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Abstract: Sonodynamic therapy is a bimodal therapeutic approach in which a chemical compound
and ultrasound (US) synergistically act to elicit oxidative damage, triggering cancer cell death.
Despite encouraging results, mainly for anticancer treatment, sonodynamics is still far from having
a clinical application. Therefore, to close the gap between the bench and bedside, more in vivo
studies are needed. In this investigation, the combined effect of 5-aminolevulinic acid (Ala), a natural
porphyrin precursor, plus exposure to US, was investigated in vivo on a syngeneic breast cancer
model. Real-time RT-PCR, Western blotting, and immunohistochemistry assays were performed to
evaluate the effect of sonodynamic treatment on the main cancer hallmarks. The sonodynamic-treated
group had a significant reduction (p ≤ 0.0001) in tumor size compared to the untreated group, and
the Ala- and US-only treated groups, where a strong decrease (p ≤ 0.0001) in Ki67 protein expression
was the most relevant feature of sonodynamic-treated cancer tissues. Moreover, oxidative stress
was confirmed as the pivotal driver of the anticancer effect through cell cycle arrest, apoptosis, and
autophagy; thus, sonodynamics should be explored further for cancer treatment.

Keywords: 5-aminolevulinic acid; ultrasound; sonodynamic therapy; breast cancer

1. Introduction

Sonodynamic therapy (SDT) is an anticancer and antibacterial approach [1,2], which
relies on the synergism between ultrasound (US) and chemical compounds, known as
“sonosensitizers”. Usually, SDT consists of the selective uptake of the sonosensitizer by
cancer cells or a bacterial environment, and the subsequent US exposure, which leads to the
generation of highly reactive cytotoxic agents, namely, hydrogen atoms, hydroxyl radicals,
peroxyl and alkoxyl radicals and singlet oxygen, which damages cancer cells and bacterial
cells [3–5].

Protoporphyrin IX (PpIX) is one of the most used photosensitizers in photodynamic
therapy (PDT) for solid tumors; administering the heme precursor, 5-aminolevulinic acid
(Ala), causes PpIX to selectively accumulate in cancer cells [6–10]. Although PDT with
PpIX has been shown to be effective in various tumor models, the low penetration of light
through tissues limits the synergistic effects between PpIX and light to treating only skin or
superficial endoscopically accessible tumors [11].

Dissimilar to light, US can deeply penetrate biological tissues, due to its low coefficient
of tissue attenuation, and, therefore, overcomes the main drawback of PDT [12]. Indeed, US
energy absorption can cause tissue heating, which has been used in high intensity focused
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ultrasound (HIFU) therapy [13]. However, various studies have shown that therapeutic
goals can also be achieved by taking advantage of non-thermal US effects, which can
interact with cell membranes and activate specific chemical agents, such as PpIX, mainly
through two different hypothesized mechanisms [14–16].

The first mechanism involves inertial acoustic cavitation that can occur if the ampli-
tude of acoustic pressure is higher than the cavitation threshold in the tissue upon US
exposure [17]. Inertial cavitation, thus, generates gas- or vapor-filled cavities into the
milieu under US exposure, which initially increase in volume and then violently implode,
creating so-called ‘hot spots’ where very high pressure and temperatures are restricted to
an extremely small space. This unique condition is attained without affecting bulk pressure
or temperature and, consequently, eliciting effects such as sonochemical reactions and
sonoluminescence [18]. Inertial cavitation may then cause a transfer of energy able to cause
electronic excitation in responsive chemical agents, namely, sonosensitizers [5].

The second hypothesis proposes that the intracellular sonosensitizer activation could
be elicited by an US-mediated transfer of energy as intramembrane cavitation through
the cell membrane in accordance with the bilayer sonophore (BLS) theory [16]. In other
words, Krasovitski et al. proposed that the cell membrane, under suitable conditions, can
transform the acoustic pressure of US into an intramembrane cavitation, generating, similar
to inertial acoustic cavitation, intracellular submicron-sized gas bubbles which, upon
collapsing, release extremely high energy and, possibly, sonoluminescence and cause an
energy transfer, which could trigger electronic excitation in sonosensitive molecules [16,19].

