ S𝜙 (similarly for AP, EP with
AS, ES); H𝜙 ≜ ¬ P¬𝜙 (similarly for AH, EH with EP, AP).

The spatial modalities are those of SLCS [2, 6], and can be divided
into local and global modalities. The local modalities are:

• □𝜙 (interior): true at points where all neighbours satisfy 𝜙 ;

• ^ 𝜙 (closure): true at points where a neighbour satisfies 𝜙 ;
• 𝜕, 𝜕- and 𝜕+ represent respectively boundary (closure without
interior), interior boundary (set without the interior) and
closure boundary (closure without the set).

We choose ^ as primitive, expressing the others through the equiv-
alences □𝜙 ≜ ¬^ ¬𝜙 , 𝜕 𝜙 ≜ (^ 𝜙) ∧ ¬(□𝜙), 𝜕- 𝜙 ≜ 𝜙 ∧ ¬(□𝜙),
𝜕+ 𝜙 ≜ (^ 𝜙) ∧ ¬𝜙 . The global modalities are:

• 𝜙 R𝜓 (reaches): true at the ending points of paths in the
graph whose starting point satisfies 𝜓 , and where 𝜙 holds
on each point on the path;

• 𝜙 T 𝜓 (touches): true at the end of paths whose start satisfies
𝜓 and where 𝜙 holds in the rest of the path;

• 𝜙 U𝜓 (surrounded by): true at points in an area satisfying
𝜙 , whose closure boundary satisfies𝜓 ;

• G 𝜙, F 𝜙 (everywhere, somewhere): true where 𝜙 holds in
every (resp. some) point of every (resp. some) incoming path.

We choose R as primitive, expressing the others through 𝜙 T 𝜓 ≜
𝜙 R ^𝜓 , 𝜙 U𝜓 ≜ 𝜙 ∧□¬(¬𝜓 R ¬𝜙), F 𝜙 ≜ ⊤R 𝜙 , G 𝜙 ≜ ¬F ¬𝜙 .

A possible translation of SLCS and past-CTL formulas into field
calculus is shown in Figure 3, by recursion on sub-formulas. We
translate atomic propositions 𝑞 into built-in function calls q() get-
ting their value from some external environment, and logical oper-
ators into their field calculus representation. We assume that:

• nbr, share and dist are as in Section 2;
• D is an upper bound to the network diameter (either fixed at
design time or estimated through an aggregate process);

• anyHood, allHood, locHood are built-in operators collaps-
ing a Boolean neighbouring value 𝜙 into the conjunction
(resp. disjunction, local value) of its constituent values.

Notice that as function dist in the translation of 𝜙1 R 𝜙2 is com-
puted within a branch, it only receives messages from neighbours
which selected the same branch, i.e., for which 𝜙1 is true. Thus, that
function call computes the shortest distance from a point satisfying
𝜙2, restricted within the region where 𝜙1 is true. Note also that the
translations of ^ and EY (and thus □ and AY) are the same, since
neighbour devices can only be accessed through previous events.

4 TOWARDS A SPACE-TIME LOGIC
Temporal formulas in past-CTL characterise properties of the past
cone of events for each event of an event structure. This “cone” is a
set distributed in time as well as in space: it follows that past-CTL
formulas are already able to capture some space-related proper-
ties. This is achieved by exploiting the “path quantifiers” A and E,
allowing paths of messages to span the network.

On the other side, even though the semantics of spatial formu-
las in SLCS is defined on timeless graphs, their implementation

⊤ true 𝑞 q() ¬𝜙 !𝜙 𝜙1 ∨ 𝜙2 𝜙1 || 𝜙2

^ 𝜙 anyHood(nbr(false){𝜙}) 𝜙1 R 𝜙2 if (𝜙1) {dist(𝜙2)<D} else {false}

EY𝜙 anyHood(nbr(false){𝜙}) Y𝜙 locHood(nbr(false){𝜙})

𝜙1S𝜙2 share (false) {(old) => 𝜙2 || (𝜙1 && locHood(old))}

𝜙1AS𝜙2 share (false) {(old) => 𝜙2 || (𝜙1 && allHood(old))}

𝜙1ES𝜙2 share (false) {(old) => 𝜙2 || (𝜙1 && anyHood(old))}

Figure 3: Translation of a primitive set of SLCS and past-CTL operators into field calculus.
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according to Figure 3 is executed through time, inducing a well-
defined behaviour on event structures. Future work may attempt
at developing a formal characterisation of such behaviour. For the
scope of this paper, we may understand this behaviour intuitively,
by interpreting an SLCS formula in an event 𝜖 as being evaluated
with respect to the subjective present of 𝜖 . This subjective present is
a graph consisting of a single event for every device in the network:
the most recent event on that device in the past of 𝜖 .

