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Introduction
The EU Fertilizer Regulation 2019/1009 defines a plant biostimulant as a 
‘fertilizing product the function of which is to simulate plant nutrition process 
independently of the product’s nutrient content’. Plant biostimulants stimulate 
natural processes in crops to enhance nutrient uptake, nutrient use efficiency 
(NUE), resistance to abiotic stress and quality traits, as well as increasing the 
availability of nutrients in the soil or rhizosphere. They offer the opportunity to 
enhance fertilizer use and thus contribute to more sustainable crop production. 
This collection reviews key advances in understanding and using biostimulants. 
Part 1 reviews ways of classifying microbial and non-microbial biostimulants, 
types of bioactive compound and ways of evaluating biostimulants. Part 2 
surveys the various types of biostimulant, from humic substances and seaweed 
extracts to protein hydrolysates, silicon, plant growth-promoting rhizobacteria 
(PGPR) and arbuscular mycorrhizal fungi (AMF). Part 3 discusses advances in 
designing second-generation biostimulants and their practical application.

Part 1  Introduction and biostimulant characterization
Chapter 1 sets the scene by discussing plant biostimulants as a new paradigm 
for the sustainable intensification of crop production. Biostimulants are applied 
to crop plants as a way of modifying plant physiological functions and of 
increasing crop productivity or quality. They may be regarded as ‘functional 
ingredients’ in plant nutrition, distinct from fertilizers and plant protectants 
(such as insecticides or fungicides). Although biostimulants such as seaweed 
extracts and humic acids have been used in agriculture for decades, they have 
only recently been recognized by regulations governing fertilizing products. 
Biostimulant products placed on the market are identified by claims describing 
their intended effects on crops such as improved nutrient use efficiency 
and tolerance to abiotic stress. These effects contribute to the sustainable 
intensification of crop production. However, their further development requires 
an improved knowledge of their bioactive effects on plants and associated 
microorganisms, the responsiveness of recipient plants and environments to 
biostimulant activity, and their interactions with fertilizers and other agricultural 
inputs.

As Chapter 2 points out, regulations governing the placement of 
biostimulants on the market still vary widely across countries and regions. 
A key factor in all pre-market approval systems governing biostimulants 
are specifications for the data required for authorization. Most regulations 
share a focus on composition declarations and, in particular, efficacy claims. 
A combination of laboratory trials and dedicated ad hoc field studies are 
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recommended to address the definition of both mode(s) of action and effect(s) 
of plant biostimulants. Traditionally, in vitro assays (e.g. hormone-like activity 
tests) have been used to support the investigation of potential biostimulant 
activity. Recent advances in analytics, technology and big data management 
have raised the potential of -omic sciences in understanding, screening and 
evaluation of the mode of action for biostimulants. In particular metabolomics 
and phenotyping are attracting growing interest.

Part 2 � Non-microbial and microbial categories 
of biostimulants

Humic substances (HS) are among the most established biostimulants used 
in agriculture because they have been shown to significantly improve plant 
growth, directly or indirectly, as well as improve soil properties and fertility. As 
Chapter 3 shows, HS affect many agronomic, environmental and geochemical 
processes that interact with plant growth such as soil structure and porosity, 
water infiltration rate and moisture-holding capacity of soils as well as affecting 
the diversity and activity of soil micro-organisms. In addition, HS influence plant 
physiology by interacting with plant biochemical and physiological processes, 
stimulating growth and increasing the uptake of nutrients by roots. There is 
now an extensive body of research that has shown, both under laboratory and 
field conditions, that HS can have a positive effect on plant growth in terms 
of increases in biomass of shoots and roots, chlorophyll concentration, and 
number of lateral roots. Chapter 3 reviews the range of research on key aspects 
of HS: production and characteristics, biological activities, effects on soil and 
plant nutrition, and the use of commercial humates in agriculture.

