
Static Analysis and Family-based Model Checking of
Featured Transition Systems with VMC

Maurice H. ter Beek
Franco Mazzanti
ISTI–CNR, Pisa, Italy

Ferruccio Damiani
Luca Paolini

Giordano Scarso
Michele Valfrè

University of Turin, Italy

Michael Lienhardt
ONERA, Palaiseau, France

ABSTRACT
A Featured Transition System (FTS) is a formalism for modeling
variability in configurable system behavior. The behavior of all vari-
ants (products) is modeled in a single compact FTS by associating
the possibility to perform an action and transition from one state to
another with feature expressions that condition the execution of an
action in specific variants. We present a front-end for the research
tool VMC. The resulting toolchain allows a modeler to analyze an
FTS for ambiguities (dead or false optional transitions and hidden
deadlock states), transform an ambiguous FTS into an unambiguous
one, and perform an efficient kind of family-based verification of
an FTS without hidden deadlock states. We use benchmarks from
the literature to demonstrate the novelties offered by the toolchain.

CCS CONCEPTS
• Software and its engineering→ Software product lines; For-
mal methods; Model checking; Automated static analysis.

KEYWORDS
SPL, variability, FTS, MTS, static analysis, formal verification, VMC
ACM Reference Format:
Maurice H. ter Beek, Franco Mazzanti, Ferruccio Damiani, Luca Paolini,
Giordano Scarso, Michele Valfrè, and Michael Lienhardt. 2021. Static Analy-
sis and Family-based Model Checking of Featured Transition Systems with
VMC. In 25th ACM International Systems and Software Product Line Confer-
ence - Volume B (SPLC ’21), September 6–11, 2021, Leicester, United Kingdom.
ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3461002.3473071

1 INTRODUCTION AND BACKGROUND
The automated analysis of variability models, such as the detection
of anomalies like dead or false optional features in feature diagrams,
has a 30-year history [13, 29]. Variability in behavioral models has
a shorter history [23, 24, 26] Moreover, such behavioral models re-
ceived considerable attention only during the last decade, following
the seminal paper by Classen et al. [18] that introduced FTSs and
an efficient means to model check them.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SPLC ’21, September 6–11, 2021, Leicester, United Kingdom
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8470-4/21/09. . . $15.00
https://doi.org/10.1145/3461002.3473071

An FTS is a formal model with variability encoding to capture
the behavior of all variants of a configurable system in a single
transition system [17]; its transitions, labeled with actions, are
associated with feature expressions that condition their presence in
classical labeled Transition Systems (LTSs) that model individual
variant behavior. Proving correctness of such behavioral models
through model checking is challenging. Ideally, the compactness of
the FTS is exploited to reason on the whole system at once. Such
an all-in-one technique, by which the behavior of all variants is
examined only once simultaneously, is called family-based analysis,
in contrast to an enumerative product-based analysis, by which the
behavior of each individual variant is examined one-by-one [28].
During the past decade, FTSs proved amenable to family-based
model-checking [6, 12, 15–17, 19–21]

In [3, 5], we tackled the automated analysis of FTSs. We defined
three ambiguities for an FTS: (i) a dead transition (i.e. a transition
that is unreachable, and thus cannot be executed, in any variant);
(ii) a false optional transition (i.e. a transition that can be executed
in all variants in which its source state is reachable); and (iii) a
hidden deadlock state (i.e. a state from which a transition can be
executed only in some variants, but not all). In analogy with the
above mentioned anomaly detection for variability models, we
developed an algorithm to detect ambiguities in FTSs, and a means
to resolve them, with a proof of its correctness. Anomalies are
often due to an incorrect use of cross-tree constraints and solving
them typically means removing a transition or correcting a feature
expression. An ambiguous FTS is often undesired, since it gives an
unclear view of the behavior of the configurable system. Moreover,
an unambiguous FTS paves the way for an efficient kind of family-
based model checking. We implemented this algorithm exploiting
the SAT solving features of the Z3 SMT solver. The Python code of
our implementation (analyzer.py), which accepts FTSs in the format
.dot as input, is publicly available [4].