Combining these two observations, it follows that past-CTL and
SLCS can indeed be used together, and possibly fused into a single
space-time logic, that can be monitored according to the translation
in Figure 3. In this combined logic, the concepts of “immediate past”
and “immediate neighbourhood” fuse together, as shown by the
equivalence of ^ with EY and of □ with AY, since the most recent
view possible of the immediate neighbourhood is that coming from
the immediate past of neighbours, which is what the past-CTL
operators EY and AY are designed to access. While local spatial
modalities happen to be expressible in past-CTL, global spatial
modalities strictly improve over the capabilities of past-CTL, by
allowing to capture a notion of “present” that would be ineffable
otherwise. For instance, consider a simple formula such as F 𝑞,
which holds given that 𝑞 held somewhere in the subjective present
of the current event. An analogous concept cannot be captured by
any past-CTL formula: the closest relative would be EP𝑞, which
however produces a very different behaviour. In fact, F 𝑞 can start
false, then turn true as 𝑞 starts being true somewhere, and then
turn false again if 𝑞 stops holding. On the other hand, EP𝑞 can start
false, but when it turns true it has no way of turning back to false.

The proposed space-time logic, obtained by merging past-CTL
with SLCS, strictly improves over the expressibility of both, al-
lowing to express properties that were previously out of reach. In
the remainder of this paper, we substantiate this claim through
examples in a network monitoring scenario. We consider atomic
propositions 𝑠 identifying servers, and 𝑑 which is true on devices
which are down (regardless on whether they are servers or not).

There is currently a server that has always been down. We can
express that the current device has always been down through the
past-CTL formula H𝑑 ; and assert that it is also a server through
𝑠 ∧ H𝑑 . Finally, we can check whether there is currently such a
server through the somewhere modality of SLCS, as F (𝑠 ∧ H𝑑). In
field calculus, using that F 𝜙 ≜ ⊤R 𝜙 and H𝜙 ≜ ¬(⊤ S¬𝜙), and
simplifying tautologies, this formula gets translated to:

dist(s && !share (false) {(old) => !d || locHood(old)}) < D

At some point in the past, every server was simultaneously down.
Firstly, we need to express that everywhere there is a server, it
must be down. This can be written as G(𝑠 ⇒ 𝑑), which is an SLCS
formula. In order to check whether this formula has ever been true,
we resort to the EP modality of past-CTL, obtaining the space-time
formula EPG(𝑠 ⇒ 𝑑) formalising the target property.

Servers can always be reached through trustworthy devices only, i.e.,
devices that have never been down in their past. We can characterise
trustworthy devices within past-CTL, as those that have never
previously been down, through the simple formula ¬ P𝑑 . In order
to check whether a server can be reached through those devices

only, we exploit theR operator in SLCS obtaining (¬ P𝑑) R 𝑠 , which
can be read as “never previously down (i.e., trustworthy) devices
can reach servers”. As a final step, we check that this property has
always been satisfied by adding an AH modality: AH((¬ P𝑑) R 𝑠).

5 CONCLUSION
In this paper, we presented the temporal and spatial logics past-CTL
and SLCS, together with their automatic translation into aggregate
monitors in field calculus. Then, we discussed how the two logics
could be blended together, pointing out similarities and differences,
and finally presenting some examples mixing space and time modal-
ities to showcase the effectiveness of the proposed approach.

In the future, we plan to expand on this investigation by provid-
ing an abstract interpretation of SLCS formulas on event structures,
possibly expand the set of supported modalities, and finally testing
the approach on a simulated realistic case study.
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