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Evaluation and convergence in the computational
calculus

Claudia Faggian* Giulio Guerrieri† Riccardo Treglia‡

Abstract

In Moggi’s computational calculus, reduction is the contextual closure of
the rules obtained by orienting three monadic laws. In the literature, eval-
uation is usually defined as the closure under weak contexts (no reduction
under binders): E= 〈〉 | letx :=EinM.

We show that, when considering all the monadic rules, weak reduction
is non-deterministic, non-confluent, and normal forms are not unique. How-
ever, when interested in returning a value (convergence), the only necessary
monadic rule is β , whose evaluation is deterministic.

The computational λ -calculus, noted λc, was introduced by Moggi [Mog88,
Mog89, Mog91] as a meta-language to describe computational effects in program-
ming languages. Since then, computational λ -calculi have been developed as foun-
dations of programming languages, formalizing both functional and effectful fea-
tures [WT03, BHM02, PP03, LPT03, DGL17], in a still active line of research.

To model effectful features at a semantic level, Moggi used the categorical
notion of monad. A monad can be equivalently presented as a Kleisli triple satis-
fying three identities [Mog91, Mac97]. At an operational level, Moggi [Mog88]
internalized these identities into the syntax of λc, giving rise to three conversion
rules—called monadic laws—that are added to the usual β and η rules.

Nowadays the literature is rich of computational calculi that refine Moggi’s λc.
Such calculi are presented in at least three different fashions: fully equational sys-
tems [LPT03, PP02] (all conversion rules are unoriented identities); hybrid systems
where β (and η , if considered) are oriented rules while the monadic laws are iden-
tities on terms [DGL17]; reduction systems where every rule is oriented [SW97].
Here we follow the latter approach, which brings to the fore operational aspects of
reduction and evaluation which seem to have been neglected in the literature.

Indeed, in the literature of calculi with effects [LPT03, DGL17], evaluation
is usually weak, that is, it is not allowed in the scope of the binders (λ or let).
This is the way evaluation is implemented by functional programming languages
such as Haskell and OCaml. Moreover, only β and let.β are considered. However,
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in Moggi’s λc and in Sabry and Wadler’s [SW96], the reduction is full, that is,
reduction is the compatible closure of all the monadic rules. When considering all
the rules, we observe—quite unexpectedly—that evaluation (i.e. weak reduction)
is non-deterministic, non-confluent, and normal forms are not unique.

Reduction and Evaluation. Here we focus on a computational λ -calculus which
is standard in the literature, namely Sabry and Wadler’s λml∗ [SW96]. This is a neat
and compact refinement of Moggi’s untyped λc [Mog88]—the relation between the
two calculi is formalized by a reflection [SW96], which guarantees that there exists
a kernel of λc which is isomorphic to λml∗ .

λml∗—which we display in Figure 1— has a two sorted syntax that separates
values (i.e. variables and abstractions) and computations. The latter are either let-
expressions (aka explicit substitutions, capturing monadic binding), or applications
(of values to values), or coercions [V ] of values V into computations (corresponding
to the return operator in Haskell).

Values: V,W ::= x | λx.M
Computations: M,N ::= [V ] | letx :=M inN |VW

Reduction rules:

(β ) (λx.M)V 7→β M[V/x]
(η) λx.V x 7→η V x 6∈ fv(V )

(let.β ) letx :=[V ] inN 7→let.β N[V/x]
(let.η) letx :=M in [x] 7→let.η M

(let.ass) lety :=(letx :=L inM) inN 7→let.ass letx :=L in(lety :=M inN) x 6∈ fv(N)

Figure 1: λml∗ : Syntax and Reduction

• The reduction rules for λml∗ (in Figure 1) are the usual β (and η) rules
from Plotkin’s call-by-value λ -calculus [Plo75], plus the oriented version
of the three monadic laws: let.β , let.η , let.ass. The last two, in particular,
correspond to the monadic laws of identity and associativity, respectively.

• Reduction→ is the contextual closure of the reduction rules.

Following standard practice, we define evaluation →w ml∗ (aka sequencing) as
the closure of the rules under evaluation context E:

E ::= 〈〉 | letx :=EinN evaluation context

Informally, the operational understanding of weak reduction is that evaluating
letx :=M inN amounts to first evaluate M until it returns a value, that is, until a
computation of the form [V ] is reached. Then V is passed to N by substituting V
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for x in N, thanks to the rule let.β .

