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We measure the inclusive semielectronic decay branching fraction of the D meson. A double-tag
technique is applied to e"e™ annihilation data collected by the BESIII experiment at the BEPCII collider,
operating in the center-of-mass energy range 4.178-4.230 GeV. We select positrons from D — Xe'v,
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with momenta greater than 200 MeV /¢ and determine the laboratory momentum spectrum, accounting for
the effects of detector efficiency and resolution. The total positron yield and semielectronic branching
fraction are determined by extrapolating this spectrum below the momentum cutoff. We measure the Dy
semielectronic branching fraction to be (6.30 & 0.13(stat.) £ 0.09(syst.) & 0.04(ext.))%, showing no
evidence for unobserved exclusive semielectronic modes. We combine this result with external data taken

from literature to determine the ratio of the DY and D° semielectronic widths

(D ->Xetv,)
> T(D'—=Xetv,)

0.790 + 0.016(stat.) £ 0.011(syst.) £ 0.016(ext.). Our results are consistent with and more precise than

previous measurements.

DOI: 10.1103/PhysRevD.104.012003

I. INTRODUCTION

The D} meson is the ground state of charmed-strange
mesons, and precise measurements of its semileptonic
decays allow for crucial tests of Standard Model predictions
of flavor-changing interactions. This article presents a new
measurement of the D -meson inclusive semielectronic
branching fraction and positron momentum spectrum.
(Here and throughout this article, charge conjugate modes
are implied.) A previous measurement by the CLEO-c
experiment reported the first results for these quantities,
including the measurement of B(Df — Xetv,) =
(6.52 +0.39(stat.) + 0.15(syst.))% [1]. Measuring this
branching fraction with improved precision contributes to
a comprehensive understanding of D] decays and is an
important component of the overall experimental and theo-
retical heavy-flavor physics program.

Table I lists the six exclusive D] semielectronic modes
that have been observed to date and their branching
fractions, as well as the branching fraction of D —
v, - eTv,v, 0, and the previously measured D] —
Xetv, branching fraction [1-15]. By comparing the
inclusive semielectronic branching fraction with the sum
of all measured exclusive semielectronic branching frac-
tions, we can estimate the branching fraction for further
unobserved D semielectronic decays. Measurements of
the semielectronic branching fractions for different
charmed mesons can be combined to probe for nonspecta-
tor effects in heavy-meson decays [16,17]. The CLEO-c
measurement of the ratio of the Dy and D° semielectronic

widths, {734 = 0.815 4 0.052, is in agreement with

predictions employing an effective quark model [18] and
shows that nonspectator effects are present in semielec-
tronic charmed-meson decays. It has also been demon-
strated with CLEO-c data that the inclusive semielectronic
momentum spectrum can be used to make sensitive tests for
specific nonspectator processes, such as weak annihilation
[19,20]. Precise understanding of these processes is
required for application of heavy-quark expansion in
extracting Cabibbo—Kobayashi—-Maskawa (CKM) matrix
elements from inclusive semileptonic B meson decays [21].
Thus, the improved precision of both the inclusive branch-
ing fraction and the momentum spectrum of D7

semielectronic decays reported in this article have the
potential to contribute to reducing theoretical uncertainties
in determining CKM parameters with heavy-meson decays.
The remainder of the article is organized in seven sections.
The BESIII detector, the analyzed data, and the Monte Carlo
(MC) simulation samples are described in Sec. II. An over-
view of the measurement technique is presented in Sec. III.
Event selection requirements based on full reconstruction of
hadronic Dj decays are discussed in Sec. IV. Semielectronic
decay selection requirements and further analysis of candi-
date signal events are presented in Sec. V. The systematic
uncertainties of our measurement are evaluated in Sec. VI. We
conclude with a summary of our results in Sec. VIL

II. DETECTOR AND DATA SAMPLES

The BESIII detector records the results of symmetric
e"e™ collisions provided by the BEPCII collider [22].
BEPCII produces collisions at center-of-mass energies
(E.y) between 2 and 4.9 GeV, and BESIII has collected
the world’s largest data samples near a number of pair-
production threshold energies for charmed hadrons. The
BESIII detector is composed of the following subsystems
for particle detection and identification: a helium-based
multilayer drift chamber (MDC), a plastic scintillator time-
of-flight system (TOF), a CsI(Tl) electromagnetic calorim-
eter (EMC), a 1.0 T superconducting solenoid, and a set of
resistive plate chambers for muon identification. The accep-
tance of the BESIII detector for charged particles is 93% of
the full solid angle. Ionization energy deposits in the MDC
are used to reconstruct charged particle tracks and determine
particle momenta from the curvature in the magnetic field.
The MDC provides a momentum resolution of 0.5% for
particles with a momentum of 1 GeV/c. The end cap TOF
system was upgraded in 2015 with multigap resistive plate
chamber technology, providing a time resolution of 60 pico-
seconds [23]. Measurements of charged particle specific
ionization in the MDC (dE/dx), the flight time in the TOF,
and the energy deposit in the EMC associated with a track
are combined to identify particles. A detailed description of
the BESIII detector is given in Ref. [24].