In this paper, we present FTS4VMC, a front-end for the research
tool VMC [7, 9, 11], developed to make VMC amenable to FTSs.
VMC (http://fmt.isti.cnr.it/vmc) is a tool for the analysis of behav-
ioral models with variability during a system’s early design phase.
It accepts as input a Modal Transition System (MTS) with a set
of logical variability constraints (MTSυ), akin to an FTS’ feature
expressions. An MTS [25] is an LTS that distinguishes admissible
(‘may’), necessary (‘must’), and optional (may but not must) transi-
tions which are such that by definition all necessary and optional
transitions are also admissible. MTSs were introduced to capture
the refinement of a partial description into a more detailed one, re-
flecting increased knowledge on the admissible (but not necessary)

https://doi.org/10.1145/3461002.3473071
https://doi.org/10.1145/3461002.3473071
http://fmt.isti.cnr.it/vmc

SPLC ’21, September 6–11, 2021, Leicester, United Kingdom ter Beek, et al.

behavior. MTSυs were introduced in [7] to compactly model SPL
behavior, whose individual variant behavior, in the form of an LTS,
can be obtained by means of a special-purpose refinement relation,
or by an equivalent operational derivation procedure. In [2], it was
shown that such MTSs are equally expressive as FTSs.

The research tool VMC offers explicit-state on-the-fly model
checking of MTS properties expressed in the dedicated variability-
aware action-based and state-based branching-time temporal logic
v-ACTL [1, 7] derived from ACTL, which is an action-based ver-
sion of the well-known logic CTL. VMC offers both product-based
analysis, upon explicit generation of behavioral variant models
(LTSs), and a kind of family-based analysis (on MTSs). In [7], a
specific kind of family-based model checking was introduced for
MTSυs, which we explain next. First, an important safety property
is deadlock freedom, i.e. a system should not deadlock by reach-
ing a (deadlock) state in which no further action is possible, thus
guaranteeing progress or liveness. In case of configurable systems
(like FTSs or MTSs) this notion can be extended to guaranteeing
liveness for each variant (LTS). Now, an MTSυ is defined to be live
if all its states are live, where a live state of an MTSυ is such that
it does not occur as a deadlock state in any of its variants, effec-
tively resulting in an MTSυ in which every path is infinite. It was
proved that for properties expressed in v-ACTLive2, which is a
rich fragment of v-ACTL interpreted on live MTSs, validity on the
(live) MTS guarantees validity of the property for all its variants
(cf. [7, Theorem 4]), thus allowing a kind of family-based model
checking of MTSυs. In [5], it was shown that this result continues
to hold for MTSυs whose every state is either live or a deadlock.

In [3, 5], we noted that any FTS F can be transformed into an
MTS FMTS by considering its must transitions as necessary tran-
sitions, its featured transitions as optional transitions, and all its
transitions as admissible, and by removing all feature expressions. If
F is live, then FMTS is live, with respect to the FTS’s set of variants
lts(F), because it has no hidden deadlocks. Moreover, all transi-
tions of F whose corresponding (LTS) transitions are mandatorily
present in all variants, correspond to necessary transitions in FMTS.
This demonstrates that the above result from [7] can be carried over
to live FTSs, thus allowing a kind of family-based model checking
also on such FTSs for the v-ACTL fragment v-ACTLive2. Hence,
any formula ϕ of v-ACTLive2 is preserved by live FTSs: given a
live FTS F , whenever ϕ holds for FMTS, denoted by FMTS |= ϕ,
then ϕ holds for all variants L ∈ lts(F) of F , i.e. L |= ϕ.

More precisely, if (i) the FTS is live, which is the case if it has
no hidden deadlocks (so, unambiguous FTSs are live), and (ii) the
property ϕ to be verified is specified in v-ACTLive2, then ϕ can be
verified directly on the FTS (ignoring its feature expressions) and if
(iii) ϕ holds, then validity is preserved in all LTSs modeling variant
behavior, i.e. ϕ holds for all variants. If any of these three condi-
tions does not hold, the property needs to be verified with classical
(family-based) approaches, like those mentioned in Section 2.