Although the mechanism underlying SDT is still under debate, various in vitro and
in vivo studies have been conducted with encouraging results, but there is still a wide gap
between the bench and bedside [1,4,14,15,20,21]. This is also confirmed by the absence of
clinical trials, and the only studies involving SDT, where cancer patients were enrolled,
are case reports [1]. There are two case reports that involve breast cancer patients with
positive outcomes, but SDT was always administered in combination with other anticancer
treatments [22,23]. Therefore, to increase the number of case reports and to promote clinical
trials (particularly in breast cancer), more preclinical experiments should be performed
to prove the reliability, robustness, and effectiveness of SDT. To date, several in vivo SDT
studies have been carried out against breast cancer, all with encouraging results, but some
were in combination with PDT, and many with the aim of developing new sonosensitizers,
and, thus, less suitable for a clinical trials evaluation [24,25]. This study, therefore, tries to
show, for the first time, the possible efficacy and molecular features of SDT in a syngeneic
breast cancer model with Ala as a sonosensitizer, a well know photosensitizer widely used
in clinical application [26,27].

2. Results
2.1. SDT Effect on Tumor Growth

There were clearly no significant differences in tumor size between groups before
treatment (day 7), while a decrease in tumor volume of about 70% at 24 h (day 9),
and about 74.5% at 72 h (day 11) after treatment (Figure 1), was observed in the SDT-
treated group. There was a statistically significant difference when the SDT animal group
(1.89 ± 1.10 mm3) was compared to the control animal group (7.41 ± 2.85 mm3), the Ala
(7.98 ± 2.22 mm3), and US (7.37 ± 1.11 mm3) animal groups at 72 h after treatment (day 11,
p ≤ 0.0001, Figure 1).

2.2. SDT Effect on PARP Cleavage and CASP3 mRNA Expression

In order to verify whether Mat B III tumors in 12-week-old female Fisher 344 rats
exposed to Ala (375 mg/kg bw, iv) and/or US (1.5 W cm2, 1.8 MHz for 300 s) expressed
any hallmarks of apoptosis, i.e., specific cleavage of PARP into the 83 kDa fragment (due
to caspase activation), Western blotting was carried out. PARP cleavage was evident at
72 h post-treatment (day 11) (while not statistically significant) in tumor tissue after SDT
compared to the control animal group (Figure 2A).



Pharmaceuticals 2021, 14, 972 3 of 13

Pharmaceuticals 2021, 14, x FOR PEER REVIEW 3 of 14 
 

 

 
Figure 1. SDT effect on tumor growth. Control and experimental groups on day 8 (grey arrow) were either treated with a saline 
iv injection into the tail vein (0.5 mL), an Ala iv injection into the tail vein (375 mg/kg bw), US alone (1.5 W cm2, 1.8 MHz, 300 
s), or Ala and US (1.5 W cm2, 1.8 MHz for 300 s, at 4 h after the Ala 375 mg/kg bw iv injection, SDT group). Tumor sizes were 
measured at 24 h (day 9) and 72 h (day 11) after treatment. Statistical significance vs. untreated rats (control, Ctrl): **** p ≤ 
0.0001. 
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300 s), or Ala and US (1.5 Wcm2, 1.8 MHz for 300 s, at 4 h after the Ala 375 mg/kg bw iv injection, SDT group). (A) Representative 
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to the corresponding β-actin content. (B) CASP3 mRNA expression by RT-PCR was analyzed at 72 h after SDT. RRN18S was 

Figure 1. SDT effect on tumor growth. Control and experimental groups on day 8 (grey arrow) were
either treated with a saline iv injection into the tail vein (0.5 mL), an Ala iv injection into the tail vein
(375 mg/kg bw), US alone (1.5 W cm2, 1.8 MHz, 300 s), or Ala and US (1.5 W cm2, 1.8 MHz for 300 s, at
4 h after the Ala 375 mg/kg bw iv injection, SDT group). Tumor sizes were measured at 24 h (day 9) and
72 h (day 11) after treatment. Statistical significance vs. untreated rats (control, Ctrl): **** p ≤ 0.0001.
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Figure 2. PARP cleavage and CASP3 mRNA expression after SDT. Control and experimental groups
were either treated with a saline iv injection into the tail vein (0.5 mL), an Ala iv injection into the tail
vein (375 mg/kg bw), US alone (1.5 W cm2, 1.8 MHz, 300 s), or Ala and US (1.5 Wcm2, 1.8 MHz for
300 s, at 4 h after the Ala 375 mg/kg bw iv injection, SDT group). (A) Representative Western blots of
PARP at 72 h after SDT indicate PARP cleavage to 83 KDa. Histograms show densitometric analysis
normalized to the corresponding β-actin content. (B) CASP3 mRNA expression by RT-PCR was
analyzed at 72 h after SDT. RRN18S was used as a reference gene to normalize the data (mRNA levels
were compared with those of the control group, stated as 1). Statistical significance vs. untreated
tissue (Ctrl): ** p ≤ 0.01.