Inclusive MC samples with the equivalent of five times
the luminosity of data and exclusive MC samples with the

012003-4
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TABLE 1. Branching fractions for observed D/ semielectronic
decays and for D} — v, - e'v,v.D,. The listed uncertainties
are the total uncertainties. The D — f(980)e*v,, f(980) —
zz branching fraction is calculated based on the measurements of
Df — n"x~eTv, from [2] and corrected for the corresponding
7979 branching fraction by an isospin correction factor of %

Mode
+ +
DS - ¢e UL’
+ +
DS _)”e l/e
+ !+
Dy - ey,

Averaged branching fraction

(237+0.11)%  [3-6]
(232+£0.08)%  [6-8]
(0.80 £0.07)%  [6-8]
D} — K%*u, (0.34+£0.04)%  [6.9]
Di — K*(892)%¢ ", (021 £0.03)%  [6.9]
Di = £0(980)e*v,, £,(980) — zz (030 £0.05)%  [2]
( )%
( )%
( )%

Sum of semielectronic modes 6.34 +£0.17
B(Df — XeTv,) 6.52 £0.42
DY - tty, = eTou,u, 0.96 +0.04

[1]
[10-15]

equivalent of 35 times the luminosity of data are used to
optimize selection criteria, investigate distributions of
signal and background processes, and determine the
efficiencies of our selection criteria. Hadronic simulation
samples are produced using the event generators KKMC [25]
and EvtGen [26,27]. BabayagaNLO [28] is used to produce
radiative Bhabha (ete™ — yeTe™) samples. Final-state
radiation (FSR) of particles is simulated with PHOTOS
[29]. Interaction of the simulated particles with the detector
material is handled by GEANT4 [30], which uses a detailed
XML-based description of the detector geometry [31].

In 2016, BESIII collected 3.19 fb~! of data at E,, =
4.178 GeV, which provides approximately 6.4 x 10® D
mesons primarily through the process ete™ — DiTDy,
with a small contribution from eTe™ — D D5 . We analyze
the entirety of this sample, as well as 2.08 fb~! of data
collected in 2017 in the E., range 4.189—4.219 GeV in
2017 and 1.05 fb~! of data collected in the E., range
4.225-4.230 GeV in 2013. These three samples are
analyzed separately due to differing detector and running
conditions. A summary of the datasets with their E,, [32],
integrated luminosities [33], and estimated number of D}
mesons produced is shown in Table II.

TABLE II. E_,, integrated luminosities, and estimated number
of D, mesons (N, ) for the analyzed data samples. In each case,
the first listed uncertainty is statistical, and the second is
systematic.

Eon (MeV) [ Ldr (pb") Np, (x109)
4178 3189.0 0.9 +31.9 6.4
4189 526.7+0.1 £2.2 1.0
4199 526.0£0.1+2.1 1.0
4209 517.1+£0.1 £ 1.8 0.9
4219 514.6 £0.1 + 1.8 0.8
4225-4230 [32]  1047.3 £0.1 & 10.2 [33] 1.3

III. MEASUREMENT TECHNIQUE

Our analysis procedure employs the double-tag tech-
nique pioneered by the MARKIII Collaboration [34]. We
fully reconstruct hadronic Dy mesons (the tag or tag side)
and determine the number of signal events by analyzing the
remaining charged tracks unused in the reconstruction of
the tags (the recoil or recoil side). We refer to events where
a tag meson is found as single-tag events and events where
a semielectronic decay is identified on the recoil side in
addition to the tag meson as double-tag events. Our single-
tag selection is described in more detail in Sec. IV.

Since identification and reconstruction of positron tracks
is only possible above a certain momentum threshold with
the BESIII detector, double-tag candidate tracks are only
accepted with p > 200 MeV/c. The differential inclusive
semielectronic branching fraction as a function of the
electron momentum p, is given as

€sig

n Anpr
dBs,  AEH/Ap.  (T2/Ape  ANpr/Ap,
dp, ngr/€st .

1
”STE/STI nSTbtag ( )
In this equation, ngt is the number of the observed single-tag
events, Anpr is the number of the observed (semielectronic)
double-tag events in a particular p, bin, and egr and ept are
the single-tag and double-tag reconstruction efficiencies,
respectively. We define epr = egp X €4, Where €, is the
momentum-dependent efficiency of reconstructing only the
signal side and ey is the tag-side reconstruction efficiency
given that a signal event is present on the recoil side. We

define b, = Zﬁ as the tag bias, which accounts for the

difference in the single-tag detection efficiency given that a
semielectronic decay is present on the recoil side and ANpt
as the true number of double-tag signal events in our single-
tag sample for a particular p, bin.