The newly developed front-end FTS4VMC for VMC allows a
modeler (i) to check an FTS for ambiguities (dead or false optional
transitions and hidden deadlock states), by calling analyzer.py;
(ii) to remove ambiguities and thus turn an ambiguous FTS into an
unambiguous one, by calling disambiguator.py; (iii) to transform
an FTS into an MTS, by calling translator.py; and (iv) to perform an
efficient kind of family-based model checking of an MTS obtained

as described in iii from an FTS without hidden deadlock states, by
calling VMC via vmc_controller.py. The FTS4VMC implementation,
including the Python code of disambiguator.py and translator.py, is
publicly available from https://github.com/fts4vmc/FTS4VMC.

We use benchmarks from the literature to demonstrate the nov-
elties offered by the resulting toolchain (cf. also the tutorial [10]).

2 RELATEDWORK
An encompassing overview of SPL analysis strategies, including
static analysis and model checking, can be found in [28] and a
recent empirical study on applying variability-aware static analysis
techniques to real-world configurable systems is presented in [27].
Static analysis of FTSs mimics feature-model analysis by defining
behavioral counterparts of dead and false optional features [13, 29].

Family-based model checking of behavioral variability models
provides a means to simultaneously verify multiple behavioral
variant models in a single run. Properties can be verified with dedi-
cated SPL model-checking tools like SNIP [15, 17], ProVeLines [19],
VMC [7, 9, 11], ProFeat [14] (for probabilistic model checking), or
QFLan [8, 30] (for statistical model checking), or—by suitable ab-
stractions or encodings—with well-known classical model checkers
like PRISM [22] (for probabilistic model checking), mCRL2 [6, 12],
SPIN [21], or NuSMV [20]. The survey [28] also discusses software
model checking, operating directly on source code in Java or C.

3 TOOLCHAIN ATWORK
The methodology outlined in the Introduction has been fully auto-
mated.With the newly developed front-end FTS4VMC, the toolchain
constituted by (i) FTS4VMC, (ii) the Python code analyzer.py from [4]
(implementing the static analysis algorithm from [5], where it was
shown to be more efficient than the one presented in [3]) and
(iii) VMC, can assist an end user (modeler) in the following steps of
the engineering and verification methodology envisioned in Fig. 1
(in which all green blocks have been automated by the toolchain):
• specify or upload an FTS in FTS4VMC or an MTSυ in VMC;
• use FTS4VMC to check whether the FTS is ambiguous (by
calling analyzer.py);
• use FTS4VMC to transform any ambiguous FTS into an un-
ambiguous one (or to remove only some particular kinds of
ambiguities detected, by calling disambiguator.py);
• decide whether the FTS is live with FTS4VMC or whether
the MTSυ is live with VMC;
• specify a v-ACTL formula in FTS4VMC or in VMC;
• decide whether the v-ACTL formula is a v-ACTLive2 for-
mula with VMC;
• verify a v-ACTLive2 formula on the FTS (transformed into
an MTS by FTS4VMC, by calling translator.py) or directly on
the MTSυ (transformed into an MTS by VMC) with VMC;
• report validity for all variants of the FTS/MTSυ in case a v-
ACTLive2 formula was verified to hold on a live FTS/MTSυ
(a kind of family-based model checking) with VMC;
• verify a v-ACTLive2/v-ACTL formula on all variants (gener-
ated by VMC) of the MTSυ (product-based model checking)
with VMC.

The novelties are clearly indicated in the figure: the blue steps and
the green steps if applied to FTSs are made possible by FTS4VMC.

https://github.com/fts4vmc/FTS4VMC

Static Analysis and Family-based Model Checking of FTSs with VMC SPLC ’21, September 6–11, 2021, Leicester, United Kingdom

initial
FTS

remove
ambiguities

with
FTS4VMC

is the
FTS
live?

transform
FTS into
MTS with
FTS4VMC

is ϕ a
v-ACTLive2
formula?

is the
MTSυ
live?

initial
MTSυ

verify
product-based
with VMC

verify with
external tool
(e.g. ProVeLines)

verify
family-based
with VMC

ϕ |=True ? ϕ holds for
all variants

no

yes

yes

no

no (MTSυ)

no (FTS)

yes

no (MTSυ)

no (FTS)

yes

FTS4VMC

VMC

Figure 1: Engineering and verification methodology

The front-end FTS4VMC accepts FTSs in the .dot format, a well-
known graphical notation supported by the graphviz open source
graph visualization software (cf. https://www.graphviz.org).