To confirm the specific cleavage of PARP, and to better understand the apoptotic
pathways triggered by different treatments, mRNA expression of the caspase CASP3 was
investigated. Figure 2B shows that, at 72 h post-treatment (day 11), mRNA expression
of CASP3 was upregulated by two-fold in tumor tissue after SDT treatment compared to
tumor tissue in the untreated animal group (p ≤ 0.01).

2.3. SDT Effect on TP53 mRNA Expression and on Ki67 Protein Expression

Many studies have shown that the activity of the transcription factor p53 in cell cycle
and apoptosis prevents tumor development, so we investigated p53 mRNA expression [28].
There was a statistically significant increase in TP53 mRNA expression in tumor tissue at
72 h after SDT (day 11) compared to the control animal group (p ≤ 0.01, Figure 3A).
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treated with a saline iv injection into the tail vein (0.5 mL), an Ala iv injection into the tail vein (375 mg/kg bw), US alone
(1.5 W cm2, 1.8 MHz, 300 s), or Ala and US (1.5 W cm2, 1.8 MHz for 300 s, at 4 h after the Ala 375 mg/kg bw iv injection, SDT
group). (A) Analysis of TP53 mRNA expression by real-time RT-PCR at 72 h after SDT. RRN18S was used as a reference gene
to normalize the data (mRNA levels were compared with those of the control group, which are stated as 1). (B) Ki67 protein
expression by immunohistochemistry at 72 h after SDT (day 11), and representative Ki67 immunostaining (hematoxylin
counterstain, original magnification ×400). Statistical significance vs. untreated tissue (Ctrl): ** p ≤ 0.01, **** p ≤ 0.0001.

To confirm changes in the cell cycle arrest after SDT, Ki67 protein expression, a
nuclear marker of cell proliferation, was studied by immunohistochemistry. A statistically
significant decrease in Ki67 expression was observed in tumor tissue at 72 h after SDT
treatment (day 11) compared to the control animal group (p ≤ 0.0001, Figure 3B).

2.4. SDT Effect on HIF-1α mRNA Expression and VEGF Protein Expression

To confirm the role of TP53 gene activation in SDT-induced cell cycle blocking and
apoptosis, the mRNA expression of HIF-1α and VEGF protein expression were investigated.
The genetic activation of TP53 in cancer cells potently inhibits tumor angiogenesis (required
for tumor growth) and inhibits HIF-1α mRNA and VEGF protein expression [29].

Our results showed a statistically significant downregulation of HIF-1α mRNA ex-
pression in tumor tissue at 72 h after SDT (day 11) compared to the control animal group
(p ≤ 0.01, Figure 4A), and no statistically significant change in VEGF protein expression in
tumor tissue at 72 h after SDT (day 11) compared to the control animal group (Figure 4B).

2.5. SDT Effect on NFE2L2 and NQO1 mRNA Expression

To kill cancer cells, SDT shifts the intracellular environment toward pro-oxidant
conditions, due to reactive oxygen species (ROS) accumulation; we, thus, investigated the
mRNA expression of oxidative stress-related genes, namely, NFE2L2 and NQO1 in tumor
tissue at 72 h after SDT (day 11).