Seaweed extracts are a widely used class of biostimulant. Chapter 4 reviews 
research on their mechanism of action with a particular focus on primary and 
secondary metabolites which act as growth stimulating and protecting factors 
as well as antibacterial agents. Seaweed extracts also modulate the growth 
of rhizosphere microbial populations. They directly affect plant physiology, in 
particular the germination of seeds, growth of shoots and roots, improvement 
of fruit set, as well as improving the quality of food crops. Seaweed extracts can 
also improve crop abiotic stress tolerance. Although much has been achieved, 
further research is needed to more fully understand their mechanisms of action.

Protein hydrolysates (PH) are a category of plant biostimulants containing a 
mixture of polypeptides, oligopeptides and amino acids that are manufactured 
from animal or plant derived-protein sources using partial hydrolysis. Protein 
hydrolysates are used for foliar applications and, to a lesser extent, as soil and 
seed coating applications to promote crop performance in both open field and 
greenhouse conditions. Chapter 5 provides an overview of the characteristics 
and production of vegetal and animal-based protein hydrolysates and their 
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beneficial effects on nutrient use efficiency, crop tolerance to abiotic stress 
and production traits. The chapter reviews recent research on understanding 
the mode of action and physiological and molecular mechanisms of protein 
hydrolysates and ways of optimizing the timing and rate of application.

Silicon (Si) is a mineral element that is well known to protect many 
crops against a range of abiotic stresses, including osmotic and nutritional 
imbalances. Whilst its exact mechanism of action is still to be fully understood, 
research highlights the role of silicon in maintaining internal homeostasis in 
plants. Chapter 6 begins by assessing silicon availability in fertilizers and 
growing media and then summarises what we know about plant accumulation, 
transport and deposition of silicon. It then reviews research on ways silicon can 
enhance plant abiotic defences against drought and salinity, tolerance to heavy 
metals and other environmental stresses. It also discusses the role of silicon in 
enhanced crop growth.

Chapter 7 reviews what we know about plant growth-promoting 
rhizobacteria (PGPR) as plant biostimulants in agriculture. Plant growth-
promoting rhizobacteria can improve growth under stressful growing 
conditions by inducing abiotic stress tolerance via production of antioxidant 
enzymes, altering plant metabolism, affecting the rate of photosynthesis and 
shifting osmolyte concentration in plant tissues. These bacteria also help plants 
resist biotic stress by competing against other microbes for niche space and 
nutrients, producing antibiotic compounds, and inducing systemic resistance 
by producing microbe-to-plant signal molecules. However, our understanding 
of the mechanisms of action of plant growth-promoting rhizobacteria is 
still relatively new. The importance of factors such as root exudates and 
intermicrobial signaling needs to be the focus of future research. 

Chapter 8 focuses on arbuscular mycorrhizal fungi (AMF) as biostimulants 
for sustainable crop production. The chapter reviews the functions and benefits 
of AMF. As research shows, the basis of AMF symbiosis is a bidirectional exchange 
of nutrients between the plant and AMFs. Host plants provide a physical support 
and a favourable metabolic framework for the obligate biotrophic lifestyle of 
AMF. AMF receive carbon fixed by the host plant’s photosynthesis in exchange 
for mineral nutrients that they provide to the host plant via the fungal mycelial 
network. The chapter also assesses what we know about the requirements for 
successful implementation of AMF in sustainable plant production. Research 
suggests that several aspects help determine successful application of AMF. 
Firstly, the sites of plant production and their conditions must be advantageous 
for mycorrhizal functioning. Secondly, the genotype of the plant must support 
the positive functions of the symbiosis. Inocula should also be targeted to 
particular conditions by ‘training’ or by combining them with other beneficial 
microorganisms. The chapter also assesses the current market for mycorrhizal 
products.
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Part 3  Innovation and practical applications
Chapter 9 provides the first overview of the optimal design and formulation 
of microbial and non-microbial biostimulants. The chapter provides an 
innovative discussion of the circular production process for the development 
of plant biostimulants, including i) process development, ii) elucidation of 
the mode of action (by combining plant phenotyping and omics science), iii) 
quality control, iv) field trial validation, v) regulation and vi) industrialization/
commercialization. The chapter includes two successful industrial case studies 
of microbial (mycorrhizal inoculants) and non-microbial (vegetal-derived 
protein hydrolysates) biostimulant products that have been successfully 
developed and commercialised.

