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Abstract: In this paper, we present and calibrate a multi-population stochastic mortality model
based on latent square-root affine factors of the Cox-Ingersoll and Ross type. The model considers
a generalization of the traditional actuarial mortality laws to a stochastic, multi-population and
time-varying setting. We calibrate the model to fit the mortality dynamics of UK males and females
over the last 50 years. We estimate the optimal states and model parameters using quasi-maximum
likelihood techniques.
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1. Introduction

Mortality laws are considered traditional actuarial models that describe the link be-
tween death probabilities (or the force of mortality) and the age of the individuals. However,
it is very soon after continuous-time stochastic mortality models started developing that [1]
proposed the use of latent factors to generalize mortality laws to a stochastic continuous-
time setting. In the proposed framework, a set of time-varying stochastic components
and parameters affected the evolution of mortality rates at different ages. In particular, [1]
calibrated the one-year death probabilities of several ages of the Dutch population to 2-
or 3-factor Gaussian models that extended the first and second Makeham’s and Thiele’s
laws to a stochastic setting. The authors of [2] built on a similar setup to propose a general
multi-population stochastic extension of mortality laws. There, the mortality intensities of
several populations were affine functions of affine latent factors. Different populations and
sub-populations within them had different mortality dynamics because they depended
on some common factors—shared among population groups—and certain idiosyncratic
factors, which were population-specific. Population-specific parameters interact with such
factors to reproduce the age–mortality relation. While the setting described in [2] was very
general, the implementation was restricted to the use of Gaussian factors. The Gaussian
factors have the advantage of being easier to calibrate. However, Gaussian factors have the
disadvantage of allowing for negative mortality intensities with non-negative probabilities.
That is a relevant shortcoming, for instance, for annuity pricing purposes. In their work, [2]
described the application of a 4-population 3-factor law, they estimated through the use
of a sequential Kalman filter. In this paper, we advance the previous work and focus on
the case in which factors are non-Gaussian, which has not been previously undertaken in
the actuarial literature. While several other works have used factor models to represent
the evolution of mortality intensity of multiple ages simultaneously in continuous time
(see [3,4], for instance), only a few, however, have considered non-Gaussian factors [5].
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In contrast to that paper, which calibrated a model for a restricted portion of the mortality
curve of the two-population case, our work tries to parsimoniously capture the evolution
of mortality of the entire curve or a large fraction of the ages. Further, this work imple-
ments a two-population model that lies within the general framework described in [2] and
considers factors modeled as square-root processes à la [6]. Finally, we estimate a stochastic
multi-population version of the second Makeham’s law and a modification of Thiele’s law
to fit the observed mortality death rates of United Kingdom females and males from 1967
to 2017 by exploiting the state-space representation of our model. To achieve that, we take
a centralized data fusion approach, assuming all observations come from the same source
while at the same time assuming Gaussian measurement errors. In addition, the non-
normality of the state process dynamics, which violates the assumptions under which
the standard Kalman filter produces optimal state estimates and an exact log-likelihood
for the model, was accounted for. Specifically, we followed [7] and modified the Kalman
filter structure to introduce non-linearity and apply thus a Quasi-Maximum Likelihood
approach. While producing a possibly conditionally biased estimate, the Kalman filter we
implemented remains the optimal linear filter [8].

The paper is structured as follows. Section 2 draws a historical picture of mortality
laws and provides some motivation for our work. Section 3 describes the modeling setup.
Section 4 specifies the state-space form of our model. Finally, Section 5 presents our
application of the stochastic multi-population version of the Second Makeham’s and a
3-factor modified version of Thiele’s mortality law to the UK male and female population.

2. Mortality Laws: Motivation

At an aggregate level, the most important covariate in explaining individual mortality
is age. Indeed, mortality rates have an obvious relation with age. Historically, mortality
rates have been high for infants due to the perils of labor and their fragility, increasing at
older ages due to biological aging. Due to this persistent phenomenon, actuaries started
describing the relation between mortality rates and age through mathematical models,
starting from the XVIII century. These mathematical models are of the form:

µx = f (x; ξ),

where µx denotes the mortality intensity of an age x and ξ is a set of parameters. The most
famous laws were introduced in the XIX century. In what follows, we give an account of
these models. The Gompertz law describes the mortality intensity µx at age x as a function
of two parameters:

µx = Bcx.