Once the FTS has been uploaded and verified to be in the correct
format, the user (modeler) is offered a variety of (analysis) tasks:

Full ambiguities analysis analyzes the FTS for all three types
of ambiguities: once done, it outputs an updated version of the
FTS with dead transitions highlighted in blue, false optional
transitions highlighted in green, and hidden deadlock states
highlighted in red; moreover, it enables the ambiguity removal
tasks mentioned below;

Liveness analysis analyzes the FTS for liveness, i.e. whether it
has hidden deadlock states but ignoring the detection of dead
and false optional transitions;

Stop processing interrupts the current (full ambiguities or live-
ness) analysis;

Remove all ambiguities performs the next two analyses at once;
Remove false optional transitions replaces the feature expres-

sion of each false optional transition of the FTS with True, thus
converting these transitions into must transitions; no transitions
are added or deleted;

Remove dead transitions + hidden deadlock states deletes un-
reachable transitions if present, then resolves hidden deadlocks;

View MTS shows the MTS obtained from the FTS by turning each
must transition (i.e. with feature expression True) into a neces-
sary one and making every other transition admissible; updates
source and graph;

Verify property verifies properties expressed in v-ACTL with
VMC, once the analysis was completed and the FTS results live,
by inserting them in the provided text area;

Show explanation shows the counterexample provided by VMC
after having checked the property.

During execution of these tasks, the user is offered different views:

Console displays progress and results of the performed tasks;
Source displays the .dot source file of the current FTS;
Graph displays the rendered graph in SVG format, highlighting

the feature model and ambiguities;
Summary displays the console output after successful analysis in

a more user-friendly way;
Counterexample graph displays the counterexample obtained

upon interaction with VMC rendered as a graph.
Moreover, at any time, the user can download the displayed result
(e.g. the FTS in .dot or SVG formal and with or without highlighted
ambiguities, the transformed MTS, etc.).

4 FUTUREWORK
In [3], we considered branching-time CTL-like properties. In [5], we
also considered linear-time LTL-like properties and showed that a
live FTS enjoys the property that all valid linear-time LTL formulas
are preserved by all its variants. This can be seen as follows. A path
in an LTS is said to be maximal if it cannot be extended further,
i.e. it is infinite or it ends in a deadlock state. Model checking LTL
formulas on an LTS reduces to analyzing its maximal paths: an LTL
formula is valid if it holds for all maximal paths. These notions
trivially carry over to FTSs by ignoring their feature expressions.
Clearly, if an FTS is live, i.e. it has no hidden deadlocks, then the
set of maximal paths of any variant (LTS) is a subset of the set
of maximal paths of the FTS. Hence, the following result holds.
Any formula ϕ of LTL is preserved by live FTSs: given a live FTS F ,
whenever ϕ holds for FLTS, denoted by FLTS |= ϕ, then ϕ holds
for all variants L ∈ lts(F) of F , i.e. L |= ϕ. We thus envision the
verification methodology depicted in Fig. 2.

5 CONCLUSION
We presented FTS4VMC, developed specifically as a front-end for
the research tool VMC, with a user-friendly GUI. It has code to

https://www.graphviz.org

SPLC ’21, September 6–11, 2021, Leicester, United Kingdom ter Beek, et al.

initial
FTS

remove
ambiguities

with
FTS4VMC

is the
FTS
live?

is ϕ
an LTL
formula?

verify with
external tool
(e.g. ProVeLines)

verify
family-based
with SPIN

ϕ |=True ? ϕ holds for
all variants

no

yes

no

yes

no

yes

Figure 2: LTL verification methodology

upload and download files, handle users’ session data, render graph
visualization and HTML output, and communicate with VMC. It
also contains Python code: analyzer.py from [4], implementing the
ambiguities analysis; disambiguator.py, implementing the ambigui-
ties removal; graph.py, implementing the FTS/MTS graph rendering;
translator.py, implementing the transformation of an FTS into an
MTS; vmc_controller.py, handling the property verification with
VMC; and process_manager.py, handling multiprocessing required
for real-time output during the analysis process. The resulting
toolchain allows a modeler to analyse an FTS for ambiguities, re-
move them, and perform an efficient kind of family-based model
checking of specific branching-time properties on the resulting FTS.

