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Abstract

In Moggi’s computational calculus, reduction is the contextual closure of the rules
obtained by orienting three monadic laws. In the literature, evaluation is usually defined
as the closure under weak contexts (no reduction under binders): E = () | letz:=Ein M.

We show that, when considering all the monadic rules, weak reduction is non-
deterministic, non-confluent, and normal forms are not unique. However, when interested
in returning a value (convergence), the only necessary monadic rule is 3, whose evaluation
is deterministic. The proof relies on tools coming from a calculus inspired by linear logic.

The computational A-calculus, noted A, was introduced by Moggi [12, 13, 14] as a meta-
language to describe computational effects in programming languages. Since then, computa-
tional A-calculi have been developed as foundations of programming languages, formalizing both
functional and effectful features [21, 1, 15, 10, 2], in a still active line of research.

To model effectful features at a semantic level, Moggi used the categorical notion of monad.
A monad can be equivalently presented as a Kleisli triple satisfying three identities [14, 11]. At
an operational level, Moggi [12] internalized these identities into the syntax of A., giving rise
to three conversion rules—called monadic laws—that are added to the usual g and 7 rules.

Nowadays the literature is rich of computational calculi that refine Moggi’s A.. Such calculi
are presented in at least three different fashions: fully equational systems [10, 17] (all conversion
rules are unoriented identities); hybrid systems where 8 (and 7, if considered) are oriented
rules while the monadic laws are identities on terms [2]; reduction systems where every rule is
oriented [18]. Here we follow the latter approach, which brings to the fore operational aspects
of reduction and evaluation which seem to have been neglected in the literature.

In the literature of calculi with effects [10, 2], evaluation is usually weak, that is, it is not
allowed in the scope of the binders (A or let). This is the way evaluation is implemented by
functional programming languages such as Haskell and OCaml. Moreover, only 3 let.8 are
considered.

However, in Moggi’s A\, and in [18], the reduction is full, that is, reduction is the compatible
closure of all the monadic rules. When considering all the rules, we observe that evaluation
(i.e. weak reduction) is non-deterministic, non-confluent, and normal forms are not unique.

Reduction and Evaluation. Let us recall reduction in Sabry and Wadler’s A= [19,
Sect. 5]—which we display in Figure 1—a refined variant of Moggi’s untyped A, [12]. It has
a two sorted syntax that separates values (i.e. variables and abstractions) and computations.
The latter are either let-expressions (aka explicit substitutions, capturing monadic binding), or
applications (of values to values), or coercions [V] of values V into computations.

o The reduction rules in A ;- are the usual 8 from Plotkin’s call-by-value A-calculus [16],
plus the oriented version of three monadic laws: let.S, let.n, let.ass (see Figure 1).
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Values: V,W == z| XM
Computations: M,N == [V]|letx:=MinN|VW
Reduction rules:
(8) OweM)V w35 MIV/a]
(n) A Ve v, V z & fu(V)
(let.8) letx:=[V]inN g N[V/x]
(let.n) letz:=Min[z] ety M
(let.ass) lety:=(letz:=LinM)inN +erass letz:=Lin(lety:=MinN) x & fv(N)

Figure 1: A,,+: Syntax and Reduction

e Reduction — is the compatible closure of the rules.

Following standard practice, we define evaluation o> (aka sequencing) as the closure of the

rules under evaluation context E:
E o= ()| letz:=EinM evaluation context

Despite the prominent role that weak reduction has in the literature of calculi with effects,
what one obtain is somehow unexpected. While full reduction —,,;« is confluent, the closure
of the rules under evaluation context turns out to be non-deterministic, non-confluent, and its
normal forms are not unique. Example 2 and Example 3—given at the end of the paper—
demonstrate such points.

Note that the issues only come from the monadic rules let.y and let.ass (sometimes called
identity and associativity, respectively, in the literature), not from 3 or let.3. Note also that
the literature on computational A-calculi that studies weak reduction [10, 2] usually deals with
the rules let.ass and let.ny as unoriented identities, the only oriented rules being S and let.3.