Despite the prominent role that weak reduction has in the literature of calculi
with effects, its reduction properties are somehow surprising. While full reduction
→ml∗ is confluent, the closure of the rules under evaluation context turns out to be
non-deterministic, non-confluent, and its normal forms are not unique.

Note that such issues only come from the monadic rules let.η and let.ass (
identity and associativity), not from β or let.β . It is worth to clarify that while the
literature on computational λ -calculi often adopts weak reduction (see for instance,
[LPT03, DGL17], where a big-step variant is used), the rules let.ass and let.η are
usually dealt with as unoriented identities—the only oriented rules being β and
let.β .

(Non-)Confluence. In λml∗ , the reduction→ml∗ is confluent, but weak reduction
→w ml∗ is not. We now give some examples. For every γ ∈{β ,η , let.β , let.η , let.ass},
the weak γ-reduction→w γ is the closure of the rule 7→γ under weak contexts E.

Example 1 (Non-confluence). Let M be a computation in normal form, for in-
stance M = xx.

lety :=(letx :=zz inM) in [y]
let.η

w
- letx :=zz inM

letx :=zz in(lety :=M in [y])

let.ass w
?

Both letx := zz inM and letx := zz in(lety :=M in [y]) are normal for →w ml∗ (in the

latter, the let.η-redex lety :=M in [y] cannot be fired by weak reduction), but they
are distinct.

Example 2 (Non-confluence). Let R = P = Q = L = zz and:

M := let z = (let x = (let y = L in Q) in P) in R

There are two weak let.ass-redexes, the overlined one and the underlined one. So,

M→w let.ass letx :=(lety :=L inQ) in(letz :=P inR)

→w let.ass lety :=L in(letx :=Q in(letz :=P inR)) =: M′

M→w let.ass letz :=(lety :=L in(letx :=Q inP)) inR

→w let.ass lety :=L in(letz :=(letx :=Q inP) inR) =: M′′

Both M′ are M′′ are normal for →w ml∗ (in M′′, the let.ass-redex letz := (letx :=

Q inP) inR is under the scope of a let and so cannot be fired by weak reduction),
but they are distinct.
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Example 3.

Non-determinism—but confluence—of→let.η . Let M = yy and N = zz:

letx :=(lety :=(letz :=N in [z]) inM) in [x]
let.η

w
- lety :=(letz :=N in [z]) inM

letx :=(lety :=N inM) in [x]

let.η w
? let.η

w
- lety :=N inM

let.η w
?

Summing up the situation:

1. →w β and→w let.β and→w β , let.β :=→w β ∪→w let.β are deterministic.

2. →w let.η is non-deterministic, but it is confluent.

3. →w let.ass is non-deterministic, non-confluent and normal forms are not unique.

4. →w let.ass∪→w let.β ∪→w β is non-deterministic, non-confluent and normal forms
are not unique.

5. →w ml∗ is non-deterministic, non-confluent and normal forms are not unique.

(Non-)Factorization. Another remarkable aspect making the reduction theory
for λml∗ (and for other computational λ -calculi) tricky to study is the lack of fac-
torization, which is the simplest possible form of standardization.

In Plotkin’s call-by-value λ -calculus [Plo75] (which can be seen as the restric-
tion of λml∗ where the reduction is generated only by the β -rule), weak reduction
satisfies factorization, that is any reduction sequence can be reorganized as weak
steps followed by non-weak steps:

→∗
β
⊆ →w

∗
β
· →¬w

∗
β

(1)

But in λml∗ (and similar computational λ -calculi), weak factorization does not
hold. The problem is here the let.η rule, as shown by the following counterexam-
ple, due to van Oostrom [vO20].

Example 4 (Non-factorization [vO20]). Consider

M := lety :=(zz) in(letx :=[y] in [x]) →¬w let.η lety :=(zz) in [y] →w let.η (zz) =: N

Weak steps are not possible from M, so it is impossible to factorize the reduction
form M to N as M→w

∗
ml∗ · →¬w

∗
ml∗ N.
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A bridge between Evaluation and Reduction. On the one hand, computational
λ -calculi such as λml∗ have an unrestricted non-deterministic reduction that gen-
erates the equational theory of the calculus, studied for foundational and semantic
purposes. On the other hand, weak reduction has a prominent role in the literature
of computational λ -calculi, because it models an ideal programming language.
Indeed, when restricted to closed terms (which are the terms corresponding to pro-
grams), normal forms of weak reduction coincide with values; and when restricted
to β and let.β steps, weak reduction is deterministic and corresponds to an abstract
machine, implementing a programming language. It is then natural to wonder what
is the relation between reduction and evaluation.