Chapter 10 reviews the effects of humic and fulvic substances, microbial 
biostimulants, seaweeds and algae as well as protein hydrolysates (PH). It 
assesses the evidence of for the effects of biostimulants on both agronomic 
and internal nutrient use efficiency. Improving NUE is of great practical value as 
it allows for the greater exploitation of added fertilizers and improved recovery 
of residual nutrients. Regulatory guidelines in the EU and other jurisdictions 
emphasize that biostimulants can be identified by claims including improved 
nutrient use efficiency with the goal of enhancing cropping system efficiency. 
A considerable body of research demonstrates that many biostimulants 
improve ‘agronomic’ nutrient use efficiency by enhancing root growth and soil 
exploration, increasing solubilization of soil nutrients or upregulating nutrient 
uptake processes, thereby enabling a greater amount of the total soil nutrient 
reserve to be acquired by the plant. There is, however, much less evidence 
to demonstrate that biostimulants alter the internal nutrient use efficiency of 
plants by increasing the productivity of a crop for a given quantity of acquired 
nutrient. This is a key area for future research.

Precision site-specific application of biostimulants is a great opportunity for 
optimizing biostimulant efficacy and returns. Chapter 11 looks at the available 
tools and emerging technologies for the monitoring and management of 
soil and crops in order to address spatial and temporal variability and inform 
site-specific management strategies. The chapter assesses methods for site-
specific management based on identifying management zones for targeted 
treatment. The potential of adopting precision agricultural techniques for 
the use of biostimulants is discussed, focusing on the targeted application 
of biostimulants in viticulture for mitigation of abiotic stresses such as water, 
nitrogen and phosphorus deficiency.

Youssef Rouphael, University of Naples, Italy 
Patrick du Jardin, University of Liège, Belgium 

Patrick Brown, University of California-Davis, USA
Stefania de Pascale, University of Naples, Italy 

Giuseppe Colla, University of Tuscia, Italy 
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Plant biostimulants: a new paradigm for 
the sustainable intensification of crops
Patrick du Jardin, Gembloux Agro-Bio Tech – University of Liège, Belgium
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	 4	 Identifying the bioactive constituents of plant biostimulants
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	 6	 Conclusion
	 7	 Acknowledgements
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1 �Introduction
The definition of plant biostimulants (PBs) has been intensively discussed over 
the last years, mainly for regulatory purposes (Yakhin et al., 2016; du Jardin, 
2015; Caradonia et al., 2019). In Europe, a consensus was reached by a recent 
regulation on fertilizing products (FPs), a milestone in recognition of the 
concept and the future harmonization of marketed products. In its Regulation 
(EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019, 
laying down rules on the making of European Union (EU) FP available on the 
market, PBs are defined as follows (EU, 2019):

A plant biostimulant shall be an EU fertilising product the function of which is to 
stimulate plant nutrition processes independently of the product’s nutrient content 
with the sole aim of improving one or more of the following characteristics of the 
plant or the plant rhizosphere:

(a)	 nutrient use efficiency,
(b)	 tolerance to abiotic stress,
(c)	 quality traits, or
(d)	 availability of confined nutrients in the soil or rhizosphere.

Plant biostimulants: a new paradigm for the sustainable 
intensification of crops

Plant biostimulants: a new paradigm for the sustainable 
intensification of crops
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The main elements regarding the nature and action of biostimulants contained 
by this definition were initially proposed by both the industry (EBIC, at http://
www​.biostimulants​.eu) and academic experts (du Jardin, 2012, 2015; Traon 
et al., 2014) in the preparation of the regulation.

First, PBs are anchored in plant nutrition, and it is acknowledged by 
the regulation that FPs not only cover nutrient-supplying fertilizers but also 
products which help the plant make better use of those fertilizers. In improving 
plant nutrition, the FP may act on the plant, on biotic components of the plant 
environment (e.g. soil microorganisms) and possibly on abiotic components 
(like soil physico-chemical properties, possibly covered by the last part of the 
definition). In the European regulation, PBs are regarded as one of the functional 
categories of FPs, primarily defined by their intended effects on cultivated 
plants. Liming materials, inorganic and organic fertilizers and soil improvers are 
other examples of ‘Product Function Categories’ listed by the regulation.