A bridge between Evaluation and Reduction. On the one hand, computational A-calculi
such as A« have a unrestricted non-deterministic reduction that generates the equational
theory of the calculus, studied for foundational and semantic purposes. On the other hand,
weak reduction has a prominent role in the literature of computational A-calculi, because it
models an ideal programming language. Indeed, when restricted to closed terms (which are
the terms corresponding to programs), normal forms of weak reduction coincide with values;
and when restricted to 8 and let. steps, weak reduction is deterministic and corresponds to
abstract machines implementing programming languages. It is then natural to wonder what is
the relation between reduction and evaluation.

In Plotkin’s call-by-value A-calculus [16], the following convergence result provides a bridge
between reduction and evaluation: if a term M B-reduces to a value, then M only needs weak
[-reduction to reach a value.

M —3 V (for some value V) <= Mypj V' (for some value V') (1)

In A+, despite several drawbacks of weak reduction, we can still prove a convergence result
similar to (1) relating reduction and evaluation: to reach a value in A ,,;«, weak B-steps and
weak let.3-steps suffice.
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Theorem 1 (Convergence). Let M be a computation in Ape and let — i = — i N —.

M =%+ [V] (for some value V) <= M} 1r.5[V'] (for some value V') (2)

ml*

The proof is non-trivial. We rely on tools inspired by linear logic. More precisely, in [7] we
study the reduction theory of a closely related calculus, namely A, in [3], and then transfer the
convergence to A+, via translation.

Conclusion. Convergence in \,,;« relates full reduction to evaluation, and provides a theo-
retical justification to the following facts:

1. that functional programming languages with computational effects use weak reduction as
evaluation mechanism; indeed, weak reduction is enough to return values.

2. that in computational A-calculi, when interested in returning a value, the only rules of
interest for weak reduction are $ and let.f—which are deterministic and do not have
unpleasant rewriting properties—while the rules let.ass and let.n) can be safely considered
as unoriented identities external to the reduction.

Examples

(Non-)Confluence.

Example 2 (Non-confluence). Let M be a computation in normal form, for instance M = xx.

. . let.n .
lety:=(letz:=zzin M)in[y] ———— letz:=2zzin M
W

Iet.asslw
letz:=zzin (lety:=Min[y])
Both letz:=zzin M and letx:=zzin (lety:= M in[y]) are normal for >, (in the latter, the

let.n-redex lety:= M in [y] cannot be fired by weak reduction), but they are distinct.

Example 3 (Non-confluence). Non-confluence and non-uniqueness of normal forms of let.asss

of et.ass U het.s U 578, and of 3+, Let R=P = = L = zz and:

M = let z=(letx=(lety=Lin Q) in P) in R

There are two weak let.ass-redexes, the overlined one and the underlined one. So,
M et.ass letz:=(lety:=LinQ)in (letz:=PinR)
et.ass lety:=Lin (letz:=Qin (letz:=PinR)) = M’
M Shet.ass letzi=(lety:=Lin(letz:=Qin P))in R
—et.ass lety=Lin (letz:=(letz:=Qin P)in R) = M"

Both M’ are M" are normal for &« (in M”, the let.ass-redex let z:= (letz:=Qin P)in R is

under the scope of a let and so cannot be fired by weak reduction), but they are distinct.
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(Non-)Factorization. Another aspect making the theory of reduction for A,,;~ (and for
other computational A-calculi) tricky to study is the lack of factorization, which is the simplest
possible form of standardization.

In Plotkin’s call-by-value A-calculus [16] (which can be seen as the restriction of A ,,;« where
the reduction is generated only by the S-rule), weak reduction satisfies factorization, that is
any reduction sequence can be reorganized as weak steps followed by non-weak steps:

=5 C @ (3)

But in A+ (and other computational A-calculi), weak factorization does not hold as shown
by the following counterexample!.

Example 4 (Non-factorization). Consider
M =lety:=(zz)in(letz:=[y]in[z]) ity lety:=(22)in[y] ety (22) =N

Weak steps are not possible from M, so it is impossible to factorize the reduction form M to
N as M35« - = N.

*
—w ml*
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