In Plotkin’s call-by-value λ -calculus [Plo75], the following convergence result
provides a bridge between reduction and evaluation: if a term M β -reduces to a
value, then M only needs weak β -reduction to reach a value.

M→∗
β

V (for some value V ) ⇐⇒ M→w
∗
β

V ′ (for some value V ′) (2)

In λml∗ , despite several drawbacks of weak reduction, we can still prove a con-
vergence result similar to (2) relating reduction and evaluation: to reach a value in
λml∗ , weak β -steps and weak let.β -steps suffice.

Theorem 5 (Convergence). Let M be a computation in λml∗ and let→ml∗− :=→ml∗

r→η .

M→∗ml∗−
[V ] (for some value V ) ⇐⇒ M→w

∗
β , let.β [V

′] (for some value V ′) (3)

Because of the issues which we have presented, this result is non-trivial. We
obtain it via the analysis of a calculus recently introduced by de’Liguoro and
Treglia’s, namely the computational core λ© [dT20]. λ© has the same issues, but
a different syntax, which is more closely related to calculi inspired by linear logic
[Sim05, EG16, GM19, FG21], whose properties and tools we can then use.

The analysis of the reduction theory of λ© is carried-out in [FGdT21]. We then
transfer the convergence of λ© to that of λml∗ , via a rather sophisticated analysis of
the translation.

Proof (sketch). The connection with calculi based on linear logic comes from
the fact that the β -reduction of λ© is the same as the β!-reduction in Simpson’s
linear λ -calculus [Sim05], which has been studied in the literature of linear logic
[EG16, GM19, FG21] also with the name bang calculus. There, a unary operator
! marks resources that can be duplicated or erased during reduction. The opera-
tor ! corresponds exactly to the coercion of a value V into a computation [V ] (the
return operator in Haskell). This close relation allows us to rely on results and
tools coming from the reduction theory of the bang calculus to study reduction and
evaluation of β and let.β .

We obtain the proof of convergence for λml∗ in two phases:
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1. We first study λ©, whose reduction is simpler to study thanks to the facts we
mentioned above. Weak factorization and convergence of λ© are analysed
in [FGdT21], via several steps which progressively simplify the reduction
sequences.

• λ© enjoys surface factorization, i.e. any reduction sequence can be
rearranged by first performing surface steps (which are not in the scope
of any !) and then non-surface steps.

• The steps corresponding to the identity law can be postponed after all
the other steps. So any reduction sequence can be rearranged to have an
initial sequence s of surface steps which do not include (the λ© version
of) let.η .

• For such initial surface sequence s, we have a weak factorization result,
which extends (1) (recall that the calculus here is richer than Plotkin’s
CbV).

• Finally, in the initial weak sequence, the steps which correspond to the
associativity law can also be postponed, yielding in λ© a convergence
result analogous to (3).

2. We then transfer to λml∗ the convergence result of λ©. The difficulty here is
that the translation between the two calculi does not directly preserve weak
reduction: a more sophisticated analysis is needed.

Conclusion. We have analyzed evaluation (according to the standard definition
of evaluation context) in a well-established formalization of the computational cal-
culus, namely Sabry and Wadler’s λml∗[SW96]. Notice that the properties of non-
confluence and non-factorization of evaluation which we presented actually hold
in any calculus in which the monadic rules are oriented. We find this fact quite
surprising, and worth to be explicitly stated. To our knowledge, it does not appear
in the literature.

We are able to show that a convergence result analogous to (3) holds in λml∗ .
Convergence in λml∗ relates full reduction to evaluation, and provides a theoretical
justification to the following facts:

1. functional programming languages with computational effects use weak re-
duction as evaluation mechanism; indeed, weak reduction is enough to return
values.

2. in computational λ -calculi, when interested in returning a value, the only
rules of interest for weak reduction are β and let.β—which are deterministic
and do not have unpleasant rewriting properties—while the rules let.ass and
let.η can be safely considered as unoriented identities—they are necessary
to the equational theory but are external to the reduction.
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