It captures the phenomenon of so-called senescent mortality, since it assumes an
exponential increment in the mortality intensity with age. Makeham laws, proposed in
1867 and 1890 respectively, have the following forms:

µx = A + Bcx;

µx = A + Hx + Bcx,

where, together with the exponential term as in the Gompertz law, a baseline mortality
level (A) and a linear term (Hx) are added. The Thiele law, dating back to 1871, aimed at
capturing the whole mortality–age curve, by considering, together with the exponential
term à la Gompertz, a term that tries to capture the spike of the curve at age 0 associated
with infant mortality and a term to reproduce the so-called accident hump:

µx = Ae−Bx + Ce−D(x−E)2
+ FGx.

In the last century, several other laws have been proposed. They combine additional
terms and different functional forms. Other prominent examples are Heligman–Pollard’s
laws and the Perks laws, which identify a functional relation between the death rate q
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or the odds ratio q
p (i.e., the ratio between the death rate and the survival probability p),

and age. The interested reader may refer to the book [9] for a more detailed account.
The success of traditional mortality laws is due to their ability to capture parsimo-

niously in a deterministic fashion the relation between the mortality intensity and age.
The functional forms used are able to capture the most important trends in such relation,
such as the infant mortality pattern and the old-age increase in mortality rates. However,
the age-patterns profiles have been changing in time. Thus, the fit of the mortality laws
to the observed data of a certain population over different calendar years would produce
different parameter estimates. To capture this issue and be able to describe mortality
dynamics in a model, while maintaining the traditional actuarial approach of mortality
laws, Schrager [1] suggested modeling some parameters in the mortality laws as stochastic
factors. Indeed, the introduction of stochastic factors can capture the time trends in hu-
man mortality development and the uncertainty surrounding them. The authors of [2]
extended that setup to describe the mortality intensity of multiple populations. In that
framework, which will be reviewed more properly in the next section, the mortality inten-
sity of individuals of different populations, at different ages and calendar years, is modeled
as a function of population-specific parameters and factors. Such an extension allows
to jointly describe the mortality intensity of several general populations or sub-groups
(socio-economic groups), their evolution in time, and their uncertainty through traditional
mortality laws.

3. The Model

In this section, we present a square-root factor-based approach to stochastic mortality
modeling, building on the work in [2]. The mortality intensity of different ages of several
populations is modeled parsimoniously as a function of some population-specific parame-
ters and a set of latent factors described by a multivariate Cox, Ingersoll, and Ross (1985)
process.

3.1. Mortality Intensity and Information

Our continuous-time modeling framework follows the approach first proposed by [10],
in which the death process of an individual is described as the first jump time of a Poisson
process with stochastic intensity. Mortality intensity is indeed such intensity. This modeling
approach parallels the paradigm extensively used in credit risk modeling, in which firm
default is similarly represented [11].

Let us introduce a probability space (Ω,F , (Ft)t≥0,P), with P denoting a (historical)
probability measure. The filtration {Ft : 0 ≤ t ≤ T} satisfies the usual properties of right-
continuity and completeness and contains the information on the mortality rates, coming
from the historical life tables, contained in sub-filtration Gt, as well as the knowledge
on whether the individual is alive at time t, contained in the sub-filtration Ht. Hence,
Ft = Gt ∪Ht.

We assume there exist J ∈ N+ populations of interest, indexed by j ∈ J = {1, . . . , J}.
Our interest is in modeling the evolution of the mortality intensities of sets of ages (cohorts
of individuals sharing the same year of birth) belonging to these different populations. We
define the set of ages of interest in population j as X j := {xj

min, . . . , xj
max}, where integer

ages are ordered from the smallest, xmin, to the biggest, xmax. In principle, we can consider
different sets of ages for different populations. Let us define as µ

j
x+t(t) the set of predictable

processes that represent the time t mortality intensity of an age x + t belonging to the cohort
aged x at time t.