The results, mentioned in this paper, that form the basis of the
verification methodologies depicted in Figs. 1 and 2 indicate specific
cases in which verification of live FTSs reduces to verification (with
a linear complexity) of corresponding MTSs and LTSs that are
obtained straightforwardly by ignoring the feature expressions (and
distinguishing necessary and optional transitions in case of MTSs).
However, if either (i) the property to be verified is not a v-ACTLive2
or LTL formula, or (ii) the result of the verification is false, then the
formula needs to be verified with a classical family-based model-
checking tool or by means of product-based model checking.

REFERENCES
[1] M.H. ter Beek, F. Damiani, S. Gnesi, F. Mazzanti, and L. Paolini. 2015. From

Featured Transition Systems to Modal Transition Systems with Variability Con-
straints. In SEFM’15 (LNCS, Vol. 9276). Springer, 344–359. https://doi.org/10.1007/
978-3-319-22969-0_24

[2] M.H. ter Beek, F. Damiani, S. Gnesi, F. Mazzanti, and L. Paolini. 2019. On the
Expressiveness of Modal Transition Systems with Variability Constraints. Sci.
Comput. Program. 169 (2019), 1–17. https://doi.org/10.1016/j.scico.2018.09.006

[3] M.H. ter Beek, F. Damiani, M. Lienhardt, F. Mazzanti, and L. Paolini. 2019. Static
Analysis of Featured Transition Systems. In SPLC’19. ACM, 39–51. https://doi.
org/10.1145/3336294.3336295

[4] M.H. ter Beek, F. Damiani, M. Lienhardt, F. Mazzanti, and L. Paolini. 2019.
Supplementary material for: “Static Analysis of Featured Transition Systems”.
https://doi.org/10.5281/zenodo.2616646

[5] M.H. ter Beek, F. Damiani, M. Lienhardt, F. Mazzanti, and L. Paolini. 2021. Efficient
Static Analysis and Verification of Featured Transition Systems. Empir. Softw.
Eng. (2021). https://doi.org/10.1007/s10664-020-09930-8

[6] M.H. ter Beek, E.P. de Vink, and T.A.C. Willemse. 2017. Family-Based Model
Checking with mCRL2. In FASE’17 (LNCS, Vol. 10202). Springer, 387–405. https:
//doi.org/10.1007/978-3-662-54494-5_23

[7] M.H. ter Beek, A. Fantechi, S. Gnesi, and F. Mazzanti. 2016. Modelling and
analysing variability in product families: Model checking of modal transition
systems with variability constraints. J. Log. Algebr. Meth. Program. 85, 2 (2016),
287–315. https://doi.org/10.1016/j.jlamp.2015.11.006

[8] M.H. ter Beek, A. Legay, A. Lluch Lafuente, and A. Vandin. 2020. A framework
for quantitative modeling and analysis of highly (re)configurable systems. IEEE
Trans. Softw. Eng. 46, 3 (2020), 321–345. https://doi.org/10.1109/TSE.2018.2853726

[9] M.H. ter Beek and F. Mazzanti. 2014. VMC: Recent Advances and Challenges
Ahead. In SPLC’14, Vol. 2. ACM, 70–77. https://doi.org/10.1145/2647908.2655969

[10] M.H. ter Beek, F. Mazzanti, F. Damiani, L. Paolini, G. Scarso, and M. Lienhardt.
2021. Static Analysis and Family-based Model Checking with VMC. In SPLC’21.