Second, the intended functions of PBs are defined as a limited number of 
claims, which are (a) improvement of nutrient use efficiency (NUE), (b) tolerance to 
abiotic stress, (c) quality traits and (d) availability of confined nutrients in the soil or 
rhizosphere. The important factor here is that the placing of biostimulant products 
on the EU market will depend on the capacity of the company to substantiate 
the claimed effect of its product. For doing so, the approach of the European 
legislation is to define EU-harmonized standards, bearing on principles, methods 
and protocols to which companies will refer to when developing the arguments 
validating the claims. Compliance to the EU standards when generating data on 
the products will be the best way to support the claims and access the European 
market, yet it will not be mandatory as alternatives might be proposed by the 
companies. Today, the implementation of the adopted EU regulation awaits the 
setting of standards, a process driven by a dedicated agency (CEN, European 
Committee for Standardization) and fueled by technical expertise from both the 
private and public sectors. For such a novel category of FPs as PBs, the way is 
expected to be long and difficult. The designation and role of ‘notified bodies’ 
for claim validation is another aspect to be considered in the near future.

Third, the definition says very little about the composition of PBs. In the 
regulation, the composition of FPs is described by a separate typology, defining 
‘Component Material Categories’, parallel to the ‘Product Function Categories’ 
discussed so far. Accordingly, biostimulant products can be composed of 
substances or microorganisms in the limitations set by the regulation and 
framed by implementing the standards that are yet to be adopted. Biostimulant 
products marketed in the short term under the new European regulation are 
expected to include substances like seaweed extracts and humic acids, as 
well as microorganisms with a history of safe use like rhizobia and mycorrhiza. 
In the current status of the regulation, substances which undergo chemical or 
enzymatic modification will need registration under the Registration, Evaluation, 



© Burleigh Dodds Science Publishing Limited, 2020. All rights reserved.

Plant biostimulants: a new paradigm for the sustainable intensification of crops﻿ 5

Authorisation and Restriction of Chemicals (REACH) regulation (Regulation (EC) 
No 1907/2006), and this will delay and might even hamper the CE marking of 
biostimulants by dissuading companies to follow the European track for the 
placing of their products on the market. Regarding the microbial biostimulants, 
a limited list of eligible taxa is currently laid down by the regulation, as it will be 
discussed later in Section 5. In order to anticipate the main biostimulant products 
marketed under the new Regulation (EU) 2019/1009, the limitations and 
opportunities set by the future conformity assessment procedure, which will use 
yet-to-define EU-harmonized standards, need to be clarified. Furthermore, how 
the European Commission will exercise its power to adopt delegated acts (set by 
Article 42 of the regulation) to move forward on issues like the limited positive list 
of microbial biostimulants, or the status of biological polymers including protein 
hydrolysates, an important category of biostimulants, is uncertain.

One point related to the composition, and that is mentioned in the EU 
definition, is that a biostimulant is a fertilizing ‘product’, that is, as supplied to the 
grower; it is not an ingredient, that is, an isolated compound or microorganism 
used to develop FPs. The consequence of this is important. On the one hand, the 
system aims at validating the claimed effects of the product as supplied to the 
user, and this can be translated into adequate labeling provisions, which seems 
to be the best way for grower protection. On the other hand, many biostimulants 
will be composed of mixtures of substances and/or microorganisms, while the 
scientific research on the mechanisms of biostimulation tends to use single 
substances (which can be composed of many constituents but are defined 
by their single origins, for example, an extract of the brown alga Ascophyllum 
nodosum) or single microorganisms. This creates a gap between the practice 
and research, which challenges efforts to better understand how biostimulant 
products actually work.

A fourth point to be considered is that, in practice, PBs are often added 
to macro- and/or micronutrients, or with other ingredients, to give a blended 
FP combining different materials and different effects on plants, converging to 
result in improved plant nutrition and higher crop yield and quality. Validation 
of the claimed agricultural effects is increasingly difficult when relying on 
interactions between multiple components.

