
Intersection Types for a Computational λ-Calculus with

Global State

Ugo de’Liguoro1 and Riccardo Treglia2

1 Università di Torino, C.so Svizzera 185, 10149 Torino, Italy
ugo.deliguoro@unito.it

2 Università di Torino, C.so Svizzera 185, 10149 Torino, Italy
riccardo.treglia@unito.it

Abstract

We study the semantics of an untyped λ-calculus equipped with operators representing
read and write operations from and to a global state. We adopt the monadic approach to
model side effects and treat read and write as algebraic operations over a computational
monad. We introduce an operational semantics and a type assignment system of intersec-
tion types, and prove that types are invariant under reduction and expansion of term and
state configurations, and characterize convergent terms via their typings.

Since Strachey and Scott’s work in the 60’s, λ-calculus and denotational semantics, together
with logic and type theory, have been recognized as the mathematical foundations of program-
ming languages. Nonetheless, there are aspects of actual programming languages that have
shown to be quite hard to treat, at least with the same elegance as the theory of recursive
functions and of algebraic data structures; a prominent case is surely side-effects.

In [Mog91] Moggi proposed a unified framework to reason about λ-calculi embodying various
kinds of effects, including side-effects, that has been used by Wadler [Wad92, Wad95] to cleanly
implement non-functional aspects into Haskell, a purely functional programming language.
Moggi’s approach is based on the categorical notion of computational monad: instead of adding
impure effects to the semantics of a pure functional calculus, effects are subsumed by the
abstract concept of “notion of computation” represented by the monad T . To a domain A of
values it is associated the domain TA of computations over A, that is an embellished structure
in which A can be merged, and such that any morphism f from A to TB extends by a universal
construction to a map fT from TA to TB.

Monadic operations of merging values into computations, i.e. the unit of the monad T ,
and of extension, model how morphisms from values to computations compose, but do not tell
anything about how the computational effects are produced. In the theory of algebraic effects
[PP02, PP03, Pow06], Plotkin and Power have shown under which conditions effect operators
live in the category of algebras of a computational monad, which is isomorphic to the category
of models of certain equational specifications, namely varieties in the sense of universal algebra
[HP07].

In [dT20] we have considered an untyped computational λ-calculus with two sorts of terms:
values denoting points of some domain D, and computations denoting points of TD, where T
is some generic monad and D ∼= D −→ TD. The goal was to show how such a calculus can be
equipped with an operational semantics and an intersection type system, such that types are
invariant under reduction and expansion of computation terms, and convergent computations
are characterized by having non-trivial types in the system.

Here, we extend our approach and consider a variant of the state monad from [Mog91] and a
calculus with two families of operators, indexed over a denumerable set of locations: get`(λx.M)
reading the value V associated to the location ` in the current state, and binding x to V in M ;



Intersection Types for Global Store de’Liguoro, Treglia

set`(V,M) which modifies the state assigning V to `, and then proceeds as M . This calculus,
with minor notational differences, is called imperative λ-calculus in [Gav19].

As a first step, we construct a domain D that is isomorphic in a category of domains to
D −→ SD, where S is the monad of partiality and state from [DGL17]. Then, to define the
operational semantics, we consider an algebra of states which is parametric in the values, that
are denoted by value-terms of the calculus. State terms are equated by a theory whose axioms
are standard in the literature (see e.g. [Mit96], chap. 6) and are essentially, albeit not literally,
the same as those ones for global state in [PP02].

Operational semantics is formalized by the evaluation or big-step relation (M, s) ⇓ (V, t),
where M is a (closed) computation, V a value and s, t state-terms. Equivalently, we define in
the SOS style a reduction or small-step relation (M, s) −→ (N, t) among pairs of computations

and state-terms, which we call configurations, such that (M, s) ⇓ (V, t) if and only if (M, s)
∗−→

([V ], t), where [V ] is the computation trivially returning V .
Types and type assignment system are derived from the domain equation defining D and

SD, following the method of domain logic in [Abr91]. Type and typing rule definitions are
guided along the path of a well understood mathematical method, which indicates both how
type syntax and the subtyping relations are constructed and how to shape type assignment
rules. The so obtained system is an extension of Curry style intersection type assignment
system: see [BDS13] Part III.

The first result we obtain is that in our system types are invariat under reduction and
expansion of configurations. This is the key step to the main theorem of this work, that is the
characterization of convergence. We say that a program, namely a closed computation term,
converges if it evaluates to a value and a final state, whatever the initial state is.

In analogy with the lazy lambda-calculus, where a term converges if and only if is typable
by ω −→ ω in a suitable intersection type system, we show that a closed M converges if and only
if it is typable by ω −→ ω × ω. Consequently, type-checking in our system is undecidable.

The article is available on arXiv: [dT21].

References

[Abr91] S. Abramsky. Domain theory in logical form. Ann. Pure Appl. Log., 51(1-2):1–77, 1991.

[BDS13] H. P. Barendregt, W. Dekkers, and R. Statman. Lambda Calculus with Types. Perspectives
in logic. Cambridge University Press, 2013.

[DGL17] U. Dal Lago, F. Gavazzo, and P. B. Levy. Effectful Applicative Bisimilarity: Monads, Re-
lators, and Howe’s Method. In 32nd Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2017, pages 1–12. IEEE Computer Society, 2017.

[dT20] U. de’Liguoro and R. Treglia. The untyped computational λ-calculus and its intersection
type discipline. Theor. Comput. Sci., 846:141–159, 2020.

[dT21] U. de’Liguoro and R. Treglia. Intersection types for a computational lambda-calculus with
global state. https://arxiv.org/abs/2104.01358, 2021.

[Gav19] F. Gavazzo. Coinductive Equivalences and Metrics for Higher-order Languages with Algebraic
Effects. PhD thesis, University of Bologna, Italy, Aprile 2019.

[HP07] M. Hyland and J. Power. The category theoretic understanding of universal algebra: Lawvere
theories and monads. Electron. Notes Theor. Comput. Sci., 172:437–458, 2007.

[Mit96] J.C. Mitchell. Foundations for Programming Languages. MIT Press, Cambridge, MA, 1996.

[Mog91] E. Moggi. Notions of computation and monads. Inf. Comput., 93(1):55–92, 1991.

[Pow06] J. Power. Generic models for computational effects. Theor. Comput. Sci., 364(2):254–269,
2006.

2

https://arxiv.org/abs/2104.01358


Intersection Types for Global Store de’Liguoro, Treglia

[PP02] G. D. Plotkin and J. Power. Notions of computation determine monads. In FOSSACS 2002,
volume 2303 of Lecture Notes in Computer Science, pages 342–356. Springer, 2002.

[PP03] G. D. Plotkin and J. Power. Algebraic operations and generic effects. Appl. Categorical
Struct., 11(1):69–94, 2003.

[Wad92] P. Wadler. The essence of functional programming. In Conference Record of the Nine-
teenth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, 1992, pages 1–14. ACM Press, 1992.

[Wad95] P. Wadler. Monads for functional programming. In Advanced Functional Programming, First
International Spring School on Advanced Functional Programming Techniques, volume 925 of
Lecture Notes in Computer Science, pages 24–52. Springer, 1995.

3