ACM. https://doi.org/10.1145/3461001.3472732
[11] M.H. ter Beek, F. Mazzanti, and A. Sulova. 2012. VMC: A Tool for Product

Variability Analysis. In FM’12 (LNCS, Vol. 7436). Springer, 450–454. https://doi.
org/10.1007/978-3-642-32759-9_36

[12] M.H. ter Beek, S. van Loo, E.P. de Vink, and T.A.C. Willemse. 2020. Family-Based
SPL Model Checking Using Parity Games with Variability. In FASE’20 (LNCS,
Vol. 12076). Springer, 245–265. https://doi.org/10.1007/978-3-030-45234-6_12

[13] D. Benavides, S. Segura, and A. Ruiz-Cortés. 2010. Automated Analysis of Feature
Models 20 Years Later: a Literature Review. Inf. Syst. 35, 6 (2010), 615–636.
https://doi.org/10.1016/j.is.2010.01.001

[14] P. Chrszon, C. Dubslaff, S. Klüppelholz, and C. Baier. 2018. ProFeat: feature-
oriented engineering for family-based probabilistic model checking. Form. Asp.
Comp. 30, 1 (2018), 45–75. https://doi.org/10.1007/s00165-017-0432-4

[15] A. Classen, M. Cordy, P. Heymans, A. Legay, and P.Y. Schobbens. 2012. Model
checking software product lines with SNIP. Int. J. Softw. Tools Technol. Transf. 14,
5 (2012), 589–612. https://doi.org/10.1007/s10009-012-0234-1

[16] A. Classen, M. Cordy, P. Heymans, A. Legay, and P.Y. Schobbens. 2014. Formal
semantics, modular specification, and symbolic verification of product-line be-
haviour. Sci. Comput. Program. 80, B (2014), 416–439. https://doi.org/10.1016/j.
scico.2013.09.019

[17] A. Classen, M. Cordy, P.Y. Schobbens, P. Heymans, A. Legay, and J.F. Raskin. 2013.
Featured Transition Systems: Foundations for Verifying Variability-Intensive
Systems and Their Application to LTL Model Checking. IEEE Trans. Softw. Eng.
39, 8 (2013), 1069–1089. https://doi.org/10.1109/TSE.2012.86

[18] A. Classen, P. Heymans, P.Y. Schobbens, A. Legay, and J.F. Raskin. 2010. Model
Checking Lots of Systems: Efficient Verification of Temporal Properties in Soft-
ware Product Lines. In ICSE’10. ACM, 335–344. https://doi.org/10.1145/1806799.
1806850

[19] M. Cordy, A. Classen, P. Heymans, P.Y. Schobbens, and A. Legay. 2013. ProVe-
Lines: A Product Line of Verifiers for Software Product Lines. In SPLC’13, Vol. 2.
ACM, 141–146. https://doi.org/10.1145/2499777.2499781

[20] A.S. Dimovski. 2020. CTL∗ family-based model checking using variability ab-
stractions and modal transition systems. Int. J. Softw. Tools Technol. Transf. 22, 1
(2020), 35–55. https://doi.org/10.1007/s10009-019-00528-0

[21] A.S. Dimovski, A.S. Al-Sibahi, C. Brabrand, and A. Wąsowski. 2017. Efficient
family-based model checking via variability abstractions. Int. J. Softw. Tools
Technol. Transf. 5, 19 (2017), 585–603. https://doi.org/10.1007/s10009-016-0425-2

[22] C. Dubslaff, C. Baier, and S. Klüppelholz. 2015. Probabilistic Model Checking
for Feature-Oriented Systems. In Transactions on AOSD XII (LNCS, Vol. 8989).
Springer, 180–220. https://doi.org/10.1007/978-3-662-46734-3_5

[23] A. Fantechi and S. Gnesi. 2008. FormalModeling for Product Families Engineering.
In SPLC’08. IEEE, 193–202. https://doi.org/10.1109/SPLC.2008.45

[24] A. Gruler, M. Leucker, and K. D. Scheidemann. 2008. Modeling and Model
Checking Software Product Lines. In FMOODS’08 (LNCS, Vol. 5051). Springer,
113–131. https://doi.org/10.1007/978-3-540-68863-1_8