There was a statistically significant increase in NFE2L2 mRNA expression in tumor
tissue at 72 h after SDT (day 11) compared to the control animal group (p≤ 0.0001, Figure 5).
Conversely, there was a statistically significant decrease in NQO1 mRNA expression in
tumor tissue at 72 h after SDT (day 11) compared to the control animal group (p ≤ 0.001,
Figure 5).
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Figure 4. HIF-1α mRNA expression and VEGF protein expression after SDT. Control and experimental groups were treated
with either a saline iv injection into the tail vein (0.5 mL), an Ala iv injection into the tail vein (375 mg/kg bw), US alone
(1.5 W cm2, 1.8 MHz, 300 s), or Ala and US (1.5 W cm2, 1.8 MHz for 300 s, at 4 h after the Ala 375 mg/kg bw iv injection,
SDT group). (A) Analysis of HIF-1α mRNA expression by real-time RT-PCR at 72 h after SDT. RRN18S was used as a
reference gene to normalize the data (mRNA levels were compared with those of the control group, which are stated as
1). (B) Representative Western blots of VEGF protein expression 72 h after SDT. Histograms report densitometric analysis
normalized for the corresponding β-actin content. Statistically significance vs. untreated tissue (Ctrl): ** p ≤ 0.01.
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Figure 5. NFE2L2 and NQO1 mRNA expression after SDT. Control and experimental groups were
either treated with a saline iv injection into the tail vein (0.5 mL), an Ala iv injection into the tail vein
(375 mg/kg bw), US alone (1.5 W cm2, 1.8 MHz, 300 s), or Ala and US (1.5 W cm2, 1.8 MHz for 300 s,
at 4 h after the Ala 375 mg/kg bw iv injection, SDT group). NFE2L2 and NQO1 mRNA expression
was determined by real-time RT-PCR at 72 h after SDT. RRN18S was used as a reference gene to
normalize the data (mRNA levels were compared with those of the control group, which are stated
as 1). Statistically significance vs. untreated tissue (Ctrl): *** p ≤ 0.001, **** p ≤ 0.0001.

2.6. SDT Effect on LC3 A/B Protein Expression

As our previous results seemed to confirm that apoptosis and cell cycle arrest, through
ROS production, play a role in cancer cell death caused by SDT, we also investigated
protein expression of other cell death effectors such as autophagy, a catabolic process
sometimes considered as a separate modality of programmed cell death, and a modulator
of the anticancer immune response [30,31]. Therefore, LC3 A/B protein expression was
investigated by immunoblotting, a reliable method for checking autophagy and autophagic
cell death [32].

Our data showed an increased expression of LC3 A/B protein expression in tumor
tissue at 72 h after SDT (day 11) compared to the control animal group (p ≤ 0.01, Figure 6),
suggesting a role for autophagy in sonodynamic cancer cell killing.
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3. Discussion

In the 1990s, Umemura et al. and Tachibana et al. introduced the concept of SDT as an
innovative anticancer approach to activate sensitizer cytotoxicity by US, and to overcome
PDT’s main limitation, i.e., the low ability of light to penetrate human tissues [33,34].
Currently, even though many in vitro SDT studies have presented encouraging results
in several cancer cell lines [3,35], few in vivo SDT studies have demonstrated significant
tumor regression [1]. Therefore, more studies need to be carried out in vivo before SDT
can be used as an adjuvant or replacement approach for traditional cancer treatment.
We, therefore, carried out, in a syngeneic model of breast cancer, SDT with Ala as a
sonosensitizer. We found that tumor growth was significantly reduced in the SDT animal
group at 72 h after treatment (Figure 1), confirming the effectiveness of this anticancer
approach in our syngeneic model of breast cancer [36–39].

In order to investigate the tumor size reduction in the SDT animal group compared
to the control, we studied if SDT was able to trigger apoptosis (programmed cell death),
typically inhibited in cancer, since many anticancer therapeutic strategies are related to the
ability of the treatment to induce apoptosis [40]. Firstly, we investigated caspase-induced
PARP cleavage, as caspase activation is one of the most common signal cascade pathways
involved in apoptosis and is responsible for the cleavage of several key proteins required
for cellular functioning and survival [41]. Therefore, PARP cleavage by caspases, resulting
in various fragments with a specific molecular weight, is a hallmark of apoptosis [42].
Here, we observed an enhanced PARP cleavage in tumor tissue at 72 h after SDT treatment
compared to the control animal group (Figure 2). Since this difference was not statisti-
cally significant, we investigated CASP3 mRNA expression in the same tumor tissues, as
this cysteinyl-aspartate protease is primarily responsible for PARP cleavage during cell
death [43]. We found a statistically significant increase in CASP3 mRNA expression in
tumor tissue at 72 h after SDT treatment compared to the control animal group, suggesting
that SDT induces apoptosis in solid tumors in vivo. This was supported, in vitro, by Li
et al. in human pancreatic cancer cells and in vivo, by Foglietta et al. in a syngeneic rat
model of breast cancer [14,36].