We begin our signal selection by sorting recoil-side
tracks with p > 200 MeV/c¢ into momentum bins. For a
given momentum bin, we further sort these tracks by their
charge: tracks with charge opposite to the tag [right sign
(RS)] and tracks with the same charge as the tag [wrong
sign (WS)]. The WS sample is used to estimate charge-
symmetric backgrounds in the RS distributions, which
include the true signal. For both charge categories in each
momentum bin, we sort tracks into three mutually exclusive
particle identification hypotheses: electron/positron (e ID),
pion (z ID), and kaon (K ID). The similar detector response
to muons and pions allows us to treat muons as identical to
pions with negligible uncertainty. For each of these six
categories in a given momentum bin, we determine the
number of tracks that originate from a true D} meson by
fitting to the invariant-mass distribution of the tag D7
candidate.

We relate the true number of double-tag signal events
in our single-tag sample and the observed number of
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signal-candidate tracks from double-tag events through
detector response matrices for charged particle tracking
(Ay) and particle identification (PID) (Appp):

npr(pi) = ZAPID(b

avPi)ZAtrk(a|pi’pj)N]a)T(pj)‘ (2)

Here, Ay (alp;. p;) gives the probability of a particle of
type a (a € {e, z, K}) tracked in momentum bin p; to have
true momentum in bin p;. Similarly, App (b|a, p;) gives the
probability of a particle of type a passing the PID require-
ments of particle type b (b € {e, z, K}) in track momentum
bin p;.

We determine the observed double-tag yields n%.(p;) by
fitting the invariant-mass distribution of tag-side mesons.
For both RS and WS tracks in each momentum bin, we
account for e ID efficiencies and particles misidentified as
positrons with the PID unfolding method introduced in

Eq. (2):

i by
i | = Aplp | nbr |-
Mg nir
€e P;r—»e PK—»e
App = P. s € Py .z |- (3)

Pe—»K P/t—»K €k

Here, ¢, is the efficiency of our PID selection requirements
for the particles of species a, and P,_,, is the probability of
a particle of species a passing the selection requirements
for a particle of species b. We apply this PID unfolding to
the fitted RS and WS yields for each momentum bin and
take the e solution to determine the number of tracked
positrons originating from a D" meson. We then take the
difference of the number of tracked RS positrons and WS
electrons to subtract the contributions of positrons from
Dalitz decays of light mesons in the final state of Dy decay
such as 7° — yete™ and any other charge-symmetric
backgrounds.

This leaves us with the momentum spectrum of tracked
positrons from D — Xe'v, events and a smaller contri-
bution from D] — v, - eTv,v,0,. To account for
tracking inefficiency and mismeasurement, we execute
the second unfolding from Eq. (2):

Npr(p;) = Agini (pi)- (4)

This provides the true sum of D — Xe'v, and D} —
v, = ety D, positron momentum spectra. We then
subtract the contribution of D] — v, —» eTv, v, b, based
on the branching fraction in Table I to obtain the D] —
XeTv, momentum spectrum for p, > 200 MeV/c. This
procedure was validated with five data-sized MC samples
and found to recover the correct yields.

To account for positrons with p, <200 MeV/c, we fit
the expected DY — XeTv, momentum spectrum with an
assumed spectrum, described in more detail in Sec. V, and
add the fitted yields in the region p, <200 MeV/c to the
measured yields with p, > 200 MeV/c. This gives us the
signal-efficiency-corrected number of signal events

Npt =N 2000 Mev/e + N p,<200 Mev/c> (5)

which allows us to calculate the branching fraction sim-
ilarly to Eq. (1) through

NDT

B(D} - Xe'tv,) = nerbis’
tag

(6)

with the MC simulation prediction of b, and the deter-
mined number of single-tag events ngr.

IV. SINGLE-TAG EVENT SELECTION

We select single-tag candidates using only the D7 —
K*K~n~ hadronic decay mode because it is unique in
having sufficient statistics and well-known backgrounds.
All tag candidate decay products are required to satisfy the
following track-quality requirements: the track must origi-
nate from a region within 1 (10) cm of the e™e™ interaction
point perpendicular (parallel) to the z axis, which is the
symmetry axis of the MDC, and must be tracked with an
angle 0 with respect to the z axis that satisfies
|cosf| < 0.93. We apply /K ID based on dE/dx and
TOF measurements to all tag-candidate daughters to
maximize the purity of the tag sample. Multiple candidates
in a single event are allowed, both to increase the single-tag
selection efficiency and to minimize the tag bias, by,,. We
calculate the recoil mass against the tag Dy candidate,

- 2 -
MRecc2 = [(Ecm Y |stc|2 =+ szXCA) - |pDSC

where p p, 1s the momentum of the reconstructed tag Dy
candidate and m, is the known D mass [35]. We require
the recoil mass to be consistent with a D*"D; event
hypothesis by imposing requirements for each dataset:
2057 < Mge. <2177MeV/ c? for E, =4.178 GeV, 2145 <
Mge. <2190 MeV/c? for E,,, = 4.189-4.219 GeV, and
2150 < M. <2200MeV/c? for E,, = 4.225-4.230 GeV.
For about 20% of cases, our event selection identifies more
than one candidate per event after these recoil-mass require-
ments. Background due to extra candidates is subtracted as
part of the fitting procedure described later in this section.
The My distributions for each dataset can be seen in Fig. 1.
While differences between the MC simulation and data can
be seen in the figure, our measurement is not sensitive to the
MC simulation of this distribution.