The mortality intensity of individuals belonging to population j depends on a population-
specific set of parameters, γj and on a vector of unobservable stochastic factors Y j(t) :=
[Y j

1(t), . . . , Y j
N(t)]

T , j ∈ J, N ∈ N++. The value of these factors represents the mortality
trend level, which decreases and represents improvements to longevity due to progress in
medicine, food availability, health habits, living conditions, and individual well-being.
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We consider that all J populations are affected by the same innovations, described by
a vector Z(t) of Brownian noise. However, responses to such changes may differ across
populations because factors can be population-specific and because these factors influence
population mortality due to the population-specific parameters. Formally, the mortality
intensity at time t of an age x + t, belonging to population j, µ

j
x+t(t), is described by a

functional of the vector of state processes Y j:

µ
j
x+t(t; x) := Rj(Y j(t), x, x + t, t, γj). (1)

Notice that the functional Rj can in principle depend on the age x + t, the cohort x and
calendar time t separately. We specify this functional further by assuming it has an affine
dependence on the state-vector process. We define then two sets of population-specific
functions gj

0(x + t, t, x) and

g j(x + t, t, x) := [gj
1(x + t, t, x), . . . , gj

N(x + t, t, x)]
′
,

where gj
i : (R+)3 → R+, i ∈ {0, 1, . . . , N} are age x + t, time t and cohort x–dependent

functions for the j-th population, so that

Rj(Yj(s); x + t, t, x) := gj
0(x + t, t, x) + g j(x + t, t, x) · Y j(t),

where · denotes the scalar product.

3.2. Stochastic Mortality Laws

We take advantage of the above setup to generalize the most common mortality laws
we reviewed in Section 2:

• Gompertz’s law:

µ
j
x+t(t) := Y j

1(t)(γ
j)x+t.

In this case, g j(x + t, t, x) := [(γj)x+t], while Y j ∈ R.
• First Makeham law:

µ
j
x+t(t) := Y j

1(t) + (γj)x+tY j
2(t).

In this case, g j(x + t, t, x) := [1, (γj)x+t], while Y j ∈ R2.
• Second Makeham law:

µ
j
x+t(t) := Y j

1(t) + Y j
2(t)(x + t) + (γj)x+tY j

3(t).

In this case, g j(x + t, t, x) := [1, x + t, (γj)x+t], while Y j ∈ R3.
• Thiele’s law:

µ
j
x+t(t) := Y j

1(t)e
−γ

j
1(x+t) + Y j

2(t)e
−γ

j
2(x+t−γ

j
3)

2
+ Y j

3(t)(γ
j
4)

x+t.

In this case, g j(x + t, t, x) := [e−γ
j
1(x+t), e−γ

j
2(x+t−γ

j
3)

2
, (γj

4)
x+t], while Y j ∈ R3.

Additionally, we mention a slight modification of Thiele’s law, which was proposed
by [2] and which proved to fit the evolution of mortality better at younger ages:

µ
j
x+t(t) := Y j

1(t)e
−γ

j
1(x+t)

1

γ
j
2 + Y j

2(t)e
−γ

j
3(x+t−γ

j
4)

2
+ Y j

3(t)(γ
j
5)

x+t.

We will fit this specification in our application. Notice that g0(x + t, t, x) = 0 for all
the above specifications.
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3.3. The State Process Vector

We model the J state processes by means of continuous-time stochastic processes,
belonging to the affine class. We focus on purely diffusive square-root processes of the
Cox–Ingersoll–Ross type:

dY j(t) = Aj(θj − Y j(t))dt + Σj
√

V j
t dZ(t),

where Aj = diag[aj
1, . . . , aj

N ] ∈ RN×N
+ is a diagonal matrix, θj ∈ RN is a column vector,

Σj = diag[σj
1, . . . , σ

j
N ] ∈ RN×N

+ is a diagonal matrix and

V j
t = V j

t (Y
j(t)) = diag[Y j

1(t), . . . Y j
N(t)],

while Z(t) is a vector of possibly correlated Brownian motions. To summarize, our state
process vector captures the time-trend of mortality levels. The different processes impact
different slices of the mortality curve, i.e., representing different mortality indexes for
different classes of ages. θj denotes the vector of long-term values of such factors, while Aj

determines the speed at which the current value of the factor returns to this long-term mean.
The diffusion coefficient depends on the current value of the process. Overall, these factors,
when the elements of Aj and θj are positive, are always non-negative. As a consequence,
the mortality intensities can be guaranteed to be positive, provided that the elements in
vectors γj are appropriately bounded. This choice avoids the issue of dealing with negative
intensities with non-zero probability, which is instead a feature of all stochastic mortality
models that assume Gaussian innovations.