To investigate the mechanisms underlying SDT, and a possible role played by cell cycle
arrest in reducing tumor growth after SDT, we studied mRNA expression of TP53, which
codes for a nuclear DNA-binding phosphoprotein, involved in G1 cell cycle arrest [44]. In
tumor tissue, 72 h after SDT, a statistically significant increase in TP53 mRNA expression
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compared to the control animal group was observed, suggesting a link between the decrease
in tumor growth and cell cycle arrest in SDT (Figure 3A).

To confirm that cell cycle progression could be a target in SDT, Ki67 expression
was investigated, as this protein is tightly correlated with cell proliferation, and in some
neoplasms, such as breast cancer, there is an inverse correlation between Ki67 expression
and response to anticancer treatments [44–48]. Ki67 immunohistochemistry showed a
statistically significant decrease in the expression of this protein in tumor tissue at 72 h after
SDT compared to the control animal group, supporting the notion that SDT significantly
decreased cell proliferation in the syngeneic model of breast cancer (Figure 3B).

Since SDT significantly decreased the cell proliferation rate, we also investigated if SDT
could switch the syngeneic model of breast cancer towards a non-angiogenic phenotype, in
order to avoid neoplastic growth and tumor progression. Therefore, we investigated HIF-1α
mRNA and VEGF protein expression as HIF-1α activates gene transcription and stimulates
angiogenesis by upregulating VEGF. In tumor tissue at 72 h after SDT, a statistically
significant decrease in HIF-1α mRNA expression was detected compared to the tumor
tissue in the control animal group (Figure 4). Furthermore, there was no evidence of VEGF
protein upregulation between the two groups (Figure 4). This further highlighted the
importance of p53 in SDT, as it has been previously reported that upregulating p53 inhibits
HIF-1α expression [29].

Although the exact mechanism underlying SDT is still unclear, there is a wide consen-
sus that ROS play a pivotal role in the sonodynamic-induced anticancer effect; therefore, to
establish if a reduction in tumor growth was mainly attributable to oxidative stress in the
syngeneic model of breast cancer subjected to SDT, mRNA expression of genes associated
with oxidative stress, such as NFE2L2 and NQO1 genes, were investigated [4,21]. Our
data indicated that, in tumor tissue subjected to SDT, the NFE2L2 gene was upregulated
(Figure 5), suggesting an increase in the half-life of Nrf2, a transcription factor able to
translocate into the nucleus under stress, binding the antioxidant response element (ARE)
in order to activate the transcription of cytoprotective genes, such as NQO1, GST-1, and
x-CT, establishing the pro-oxidant conditions in tumor tissue after SDT [42]. However, we
observed the downregulation of NQO1 in tumor tissue after SDT, which apparently did not
match with the upregulation of NFE2L2 (Figure 5). It has also been shown that SDT-induced
oxidative stress leads to the upregulation of p53 which, in turn, results in cancer cell cycle
arrest and the downregulation of the Nrf2-dependent activation of antioxidant genes, such
as NQO1, GST-1, and x-CT [49].

Finally, we examined LC3 A/B protein expression in order to determine if autophagy
occurred following SDT in vivo, since Giuntini et al. [4] and Su et al. demonstrated that,
in vitro, SDT caused cancer cell autophagy, dependent on ROS production [50]. Therefore,
the observed SDT-induced autophagy, in vivo, suggested a role for SDT in modulating
cancer cell death towards immunogenic cell death, which induces an adaptive immune
response activation against cancer in immunocompetent hosts, resulting in a long-lasting
protective antitumor immunity, a sort of ‘holy grail’ of anticancer therapeutics [51]. Our
results showed a statistically significant increase in LC3 A/B protein expression in tumor
tissue at 72 h after SDT compared to the control group (Figure 6). This outcome supports
the idea that SDT may confer an immunological memory, able to preserve against tumor
recurrence after the elimination of the primary tumor, as reported recently by Zhang et al.,
Chen et al. and Yin et al. [32,52,53].