We determine the number of true single-tag candidates
by performing an unbinned fit to the distribution of the

I—

?]

()
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FIG. 1. Recoil-mass distribution of Dy — KK~ 7z~ candidates
from the E., = 4.178 GeV (upper), E., = 4.189-4.219 GeV
(middle), and E., = 4.225-4.230 GeV (lower) datasets. The
black points with error bars are data, and the black and red
histograms are the signal and background distributions predicted
by the MC simulation, scaled by integrated luminosity. The
dashed red lines indicate the selection conditions.

invariant mass of the tag Dy candidates, My,,. The signal
shape is based on MC simulation and convolved with a
Gaussian function whose width and mean are left free in the
fit to account for a possible difference in resolution and
calibration between data and the MC simulation. The
distribution of backgrounds in this variable is modeled
using a second-order Chebyshev polynomial. The fit range
is chosen to be within +40 MeV /c? of the known D} mass
for the E., = 4.178 GeV distribution corresponding to
approximately 5o of the simulated My, distribution. In the
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FIG. 2. Results of fits to invariant-mass distributions of Dy —
K"Kz~ single-tag candidates from the E, =4.178 GeV
(upper), E., =4.189—4.219 GeV  (middle), and E., =
4.225-4.230 GeV (lower) datasets. In each plot, the solid blue
line is the result of the total fit, the dashed red line is the fitted
distribution of non-D;y — K*K~zn~ backgrounds, the dotted
black line is the fitted signal distribution, the filled red histogram
is the contribution from backgrounds predicted by MC simu-
lation, and the black points with error bars are data. The choice of
binning is arbitrary and used solely for display. MC simulation
distributions are scaled by luminosity.

E.n=4.189-4.219 GeV and E., =4.225-4.230 GeV
datasets, the fit range is reduced to be within
+35 MeV/c? of the known D, mass due to nonpolynomial
background structures appearing at the edges of the fit
range. The single-tag fits to each dataset are shown in
Fig. 2, and the fitted yields are listed in Table III.
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TABLE 1II. Fitted single-tag yields from each dataset. Only
statistical uncertainties are shown.

Dataset

E., =4.178 GeV

E., =4.189-4.219 GeV
E_, = 4.225-4.230 GeV
Sum

Fitted single-tag yields

147581 £ 779
85845 £ 705
29234 £435

262660 £+ 1137

The E., =4.178 GeV dataset provides approximately
56% of our single-tag sample, and the E, = 4.189—
4.219 GeV and E_,, = 4.225-4.230 GeV datasets provide
33% and 11%, respectively. Within each dataset, 99% of
our Dj candidates comes from D} D, events, and 1% comes
from DD, events. D;D; events can be produced at
E_, = 4.225-4.230 GeV, but contribute negligibly to
our candidate sample.

The single-tag reconstruction efficiency depends on the
topology of the recoil-side decay, which we account for
through b,,. We determine the tag bias from MC
samples for double-tag events from each of the observed
semielectronic modes listed in Table I and for D} —
v, = e, b,. The DY — Xe'u, tag bias is determined
by averaging the tag biases for the six observed modes
weighted by the branching fractions in Table I. The single-
tag efficiencies with no specification on the signal-side and
the determined tag biases for DY — Xetv, and D} —
v, - e'v,u,b, for each dataset are shown in Table IV.

V. DOUBLE-TAG SELECTION AND ANALYSIS

After a single-tag candidate is found, we begin searching
for positron candidates among the recoil-side tracks. We
sort recoil-side tracks that satisfy track requirements
defined in Sec. IV into 18 50-MeV/c momentum bins
between 200 MeV/c¢ and 1100 MeV/c. Mutually exclu-
sive PID hypotheses are assigned to each track based on
information from the MDC, TOF, and EMC.

Based on our PID assignment, we fill tag-side invariant-
mass distributions in each momentum bin for each of the
six categories of recoil-side tracks defined in Sec. III. We
determine the number of tracks in each category originating
from true Dy events by performing an unbinned fit to the
tag-side invariant-mass distribution with the same signal
shape used for the single-tag fit, with the Gaussian
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FIG. 3. Example tag invariant-mass fits for double-tag RS

(upper) and WS (lower) positron candidates with momentum in
the range 450-500 MeV/c from E,, = 4.178 GeV data. In both
plots, the solid blue line is the result of the total fit, the dashed red
line is the fitted distribution of non-Dy — KTK~z~ back-
grounds, the dotted black line is the fitted signal distribution,
the filled red histogram is the contribution from backgrounds
predicted by MC simulation, and the black points with error bars
are data. The choice of binning is arbitrary and used solely for
display. MC simulation distributions are scaled by the number of
single-tag events.

parameters fixed to those determined in the single-tag
fit. We employ a first-order Chebyshev polynomial to
model the distribution of backgrounds. Two examples of
the 324 fits we perform are shown in Fig. 3. The full set of
fits is made available as Supplemental Material [36].