3.4. Survival Probabilities

Because we are in an affine framework, we can compute the expectation of affine
functionals of the state processes explicitly (see [12], for instance). In particular, we are able
to obtain a closed-form expression for the survival probability T−t pj

x+t(t, T), the probability
that at calendar time t an age x + t belonging to population j will survive until time T > t.
The survival probability is indeed a functional of µ

j
x+t(t; x):

T−t pj
x+t(t, T) := EP[1{τx>T} | Ht ∪ {τx > t}] = EP[e−

∫ T
t µ

j
x+s(s;x)ds | Gt] =

= EP[e−
∫ T

t Rj(Yj(s),x+s,s,x)ds | Gt].

We can give the following Theorem (see [2,13]):

Theorem 1. Under the above setup, the time-t survival probability of an individual aged x at
t = 0, belonging to population group j, up to time T is

T−t pj,k
x+t(t) = eαj(x,t,T)+βj(x,t,T)·Y j(t), (2)

where αj(x, t, T) and βj(x, t, T) solve the following system of ordinary differential equations:

α̇j = gj
0(x + t, t, x)− Ajθj · βj,

β̇
j
= g j(x + t, t, x) + (Aj)

′
βj −

[
1
2
(β

j
1)

2σ2
1 , . . . ,

1
2
(β

j
N)

2σ2
N

]′
,

where αj(x, T, T) = 0 and βj(x, T, T) = 0.

We refer the reader to [2] for a proof of this rather standard result based on the
affine-matching principle (see also [14]).
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4. The State-Space Form of the Model

To estimate our model, we write it in state-space form. From now on, we consider
observations collected at discrete-time (e.g., annual) intervals. Without loss of generality,
we assume that standard Brownian motions drive the processes in the state vector process.
Given expression (2), it is easy to notice that the logarithms of survival probabilities
are linear functions of the state process vector. Therefore, we consider the opposite of
this quantity, which is positive, as our measurement. We denote the observations with
t ∈ {1, . . . , T}, and with q̄j(t) the elements of our observation vector, which are the opposite
of the logarithm of the annual survival probabilities. We write:

q̄j(t) := − ln(1− q̂j(t)) = − ln( p̂j(t)).

Equation (2) allows us to state that our observations are linear in the values of the
factors. We still have to address how to treat the information coming from the life tables
of the different populations. For simplicity, we adopt a centralized data fusion approach
(see [15]). Hence, we gather all the information as part of a unique observational vector.
We assume that each observation is a measurement of a quantity and the measurement
entails some noise. We specify thus the following linear model:

q̄j
x+t(t) = −αj(x, t, t + 1)− βj(x, t, t + 1)

′
Y j(t) + ε

j
x(t), x ∈ X j, (3)

where ε
j
x(t) is the measurement noise. Following [1], we assume that the observation

noise is Gaussian with mean zero and standard deviation proportional to the observation
itself, i.e., Var[εj

x(t)] = s2
x,j(t) = [kj q̄j

x(t)]2, kj ∈ R. This assumption makes sense in our
context because when age increases, the cohort size decreases. Observations relative to
older ages, for which q̄x’s are larger, are likely to be less accurate than observations of
younger ages. Notice that we allow for different measurement noises strengths kj for each
group to deal with the fact that measurements can come from different sources. We further
assume that measurement errors are uncorrelated across ages and populations. Coupling
this description of our data with the description of the state processes given in Section 3,
our model has the following state-space representation:

Q̄(t) = −α(t)− β(t)Y(t) + ε(t), ε(t) ∼ N (0, R(t)) (4)