4. Materials and Methods
4.1. Animals

Due to their immunocompetent system, syngeneic cancer models are consistent for
the in vivo evaluation of new therapeutic approaches, being also time- and cost-effective
models for obtaining reliable and robust translational data [54]. Therefore, based on our
previous experience [36,55], we decided to use the syngeneic Mat B III breast cancer model.
Inbred 8-week-old female Fisher 344 rats (Charles River Laboratories, Sant’Angelo Lodi-
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giano, Italy) were housed in a specific pathogen-free environment at a 12 h light/dark
cycle; rats had access to water and rodent laboratory chow ad libitum, and their weights
were monitored. The procedures for animal care and handling were approved by the local
“Animal Use and Care Committee”, in agreement with the European Directive 2010/63/EU.
Moreover, the suitable number of animals per group was designated observing the guide-
lines for the statistical analysis of experiments involving laboratory animals [56].

The syngeneic rat mammary adenocarcinoma cell line, Mat B III (American Type Culture
Collection, Manassas, VA USA), was cultured in McCoy’s 5A modified medium with 10%
fetal bovine serum, 2 mM L-glutamine, 100 mg/mL streptomycin, and 100 units/mL penicillin
(Sigma-Aldrich, Milano, Italy), keeping the incubator humidified, at 5% CO2 and 37 ◦C. For
tumor induction, cells were detached from the flask, counted and orthotopically injected
(1 × 106 cells in 0.5 mL physiological saline) into the abdominal mammary fat pad of the
inbred 12-week-old female Fisher 344 rats under isoflurane anesthesia.

4.2. Sonodynamic Treatment

At least four animals were randomly assigned to each experimental group, and three
separate experiments were carried out according to our previous reports [36,55]. SDT
was performed within 7 days, when the subcutaneous tumors reached approximatively
500 mm3 in volume. Ala powder (Sigma-Aldrich, Milano, Italy) was dissolved in physio-
logical saline immediately before each administration (375 mg/kg body weight, bw).

Control and experimental groups were treated on day 8 with either a saline iv injection
into the tail vein (0.5 mL), an Ala iv injection into the tail vein (375 mg/kg bw), US alone
(1.5 W cm2, 1.8 MHz, 300 s), or Ala (375 mg/kg bw) and US (SDT group), with 1.5 W cm2,
1.8 MHz for 300 s, 4 h after the Ala iv injection into the tail vain.

At days 7, 9, and 11, all tumor masses were measured by caliper, calculating the tumor
volume (V) by the formula V = 4/3πr3, with r as the mean of the two orthogonal radii.
At the end of the study (day 11), all animals were sacrificed, and samples of tumor tissue
were preserved in 10% buffered formalin for histology and in Allprotect Tissue Reagent
(QIAGEN, Milano, Italy) for analyzing mRNA and protein expression.

SDT was performed by means of a plane wave transducer, working in continuous
wave mode at 1.8 MHz frequency, which was connected to a function generator (Type 33250;
Agilent, Santa Clara, CA, USA) and a power amplifier (Type AR 100A250A; Amplifier
Research, Souderton, PA, USA). A proper mechanical adaptor was filled with ultrapure
water, guaranteeing strong reproducibility of treatment conditions [57]; the distance from
the transducer to the tumor was 2 cm, and US gel was applied between the adaptor and
the naked rat skin. US treatment was performed at 1.5 W/cm2 for 300 s under subdued
light, corresponding to a maximum root-mean-square acoustic pressure (rms) of 300 kPa.
Before US exposure, rats were anesthetized with 1–2% isoflurane in air and O2, fixed in a
supine position to a board with tumors facing upwards; US gel was applied to the shaved
skin (Figure 7).