TABLE IV. Single-tag efficiencies for all events (egt) and tag bias for Dy — Xe™v, events (byyg) and for D —
v, —» eTv,v, U, events (bfyg) from each dataset determined with MC samples. Listed uncertainties are only

statistical.

Dataset €sT biag biyg

E., =4.178 GeV (43.10 £ 0.01)% 1.007 + 0.001 1.037 £ 0.003
E., =4.189-4.219 GeV (42.46 +0.02)% 1.004 4+ 0.002 1.034 £ 0.004
E ., =4.225-4.230 GeV (40.48 +0.03)% 1.005 + 0.003 1.044 + 0.007
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Measured yields as a function of momentum bin for each
category are shown in Fig. 4.

With the yields determined from the fits, we perform the
matrix unfolding procedure described in Sec. III to correct
for the inefficiencies of our electron/positron identifica-
tion and for the misidentification of pions and kaons as
electrons in each momentum bin for both RS and WS
tracks, as described in Eq. (3). The elements of App for
each dataset are determined by applying our PID require-
ments to MC samples of particles originating from D
decays. Differing detector conditions of the three data-
sets introduce deviations among the PID rates from
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the datasets. The rates that populate the Apyp matrices
are shown in Fig. 5 for each dataset. The results of
the unfolding procedure for both RS and WS tracks are
shown in Fig. 6, as well as the difference of the PID-
unfolded right-sign and wrong-sign yields, which gives
the PID-unfolded momentum spectra for tracked posi-
trons originating from D} — Xe*v, and D] - ttv, —
etv,v. D, events. The assessment of systematic uncertain-
ties related to the two rates to which we are most
sensitive (the electron identification efficiency and the
pion-to-electron misidentification rate) are discussed
in Sec. VL.
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FIG. 4. Measured yields for each track category as a function of momentum. The results from E_,, = 4.178 GeV are shown as black
squares, those from E_,, = 4.189-4.219 GeV are shown as blue triangles, and those from E_,, = 4.225-4.230 GeV are shown as red

circles.
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After taking the difference of the RS and WS PID-
corrected yields, we apply the tracking unfolding matrix to
correct for tracking reconstruction efficiencies and momen-
tum bin misassignment as in Eq. (4). The momentum bin
misassignment is caused not only by imperfect detector
resolution but also by FSR from electrons and positrons,
which increases the likelihood for the track momentum to
be less than the momentum produced in the D decay. The
tracking unfolding matrices are consistent among the MC
samples.

We determine the D] — Xe™v, positron momentum
spectrum for each data sample by subtracting the contri-
bution of positrons from DY — v, — eTv,u,0, events
from the spectra obtained from the tracking unfolding
procedure. We take the D — v, - etv .0, positron
momentum spectra from MC samples. We fix the normali-
zation according to

NDT,‘L’ - B(D;L - T+Ur - €+Uel/.,17.,) X ngt X b‘trag’ (8)

where the values of B(D{ — v, — e*v,v.0;) and b,
are given in Tables I and IV, respectively. The subtracted 7
component is shown for each dataset in Fig. 7.

By determining the signal-efficiency-corrected num-
ber of Dj — XeTv, events in each dataset with
pe > 200 MeV/c, all effects of the detector response,
except for small effects in b, have been accounted for.
As such, we sum the determined yields from each dataset in
each momentum bin to produce a combined D] — Xe™v,
momentum spectrum. A table with the total summed yields
as a function of momentum along with their statistical
uncertainties is provided in the Supplemental Material [36].
We determine the number of DY — Xe'v, events with
p. <200 MeV/c by fitting a shape based on MC simu-
lation to the combined yields with p, > 200 MeV/c. The
shape is constructed by adding the momentum spectra
predicted by MC simulation of the six observed exclusive
modes (pe*v,, ne*v,, n'etv,, K'e*v,, K*(892)%*v,, and
f0(980)etr,) in proportion to their branching fractions
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FIG. 6. PID unfolding results of positrons from D] — Xe*v,
and DY — v, - eTv,v. D, events for the datasets with E,,, =
4.178 GeV (upper), E., =4.189-4.219 GeV (middle), and
E., = 4.225-4.230 GeV (lower). RS PID-corrected yields are
shown as green diamonds, WS PID-corrected yields are shown as
red triangles, their differences are shown as black circles, and the
predictions from MC samples scaled by the number of single-tag
events are shown as blue histograms.