Y(t + 1) = DY(l) + η(t + 1), (5)

where Y(t) is the M-dimensional vector of state process values that gathers all the state
processes influencing the J populations of interest, Q̄(t) and ε(t) are the vectors that collect
all the observations and corresponding measurement errors, respectively. R(t) is a diagonal
matrix, with elements s2

i (t) on the diagonal. The coefficients collected in α(t) and β(t) are
functions of both the parameters of the state-vector process and of the parameters of the
mortality law. Y(t) is the vector of state processes, while η(t + 1) collects its noise. Since
Y(t) is a vector of square-root diffusions, the noises are not Gaussian: the transition density
of each element of Y follows a non-central χ2 distribution. In this context, the Kalman filter,
which is the traditional tool used to estimate Gaussian linear state-space models, is still
the optimal linear filter (see [8]). However, although our measurement equation is linear,
the standard Kalman filter estimates may be conditionally biased, because innovations in
the state processes are not Gaussian (see, for instance, [16]). Several authors have discussed
this issue and provided alternative solutions to this problem. We follow [7], who modified
the standard Kalman filter to estimate the multi-factor Cox–Ingersoll–Ross model via a
quasi-linear Kalman filter. Such estimator introduces modifications to the Kalman filter:

• it captures the dependence of the conditional variance on the current value of the state;
• it puts a non-negativity constraint on the value of the state process.

Indeed, the modified Kalman filter approximates the state-process transition density
to a Gaussian density with the same conditional first two moments and introduces a non-
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linearity through the non-negativity constraint. The resulting quasi-maximum likelihood
is then maximized. In implementing the Kalman filter recursion, we adopt a sequential
formulation (see [8,17]) which allows us to avoid matrix inversion. Indeed, we could have
followed Monte Carlo approaches as in [18]. In particular, particle filtering was used in [19]
in the context of interest rate modeling with CIR-type models. However, given the dimen-
sionality of our problem, which includes several factors, a large number of observations
and parameters to estimate, we preferred to apply Quasi-Maximum Likelihood methods,
which turned out to be less computationally intensive. Our approach is justified in light of
the evidence provided by several works [7,20,21] regarding the accuracy of the method for
affine interest rate term-structure models.

4.1. Description of the Quasi-Linear Kalman Filter Algorithm

The Quasi-Linear Kalman Filter algorithm, as mentioned above, allows us to obtain
an estimate of the conditional state process vector mean and variance covariance matrix,
given the observations:

Ŷ(t) := E[Y(t) | F (t− 1)] and

P(t) := Var[Y(t) | F (t− 1)].

Additionally, it allows us to compute an approximate log-likelihood for our model,
given the parameters. An optimization procedure then will explore the parameter space to
maximize such log-likelihood. We report here the algorithm that implements the sequential
quasi-linear Kalman filter equations for our model. Let us first denote our matrices as

Q̄(t) = [q̄1(t), . . . , q̄p(t)]
′

ε(t) = [ε1(t), . . . , εp(t)]
′

β(t) = [β1(t), . . . , βp(t)]
′
,

where p = ∑j X j is the total number of observations considered for each calendar year,
q̄i(t)—with a slight abuse of notation—denotes the i-th observation, where i ranges over
the set of integers which uniquely define the elements of the couple (x, j). βi(t)’s are
row vectors. From now on, we also suppress dependence on x and x + t for notational
convenience. Since R is a diagonal matrix, the equation that describes the model for each
single observation of interest is

q̄i(t) = −αi(t)− βi(t)Y(t) + εi(t). (6)

The sequential Kalman filter algorithm runs then as follows:

1. Given a certain parameter set ξ, the filter is initialized using the unconditional mean
and variance of the state-process vector,

Ŷ(1) = E[Y(1) | F (0)] = E[Y(1)].
P(1) = Var[Y(1) | F (0)] = Var[Y(1)] = P,

2. For each time step t, the state process vector and its variance covariance matrix
are updated:

Ŷ−(t + 1) = T(t)Ŷ(t) + Θ(IN − T(t))Ŷ(t)