4.3. Western Blotting

Tumor samples were collected at 72 h post-treatment in Allprotect Tissue Reagent
(QIAGEN) and preserved at −80 ◦C. Total proteins were extracted employing the AllPrep
DNA/RNA/protein Kit (QIAGEN), and concentrations (µg/mL) were obtained using the
Quant-iT RNA Assay Kit (Invitrogen, Milano, Italy) and the Qubit fluorometer (Invitrogen).
Total proteins were denatured at 95 ◦C for 5 min by using a buffer (50 mmol/L Tris-HCl,
pH 6.8, 100 mmol/L dithiothreitol, 0.10% bromophenol blue, 10% glycerol, 2% SDS), and
then a final concentration of 30 µg of total protein was loaded onto an SDS-PAGE gel (Any
kD™ Mini-PROTEAN® TGX™ Gel, Bio-Rad, Segrate, Italy); proteins were transferred to a
nitrocellulose membrane using the Trans-Blot® Turbo™ Transfer System (Bio-Rad). Correct
protein transfer was confirmed by incubating nitrocellulose membranes with Ponceau Red
solution (Sigma-Aldrich). Membranes were then incubated at room temperature for 2 h
with a Tris-buffered saline containing 0.05% TWEEM (Sigma-Aldrich) with 5% non-fat dry
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milk, and incubated overnight with the following primary antibodies: β-actin (Abcam,
cat n◦ 8226), LC3A/B (Abcam, cat n◦ 128025), poly(ADP-ribose)polymerase (PARP, Abcam,
cat n◦ 32138), and VEGF C-1 (Santa Cruz Biotechnology, Heidelberg, Germany, n◦ sc-7269).
Following primary antibody incubation, peroxidase-conjugated IgG Abcam (Cambridge,
UK) was used as the secondary antibody (goat anti-mouse, Abcam, cat n◦ 6789; goat
anti-rabbit, Abcam, cat n◦ 97080, Cambridge, UK), and membranes were incubated for 1 h
at room temperature. The Western blot was then detected using the chemiluminescent
system (ECL, GE Healthcare, Milano, Italy), and band quantification was carried out
by densitometric analysis using TotalLab Software, version 2006 (Nonlinear Dynamics,
Newcastle, UK); data derived from the densiometric analysis of bands were normalized to
the corresponding β-actin content.
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4.4. RNA Isolation and SYBR Green Real-Time RT-PCR

Tumor samples were collected in Allprotect Tissue Reagent (QIAGEN) at 72 h after
treatment, and preserved at −80 ◦C. The AllPrep DNA/RNA/protein Kit was used to
obtain total RNA, and concentrations (µg/mL) were obtained using the Quant-iT RNA
Assay Kit on the Qubit fluorometer. Moreover, total RNA 6000 Nano Kit on the Agilent
2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA) was used to analyze RNA
sample integrity. Total RNA (150 ng) was reverse transcribed in a 20 µL cDNA reaction
volume by the QuantiTect Reverse Transcription Kit (Qiagen, Milano, Italy). Real-time
RT-PCR analysis was then performed using SsoFast EvaGreen on the MiniOpticon Real-
Time RT-PCR system (Bio-Rad). A QuantiTect Primer Assay was used as the gene-specific
primer pair for NQO1 (QIAGEN, QT00050281) coding for NAD(P)H quinone dehydroge-
nase 1; NFE2L2 (QIAGEN, QT00027384) coding for nuclear factor-erythroid 2-like 2; TP53
(QIAGEN, QT00060235) coding for tumor protein p53; HIF1A (QIAGEN, QT00083664)
coding for hypoxia inducible factor 1 subunit alpha; APAF1 (QIAGEN, QT00092358) cod-
ing for apoptotic peptidase activating factor 1; CASP3 (QIAGEN, QT00023947) coding
for apoptosis-related cysteine peptidase 3 (caspase 3); RRN18S (QIAGEN, QT00199367)
coding for small subunit ribosomal RNA 18S. The ribosomal 18S and 28S RNA (RRNA18S)
was used as a reference to normalize mRNA data. The PCR protocol has been previously
reported [58], and data quantification analysis was performed using Bio-Rad CFX Manager
Software version 1.6 (Bio-Rad). Real-time RT-PCR was performed by running each sample
in duplicate for each group, according to three independent experiments. Values were
then mediated and correlated to the housekeeping gene (RRN18S) and expressed as ratios
compared to the untreated group (Ctrl), stated as 1.
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4.5. Histopathological Analysis