listed in Table I. The momentum spectra for the r'e*v,
K%"v,, K*(892)%"v,, and f((980)e v, modes are taken
from MC samples generated with the ISGW2 model [37]
for the decay of the DI meson. We generate separate MC
samples for the two largest modes, ¢e*v, and ne*v,, using
simple-pole parametrizations of the respective decay form
factors as functions of the 4-momentum squared of the
lepton-neutrino system (g?). The form-factor parameters
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FIG. 7. Results of subtracting the contribution of Dy —
tty, > ety b, in Eg, =4.178 GeV data (upper), E, =
4.189-4.219 GeV data (middle), and E., = 4.225-4.230 GeV
data (lower). Tracking-corrected yields are shown as blue
diamonds, and the predicted contributions from Dy — 77v, —
e'v,v,b, are shown as red histograms. The differences of the two,
the D — Xetv, yields, are shown as black circles. The dotted
black line indicates zero events.

are taken from measurements of the BABAR Collaboration
for ¢pe* v, [3] and the BESIII Collaboration for ne*v, [7].

The integral of the fitted spectrum from p, = 0 MeV/c
to p, =200 MeV/c is added to the number of signal-
efficiency-corrected DJ — Xe'v, events with p, >
200 MeV/c as described in Eq. (5), and the statistical
uncertainty is scaled by the ratio by which the total yield
increases due to this correction. The fit to data with the

012003-11



M. ABLIKIM et al.

PHYS. REV. D 104, 012003 (2021)

1800
1600
1400
1200
1000
800
600
400
200

Events/(50 MeV/c)

1

N B
0 200

, , |
400

‘ ‘600‘
p (MeV/c)

L
800

Ll
1000 1200

FIG. 8. Momentum spectrum fit used to determine the Dy
semielectronic decay yield below 200 MeV/c. The black points
with error bars are sums of the final measured DY — Xe™v,
yields (black circles) for the three datasets from Fig. 7, and the
solid blue line is result of the fit described in the text.

assumed momentum spectrum can be found in Fig. 8. As a
cross-check, we also fit to the datasets separately and find
consistent results. The yields in data both without and with
the correction for the data with p, <200 MeV/c are
shown in Table V.

Using Eq. (6), we determine B(D; — Xe'v,) with the
momentum-extrapolated number of signal-efficiency-cor-
rected double-tag events from Table V, the observed
number of single-tag events from Table III, and the tag
bias from Table IV. The branching fractions determined
from each dataset independently, their average, and the
branching fraction determined from their combination are

TABLE V. Yields in data before and after momentum-extrapo-
lation correction. The “Combined” row shows the results of
summing together the yields from the three datasets and fitting to
the summed distribution. Shown uncertainties are only statistical.

Observed yields with ~ Corrected
Sample p. > 200 MeV/c  yields (Npr)
E., =4.178 GeV 8793 £ 218 9628 + 238
E., =4.189-4.219 GeV 4695 + 174 5142 + 191
E ., = 4.225-4.230 GeV 1712 £ 104 1874 £ 114
Combined 15201 £ 298 16648 + 326
TABLE VI. B(Df — Xe'v,) determined from data. The

“Combined” row shows the results of summing together the
yields from the three datasets and fitting to the summed
distribution. Shown uncertainties are only statistical.

Sample B(Df - XeTv,)
Em = 4.178 GeV (6.38 + 0.16)%
E., =4.189-4.219 GeV (5.96 £ 0.23)%
E., =4.225-4.230 GeV (6.38 4+ 0.40)%
Combined (6.30 +0.13)%

TABLE VII. Systematic uncertainties in the measurement of
B(Df — XeTv,).

Source Relative uncertainty
Tracking 0.7%
PID 0.8%
Spectrum extrapolation 0.7%
Background shapes 0.4%
Number of tags 0.6%
Tag bias 0.1%
B(Df — ttv,) 0.6%
Overall 1.6%

shown along with the associated statistical uncertainties in
Table VI. The difference of the “Combined” result from
Table VI, B(D] — Xe'tv,) = (6.30 + 0.13(stat.))%, and
the sum of the observed exclusive semielectronic branching
fractions from Table I gives the unobserved DY semi-
electronic branching fraction as (—0.04 £ 0.21)%, where
the stated uncertainty includes the total uncertainty from
the exclusive measurements, but only the statistical uncer-
tainty from the inclusive measurement presented in this
article.

VI. SYSTEMATIC UNCERTAINTY

Our methods to determine the relative systematic uncer-
tainty in our measured B(D; — Xe'v,) are described
below.

A. MC simulation statistics and
matrix-inversion stability

We probe the effects of finite MC sample statistics and
the stability of the matrix-inversion algorithm by creating a
toy ensemble of variations for each efficiency matrix used
in the analysis (54 PID and three tracking matrices). For
each matrix, we create this ensemble by sampling each
entry within the MC sample’s statistical uncertainty. For
each matrix in each ensemble, we perform the matrix
inversion and reperform the analysis with the new inverted
matrix. All variations produce a negligible change in our
final result, which indicates a negligible systematic uncer-
tainty from the statistical uncertainty of the MC samples as
well as the stability of the algorithm for inverting our
efficiency matrices.