P−(t + 1) = T(t)P(t)T ′(t) + Γ(t + 1),

where T = diag[e−a1 , . . . , e−aM ], IM denotes an M-dimensional identity matrix,Θ =

diag[θ j
1, . . . , θ

j
M], and Γ(t + 1) is the state-process conditional variance/covariance

matrix. Notice that such variance/covariance matrix depends on Ŷ(t), differently
relative to the standard Gaussian case.
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3. The estimates are initialized as

Ŷ+
0 (t + 1) = Ŷ−(t)

P+
0 (t + 1) = P−(t),

and then updated after each observation i = 1, ..., p, setting a floor to the value of the
estimated mean to zero:

Ŷ+
i (t) = max(Ŷ+

i−1(t) + Ki(l)v+i (t), 0)

P+
i (t) = P+

i−1(t)− Ki(t)βi(t)P
+
i−1(t),

where the measurement error prediction vi(t) and the Kalman gain Ki(t) are respectively:

v+i (t) = q̄i(t)− (αi(t) + βi(t)Ŷ
+
i−1(t))

Ki(t) =
P+

i−1(t)β
′
i(t)

s2
i (t)

.

Note that vi(t) and Fi(t) are scalars and Ki(t) is a N-dimensional column vector.
4. Finally, when i = p, we set

Ŷ+
(t) = Ŷ+

p (t);

P+(t) = P+
p (t).

and we compute

Fi(t) = βi(t)P+(t)β
′
i(t) + s2

i (t),

vi(t) = q̄i(t)− (αi(t) + βi(t)Ŷ
+
(t)).

5. Using these last expressions for Fi(t) and vi(t) we can compute the log-likelihood function:

log L(ξ) = const−1
2

T

∑
t=1

p

∑
i=1

log Fi(t) + v2
i (t)F−1

i (t),

which has to be maximized to obtain the optimal parameter set.

4.2. Log-Likelihood Maximisation

Log-likelihood maximization is performed using a global differential evolution al-
gorithm [22]. With this algorithm, several sets of parameters (a population) are initially
generated. Then, for each of these sets (individuals), the log-likelihood is computed.
The best member of the population, i.e., the parameter set that provides the highest log-
likelihood, survives to the next iteration. The other members may survive with a certain
probability, but their genes (single parameters) can mutate, i.e., change their value to a
different one, randomly picked. The process of population generation and mutation con-
tinues until a selected number of iterations is performed, or the best population member is
unchanged after a given number of iterations.

5. Results

Since the UK annuity market represents the largest annuity market in the world,
the UK’s mortality data often represent a point of departure for the estimation of mortality
models. This section applies our model to estimate two stochastic mortality laws to the
UK males and females population. The UK aggregate mortality data are sourced from
Scotland, England and Wales and Northern Ireland. While we do not consider the regional
mortality experiences separately, our modelling framework could encompass the case
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where region-specific parameters are accounted for, together with different measurement
errors across regions. Specifically, our data sample is composed of one-year survival
probabilities for ages 0–89 from 1967 to 2017, taken from the Human Mortality Database
(www.mortality.org, accessed on 7 December 2021 ).

5.1. First Makeham’s Multi-Population Law

We estimate the following model, where j = 1, 2 denote the male and female UK
population, respectively:

µ
j
x+t(t) := Y1(t) + (γj)x+tY2(t).

In this case, g j(x + t, t, x) := [1, (γj)x+t], with Y ∈ R2. The model has two factors,
which are the same across the populations. Indeed, we dropped dependence on j above.
The coefficients α(·) and β(·)j = [β

j
1, β

j
2] can thus be obtained solving the following

ODE system:

α̇j = −Aθ · βj, β̇
j
= [1, (γj)x+t]′ + (A)

′
βj −

[
1
2
(β

j
1)

2σ2
1 ,

1
2
(β

j
2)

2σ2
2

]′
,

with final conditions αj(x, T, T) = 0 and βj(x, T, T) = 0.
While affected by the same factors, they respond differently to the second factor. It is

the only parameter γj that shapes the mortality–age relation for the different populations.
Indeed, though very parsimonious, this specification is not rich enough to capture well
the complexity of the whole mortality curve. We restrict our application to older ages only,
ranging from 50 to 89. Table 1 reports the estimated parameters. The population-specific
parameter, which captures the steepness of the exponential increase in mortality at old ages
captured by Makeham’s mortality law is not unexpectedly higher for UK males (0.1153)
than for females (0.0944).