[25] J. Křetínský. 2017. 30 Years of Modal Transition Systems: Survey of Extensions
and Analysis. InModels, Algorithms, Logics and Tools. LNCS, Vol. 10460. Springer,
36–74. https://doi.org/10.1007/978-3-319-63121-9_3

[26] K. Lauenroth, K. Pohl, and S. Töhning. 2009. Model Checking of Domain Artifacts
in Product Line Engineering. In ASE’09. IEEE, 269–280. https://doi.org/10.1109/
ASE.2009.16

[27] A. von Rhein, J. Liebig, A. J.ker, C. Kästner, and S. Apel. 2018. Variability-Aware
Static Analysis at Scale: An Empirical Study. ACM Trans. Softw. Eng. Methodol.
27, 4 (2018), 18:1–18:33. https://doi.org/10.1145/3280986

[28] T. Thüm, S. Apel, C. Kästner, I. Schaefer, and G. Saake. 2014. A Classification and
Survey of Analysis Strategies for Software Product Lines. ACM Comput. Surv. 47,
1 (2014), 6:1–6:45. https://doi.org/10.1145/2580950

[29] T. Thüm, C. Kästner, F. Benduhn, J. Meinicke, G. Saake, and T. Leich. 2014. Fea-
tureIDE: An extensible framework for feature-oriented software development.
Sci. Comput. Program. 79 (2014), 70–85. https://doi.org/10.1016/j.scico.2012.06.002

[30] A. Vandin, M.H. ter Beek, A. Legay, and A. Lluch Lafuente. 2018. QFLan: A Tool
for the Quantitative Analysis of Highly Reconfigurable Systems. In FM’18 (LNCS,
Vol. 10951). Springer, 329–337. https://doi.org/10.1007/978-3-319-95582-7_19

https://doi.org/10.1007/978-3-319-22969-0_24
https://doi.org/10.1007/978-3-319-22969-0_24
https://doi.org/10.1016/j.scico.2018.09.006
https://doi.org/10.1145/3336294.3336295
https://doi.org/10.1145/3336294.3336295
https://doi.org/10.5281/zenodo.2616646
https://doi.org/10.1007/s10664-020-09930-8
https://doi.org/10.1007/978-3-662-54494-5_23
https://doi.org/10.1007/978-3-662-54494-5_23
https://doi.org/10.1016/j.jlamp.2015.11.006
https://doi.org/10.1109/TSE.2018.2853726
https://doi.org/10.1145/2647908.2655969
https://doi.org/10.1145/3461001.3472732
https://doi.org/10.1007/978-3-642-32759-9_36
https://doi.org/10.1007/978-3-642-32759-9_36
https://doi.org/10.1007/978-3-030-45234-6_12
https://doi.org/10.1016/j.is.2010.01.001
https://doi.org/10.1007/s00165-017-0432-4
https://doi.org/10.1007/s10009-012-0234-1
https://doi.org/10.1016/j.scico.2013.09.019
https://doi.org/10.1016/j.scico.2013.09.019
https://doi.org/10.1109/TSE.2012.86
https://doi.org/10.1145/1806799.1806850
https://doi.org/10.1145/1806799.1806850
https://doi.org/10.1145/2499777.2499781
https://doi.org/10.1007/s10009-019-00528-0
https://doi.org/10.1007/s10009-016-0425-2
https://doi.org/10.1007/978-3-662-46734-3_5
https://doi.org/10.1109/SPLC.2008.45
https://doi.org/10.1007/978-3-540-68863-1_8
https://doi.org/10.1007/978-3-319-63121-9_3
https://doi.org/10.1109/ASE.2009.16
https://doi.org/10.1109/ASE.2009.16
https://doi.org/10.1145/3280986
https://doi.org/10.1145/2580950
https://doi.org/10.1016/j.scico.2012.06.002
https://doi.org/10.1007/978-3-319-95582-7_19

	Abstract
	1 Introduction and Background
	2 Related Work
	3 Toolchain at Work
	4 Future Work
	5 Conclusion
	References