B. Tracking

Simulation of our tracking efficiency is studied with a
control sample of radiative Bhabha events. Tracking
efficiencies as a function of momentum are measured in
each dataset as well as in MC samples produced with the
BabayagaNLO package [28]. The ratios of the measured
efficiencies in data and MC samples are weighted by the
predicted momentum distribution from signal MC simu-
lation and the number of single-tag events in each dataset to
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determine the systematic uncertainty. This results in a
relative systematic uncertainty of 0.7%.

In addition, we investigate the systematic uncertainty in
the individual tracking efficiency matrix entries. As we
assign a systematic uncertainty for the total tracking
efficiency, we probe the uncertainty in the individual entries
by keeping the sum of a row of the matrix constant while
varying the individual entries. The specific variation is as
follows:

(1) (Aw)iiot = 1.5(Auk)i i

(i) (Aw)iir = 1.25(Aw); i1

(iii) (Ayy);; decreases to keep the sum of the column
constant.

This variation is chosen as a conservative estimation of the

uncertainties from FSR and detector resolution. We see

negligible change when we perform such a variation, so we

only assign the previously stated uncertainty for tracking.

C. PID

Similar to our procedure in assessing the systematic
uncertainty in our tracking efficiencies, we measure e 1D
efficiencies as a function of momentum and track angle in
radiative Bhabha control samples for each dataset.

We also probe the accuracy of the pion-to-electron
misidentification rates from MC simulation via a control
sample of pions collected in each data sample through the
decay chains D** — ztD°, D° - K=z2* K~atzxtzn~. To
determine the total uncertainty from PID rates, we simul-
taneously vary the e ID efficiencies and the pion-to-
electron misidentification rates using the central values
of the measured data-to-MC efficiency ratios and reperform
our analysis. This yields a 0.8% change in the final
branching fraction, which we assign as the relative sys-
tematic uncertainty due to PID.

As our sensitivity to kaon-to-electron misidentification
rates is small due to the relatively few number of kaons, the
systematic uncertainty in kaon-to-electron misidentifica-
tion rates is neglected.

D. Tag bias

We follow the procedure laid out in Ref. [38], which
assigns a fraction of 1 — b, as the systematic uncertainty
based on the particles in the final state of the single-tag Dy
decay. The specific guidelines for variation of detector-
response parameters are as follows: 1.0% per kaon for
tracking, 0.5% per pion for tracking, and 0.5% per kaon or
pion for PID. For Dy — K™K~ z~, with two kaons and one
pion, the quadrature sum is 2.9%. With by,, from Table IV
(including the contribution from D} — v, — etv,v,0,),
taking 2.9% of 1 — by, yields a 0.03% relative systematic
uncertainty. We additionally propagate the uncertainties in
the branching fractions (Table I) through the calculation of
the weighted-average b,,. This yields a 0.07% relative
systematic uncertainty in the bias. We add these in

quadrature and assign the relative systematic uncertainty
due to tag bias as 0.1%.

E. Number of single tags

We investigate the systematic uncertainty in the invari-
ant-mass fitting procedure used to determine the number of
single tags by varying the choice of background distribu-
tion from the nominal second-order Chebyshev polyno-
mial. We use both first-order and third-order Chebyshev
polynomials as variations in fitting to each dataset. Using
the first-order Chebyshev polynomial gives a larger differ-
ence in the yields in all cases, while not significantly
degrading the quality of the fit. We take an average of the
changes for each dataset weighted by the single-tag yields
to determine the systematic uncertainty, which results in a
0.6% relative systematic uncertainty in the number of
single tags.

F. Background shapes

To assess the uncertainty due to our chosen background
shapes in our signal-side fits of the tag invariant mass, we
use smoothed background distributions from MC simula-
tion instead of the nominal first-order Chebyshev poly-
nomial to model backgrounds in each of the signal-side fits.
We then reperform the analysis with the yields determined
from these alternative fits. The relative difference in Npr is
0.4%, which we assign as the relative systematic uncer-
tainty due to this source.

G. B(D} - t*v,)

As systematic uncertainty in the kinematic distributions
of D} - tTv, - etv,v, U, events contributes negligible
uncertainty, we account for uncertainty in the contribution
of DY - 1Ty, - eTv,v,0, events by propagating the
absolute uncertainty for B(DY} — ttv, - etv,v,0,) from
Table I, 0.04%. This yields a relative systematic uncertainty
of 0.6% on our measurement of B(D{ — Xe'v,).

H. Spectrum extrapolation

We assess the uncertainty due to the momentum spec-
trum extrapolation by generating an ensemble of alternative
momentum spectra and fitting these to the data. Each
spectrum in this ensemble is created by Gaussian sampling
the branching fractions of the six observed exclusive
semielectronic modes and adding spectra for unobserved
decay modes. We then add these spectra in proportion
based on the sampled branching fractions.