Table 1. This table collects the optimal parameters for our model. For each population, the “common”
column collects the parameters relative to the factor processes and the measurement variance–
covariance matrix s. The other two columns collect the parameters relative to the response functions
of the two populations of males and females.

Maximized Number of
Log-Likelihood 22,409 Parameters 9

Optimal Parameters

Common Males Females

Parameter Value Parameter Value Parameter Value

a1 0.0233 γm 0.1153 γ f 0.0944
a2 0.0111
σ1 2.87× 10−7

σ2 0.0109
θ1 0.0014
θ2 2.37× 10−6

s 0.1076

Figure 1 displays the evolution of the values of the latent factors in time. The first
factor, which acts as a baseline mortality intensity level, is estimated to decline rather
smoothly over time. Notice that its initial value is higher than the long-term estimated
average θ1 (0.0014). This parameter can be interpreted as the estimated biological limit
which the value of the factor can tend to. The speed of mean reversion a1 (0.0233) can be
interpreted as the speed at which the mortality baseline level tends to converge to such
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long-term value. The second factor, which interacts with age to reproduce the exponential
increase of mortality at older ages, also declines. Its volatility is higher because it influences
mortality at older ages, reflecting the well-known fact that higher uncertainty surrounds
older age mortality improvements. The current values of the factors (i.e., the estimates for
the last calendar year) are still far from their long-term averages. Taking into account their
exponential decay, we expect the current values (4× 10−3 and 6× 10−6 respectively) to
halve in approximately 173 years, and 115,524 years respectively, and thus still be above
their long-term average. The model produces a good fit of the mortality surface, despite its
very simple form. Figure 2 reports the Mean Absolute Relative Errors of the single female
and male ages (averaged over calendar years):

MARE(x, j) =
1
T

T

∑
t=1

∣∣∣∣∣ q̂
j
x(t)− qj

x(t)

qj
x(t)

∣∣∣∣∣,
and of each calendar year (averaged over all the observations):

MARE(t) =
1
p

p

∑
i=1

∣∣∣∣ q̂i(t)− qi(t)
qi(t)

∣∣∣∣,
where q̂ denotes the fitted one-year death probability. The model performance is good,
given that 4080 observations are fitted with only nine parameters. Average MARE is 7.22%,
and it is lower than 10% for almost all ages, apart from older males. This is in line with
the two-factor model performance in [1], despite our two-population fit. Only older male
figures seem to be more problematic to fit. Performance may be improved assuming that
one state process (for instance, the first factor) differs across the two populations.

Figure 1. Cont.
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Figure 1. The figure plots the values of the two factors, Y1, Y2.

Figure 2. Cont.
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Figure 2. The figures plot the values of the MARE for female and male ages and averaged over
calendar years.

5.2. Modified Thiele’s Law

We estimate the following model, where j = 1, 2 denote the male and female UK
population, respectively:

µ
j
x+t(t) := Y1(t)e−γ

j
1(x+t)

1

γ
j
2 + Y2(t)e−γ

j
3(x+t−γ

j
4)

2
+ Y3(t)(γ

j
5)

x+t.

In this case, g j(x + t, t, x) := [e−γ
j
1(x+t)

1

γ
j
2 , e−γ

j
3(x+t−γ

j
4)

2
, (γj

5)
x+t] and Y ∈ R3. This is a

3-factor model, where factors are the same across the populations. The coefficients α(·) and
β(·)j = [β

j
1, β

j
2, β

j
3] can be obtained solving the system of ODEs:

α̇j = −Aθ · βj, β̇
j
= [e−γ1

j(x+t)

1

γ
j
2 , e−γ

j
3(x+t−γ4

j)
2
, γ5

jx+t
]′ + A

′
βj −

[
1
2
(β

j
1)

2σ2
1 ,

1
2
(β

j
2)

2σ2
2 ,

1
2
(β

j
3)

2σ2
3

]′
,

with final conditions αj(x, T, T) = 0 and βj(x, T, T) = 0.
Table 2 reports the estimated parameters.
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Table 2. This table collects the optimal parameters for our model and is divided in two panels, one for
each population. For each population, the ”common” column collects the parameters relative to the
factor processes and the measurement variance covariance matrix s. The other two columns collect
the parameters relative to the response functions of the two sub-populations of males and females.