Buffered formalin (10%) was used to fix tumor samples at 72 h post-treatment, which
were, then, paraffin-embedded and cut to obtain 4 µm slide sections by using a microtome
(Leica Microsystems, Wetzlar, Germany). Tumor slides were deparaffinized in xylene,
rehydrated with alcohol and then stained with hematoxylin and eosin for histological
examination by light microscopy (Leica DM600, Wetzlar, Germany). Moreover, selected
slides were subjected to immunohistochemical analysis for Ki67, a nuclear protein that is a
marker of cell proliferation, also used to categorize good and poor prognostic categories
in invasive breast cancer [59]. A polyclonal antibody for Ki67 (dilution, 1:100; catalog no

M7240; Dako, Santa Clara, CA, USA) was used according to the labeled streptavidin–biotin
method (LSAB and System HRP Dako LSAB 2 System-HRP for use on rat specimens,
Dako). Tumor sections were heated at 98 ◦C for 40 min in sodium citrate buffer (0.01 M,
pH 6.0) for antigen retrieval. Endogenous peroxidase activity was quenched by incubating
the specimen for 5 min in 3% hydrogen peroxide at room temperature. Finally, tumor
slides were incubated overnight with the primary antibody in a humidified chamber at
4 ◦C, followed by sequential 10 min incubations with biotinylated-linked antibody and
peroxidase-labeled streptavidin. Then, 3,3′-diaminobenzidine tetrahydrochloride (Sigma-
Aldrich) was used to visualize the reaction, and Mayer’s hematoxylin was used as a
counterstain. Quantification of IHC staining of Ki67 was carried out by randomly selecting
six areas from each section, which were automatically quantified by Image-Pro Plus 6.0
software. Data are expressed as Ki67-positive cells in each sample.

4.6. Statistical Analysis

Results are expressed as the average values± standard deviation (SD) of three separate
experiments throughout and raw data are available in Supplementary Materials. Statistical
analyses were performed using Prism 6.0 software (Graph-Pad, La Jolla, CA, USA). The
Kruskal–Wallis test and the two-tailed Mann–Whitney U-test were used to calculate the
threshold of significance. Statistical significance was set at p ≤ 0.05. Since statistical
significance was not reported between the untreated (control) animal group vs. the US
alone and Ala alone animal groups, the results only show comparisons between the SDT
animal group vs. the control animal group, except for the SDT effect on tumor growth,
where all groups are reported.

5. Conclusions

To conclude, this work suggested that SDT, which combines Ala with US treatment, is
effective for tumor regression in a syngeneic model of breast cancer, leading to cell cycle
arrest, apoptosis, and autophagy. Moreover, we showed the relevance of p53 upregulation
upon SDT, facilitated by SDT-induced oxidative stress, and a possible role of SDT in
the immune response against cancer. However, even though we showed that Ala, as a
sonosensitizer, seemed to be effective in this preclinical study against breast cancer, there
were still some technical limitations that must be addressed. In our opinion, the major
concern about preclinical SDT studies is the complexity in experimental comparison among
independent published reports due to the use of different sonosensitizers, custom-built
US devices, and cavitation activity characterization. We, then, believe that the only way to
overcome this issue is to increase in vivo studies with the same methods and goals. This
could, therefore, encourage industries to develop specific US devices and clinicians to
promote large-scale clinical trials to verify the safety and efficacy of SDT in patients.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ph14100972/s1, Table S1 Raw data of PARP cleavage after SDT related to Figure 2; Table
S2 Raw data of CASP3 mRNA expression after SDT related to Figure 2; Table S3 Raw data of TP53
mRNA expression after SDT related to Figure 3; Table S4 Raw data of Ki67 protein expression after
SDT related to Figure 3; Table S5 Raw data of HIF-1α mRNA expression after SDT related to Figure 4;
Table S6 VEGF protein expression after SDT related to Figure 4; Table S7 Raw data of NFE2L2 mRNA

https://www.mdpi.com/article/10.3390/ph14100972/s1
https://www.mdpi.com/article/10.3390/ph14100972/s1


Pharmaceuticals 2021, 14, 972 11 of 13

expression after SDT related to Figure 5; Table S8 Raw data of NQO1 mRNA expression after SDT
related to Figure 5; Table S9: Raw data of LC3 A/B protein expression after SDT related to Figure 6.
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