We consider effects from the combination of three
unobserved decay modes: Dy — hy(1415)e*v,, D} —
f1(1510)etv,, and D} — yetv,. MC samples for D] —
hi(1415)e*v, and Dy — f,(1510)e*v, are generated
based on the ISGW2 model’s predictions [37]. We generate
MC samples for DY — ye™v, based on the model of Yang
and Yang [39]. We determine the normalization of the
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DY — hy(1415)ety, and D — f,(1510)e* v, spectra by
fixing the relative branching fraction of these decays to the
ISGW2 predictions and fitting them in addition to our
nominal momentum spectrum. The D} — ye™v, spectrum
is fixed to its measured 90% confidence-level upper limit,
1.3 x 107 [40]. From this fit, we determine an upper
limit at the 90% confidence level for the sum of the
branching fractions of D — h(1415)e*v, and DY —
f1(1510)e*v,. In our toy ensemble, their summed spectra
are fixed based on this upper limit. We performed this same
procedure excluding the D} — yetv, spectrum but found
the combination of modes to produce the largest variation.

The resulting systematic uncertainty is determined by
filling a distribution of the relative change in B(D] —
Xe'tv,) between the alternative momentum spectra and our
nominal spectrum. The linear sum of the mean (0.33%) and
rms (0.34%) of this distribution is taken as the uncertainty,
which gives a 0.7% relative systematic uncertainty.

We also probe uncertainty in the models we employ by
using the ISGW2-predicted momentum spectra for the
Dy — ¢etv, and D] — neTv, modes. Using these alter-
native spectra instead of the nominal spectra gives a less
than 0.1% difference in the measured branching fraction, so
we conclude that any uncertainty due to model dependence
in our analysis is negligible.

I. Summary of systematic uncertainties

The assigned relative systematic uncertainties for all
sources are listed in Table VII. Our systematic uncertainty
is not dominated by any single source, but the largest
contributions come from the momentum spectrum extrapo-
lation and imperfect simulation of PID and tracking
efficiencies. The total relative systematic uncertainty is
obtained from the quadrature sum of the assigned relative
uncertainties. This gives a total relative systematic uncer-
tainty of 1.6%.

VII. CONCLUSIONS

Using data collected by the BESIII detector in the center-
of-mass-energy range of E., =4.178-4.230 GeV, we
measure the inclusive semielectronic branching fraction
of the DY meson to be

B(Di — Xe*v,)
= (6.30 4 0.13(stat.) = 0.09(syst.) % 0.04(ext.)) %,

where the external systematic uncertainty is from
B(D} - 7tv,). We also measure the laboratory-frame
momentum spectrum of the positrons produced in this
decay, which can be seen in Fig. 8.

Our result is consistent with the measurement from the
CLEO-c experiment [1],

B(D} - Xe'v,) = (6.52 +0.39(stat.) + 0.15(syst.)) %,

with a factor of 3 reduction of the statistical uncertainty and
a factor of 1.5 reduction of the systematic uncertainty,
primarily due to increased precision on external inputs. The
total precision of our measurement is 2.6%, which corre-
sponds to approximately a 2.5 times improvement in the
total precision compared to the measurement from
CLEO-c.

By taking the difference between our measurement of
B(Dj — Xe'v,) and the sum of the best available mea-
surements for the exclusive semielectronic modes in
Table I, we calculate the unobserved semielectronic branch-
ing fraction to be

B(D{ - Xe'tv,) — ZB(Dj - X,etv,)
= (—0.04 £ 0.13(stat.) £ 0.09(syst.) £ 0.17(ext.))%,

where the external systematic uncertainty includes the total
uncertainty in the measured exclusive branching fractions
and the uncertainty in B(D} — 7"v,). Our measurement
provides no evidence for the existence of unobserved Dy
semileptonic decay modes and constrains the branching
fractions of all unobserved decay modes. In addition, the
measured momentum spectrum can be used to further
constrain the decay rates of modes with characteristic
momentum spectra. The spectrum is included in tabular
form in the Supplemental Material [36].

With our updated measurement of the D semielectronic
branching fraction, the CLEO-c measurement of the D0
semielectronic branching fraction [1], and the 2020 PDG
values for the D and D°0 lifetimes [35], we find

(D} - Xetv,)
(D’ - Xe*v,)
=0.790 £ 0.016(stat.) = 0.011(syst.) £ 0.016(ext.).

where the external systematic uncertainty includes the total
uncertainty from B(D°0 — Xe*v,), the D° and Dy life-
times, and B(D{} — ttv,). This result is in agreement

with the prediction of % = 0.813 from Ref. [18],

supporting the conclusion that the difference in the semi-
leptonic decay widths of D and D°0 mesons can be
accounted for within the Standard Model by nonspectator
interactions. Further theoretical analysis of our measured
spectrum, similar to those of Refs. [19,20], can constrain
specific processes like weak annihilation of the constituent
¢ and 5 quarks of the D" meson, with potential extensions
to determinations of |V ,,| in semileptonic B decays [21].
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