Maximized Number of
log-Likelihood 65,464 Parameters 20

Optimal Parameters

Common Males Females

Parameter Value Parameter Value Parameter Value

a1 2.95× 10−18 γm
1 14.8170 γ

f
1 14.4989

a2 6.40× 10−6 γm
2 15.8046 γ

f
2 15.0810

a3 2.76× 10−16 γm
3 0.0048 γ

f
3 0.0229

σ1 0.8521 γm
4 88.2853 γ

f
4 23.1866

σ2 2.21× 10−6 γm
5 0.0944 γ

f
5 0.1016

σ3 2.10× 10−13

θ1 88.8547
θ2 2.08× 10−8

θ3 5.32× 10−7

s 0.1496

The factors have a constantly decreasing trend in time, apart from the second factor,
which decreases over the last 15 calendar years only as depicted by Figure 3 (see Table1).
The first and the third factors decline very fast until the 2000s, to depict the extraordinary
improvements in infant mortality and mortality at older ages. As for the Makeham’s law
case, the factors are still way above their long-term averages θ and thus we expect further
improvements of mortality in the long-run. Such long-term averages are very important
for long-run projections of mortality rates. In unreported estimations, we test the changes
of the values of these parameters to slight changes in the estimation time window, finding
reasonable stability.

Figure 3. Cont.
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Figure 3. The figure plots the values of the three factors, Y1, Y2, Y3.
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Figure 4. The figure plots the values of the MARE for the ages of female and male participants and
averaged over calendar years.
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In our estimation procedure, we have not constrained the value of the parameter that
controls the age which is mostly affected by the second factor. Thus, the factor affects the
different populations differently. For example, it influences female mortality at young adult
ages to help to address the accident hump (γ f

4 = 23.1866). For males, it instead adds up to
the third factor in influencing mortality at older ages (γm

4 = 88.2853). As Figure 4 shows,
the model’s fit is very good for both female and male populations, with an average MARE
across all observations of 11.47%. The first factor helps capture the infant mortality spike at
age 0. Mortality at young adult ages and at older ages is slightly more difficult to capture
for males, for which MARE is above the average between ages 18 and 23. Between ages 40
and 70, the curve’s fit is better for males than females.

6. Conclusions

In this paper, we have focused on a stochastic and multi-population extension of
traditional actuarial mortality laws. We place ourselves within the setup introduced
by [2]. The mortality intensities of all (or a large set of) the ages of multiple populations are
modeled within the affine framework as functions of population-specific parameters, which
shape the age dependence and some unobservable factors that describe the evolution of
mortality trends over time. Here, these latent factors are modeled as square-root processes
and describe the evolution of mortality trends over time. The estimation procedure for such
models entails dealing with a non-Gaussian state-space model. In this case, estimation via
Kalman filter still provides us with the optimal linear state estimator. However, this may
be sub-optimal due to the non-linearities introduced by the state-vector process density.
We followed [7] and applied a Quasi-Linear Kalman Filter algorithm that approximates
the state process transition density to a Gaussian density truncated at 0 with the same
conditional first two moments. Although approximate, the procedure was proven accurate
enough in a similar setup when fitting multi-factor CIR models for interest rates. Relative to
previous similar multi-population models, the mortality intensities are thus guaranteed to
be non-negative. This is indeed an advantage relative to Gaussian models, especially when
the model needs to be applied to forecast intensities over long time periods. Obviously, this
can be important when dealing with the pricing of long-term liabilities, such as annuities,
or with risk management for pension funds. Inspired by the Makeham and the Thiele
laws, our application provides the calibration of two stochastic multi-population mortality
laws to the UK populations of males and females mortality rates jointly from 1968 to 2017.
The models are parsimonious and are shown to provide a good fit of the mortality surface
over time.
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