So far, we have discussed the main characteristics of biostimulants laid down 
by the European regulation, but what about other regions of the world and the 
United States in particular? The status of biostimulants has made significant 
progress in the United States over the recent times as well (see http://www​
.bio​stim​ulan​tcoa​lition​.org/ for updates), under two processes, the 2018 Farm 
Bill and the 2019 EPA’s Guidance for Plant Regulator Label Claims, Including 
Biostimulants, in an effort to clarify the applicability of the Federal Insecticide, 
Fungicide and Rodenticide Act (FIFRA) rules on plant regulators (Neuschafer and 
Paisner, 2019; draft guidance available at https​:/​/ww​​w​.reg​​ulati​​ons​.g​​ov​/do​​cumen​​

http://www.biostimulantcoalition.org/
http://www.biostimulantcoalition.org/
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t​?D​=E​​PA​-HQ​​-OPP-​​​2018-​​0258-​​0002). Indeed, whether biostimulant products are 
subject to FIFRA and are regulated as ‘plant regulators’ by the federal agency 
EPA, or considered as fertilizers, soil amendments and other products that are 
not captured by FIFRA and regulated by the state departments of agriculture 
are important for the pre-market assessment and marketing of the products. 
Although at the time of writing this chapter, public consultation of the EPA draft 
guidance text is still ongoing, a definition of biostimulants is proposed:

a naturally-occurring substance or microbe that is used either by itself or in 
combination with other naturally-occurring substances or microbes for the purpose 
of stimulating natural processes in plants or in the soil in order to, among other 
things, improve nutrient and/or water use efficiency by plants, help plants tolerate 
abiotic stress, or improve the physical, chemical, and/or biological characteristics of 
the soil as a medium for plant growth.

This definition may be compared to that adopted by the Congress in the 2018 
Farm Bill:

a substance or micro-organism that, when applied to seeds, plants or the 
rhizosphere, stimulates natural processes to enhance or benefit nutrient uptake, 
nutrient efficiency, tolerance to abiotic stress, or crop quality and yield.

These definitions can be compared not only with each other but also with 
the European definition commented before. Most important is the fact that 
the three definitions are based on claims. Claims common to all definitions 
are improvements in plant nutrition (nutrient uptake and use) and tolerance 
to abiotic stress. Hence, they should be regarded as the cornerstones of the 
concept and regulation of biostimulants.

But differences between definitions also point to gray areas. The Farm 
Bill’s definition indicates higher yield among the claims, which is not found 
in other definitions but seems implicit as increased agronomic efficiency of 
fertilizers and enhanced tolerance to abiotic stress are expected to translate 
into higher yields. Another point is that the EPA’s guidance definition extends 
the action of biostimulants to soil characteristics, including physical properties, 
which may be covered by the European definition. Indeed, although a late 
amendment brought to the definition and adopted by the final regulatory 
text talks about improved ‘availability of confined nutrients in the soil or 
the rhizosphere’, which seems to expand the perimeter of biostimulants to 
products that would influence some soil properties, clarification is needed and 
awaits the EU-harmonized standards mentioned before. Furthermore, the EPA’s 
definition talks about ‘naturally occurring substance or microbe’, but there is no 
such restriction about the natural origin of biostimulant products in the other 
definitions. Typically, most biostimulants are of natural origins, like seaweed 
extracts, protein hydrolysates or humic acids, but another thing is to impose 
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that they are of natural origin, and the EU regulation does not make this step, 
leaving the possibility of chemical derivatives of natural compounds or synthetic 
compounds to be used as biostimulants. A requisite will be their registration 
under the European REACH regulation (Regulation (EC) No 1907/2006 of the 
European Parliament and the Council concerning the Registration, Evaluation, 
Authorisation and Restriction of Chemicals).

Finally, although the placing of biostimulants on the market will be based 
on marketing claims and make use of corresponding labeling provisions, the 
EPA’s guidance pays attention to the active ingredients as well and lists those 
identifying the products as plant regulators that are captured by FIFRA and 
regulated as pesticides. The bioactive ingredients listed as examples by this 
text include plant hormones (e.g. cytokinins, jasmonates) and also substances 
which are important sources of biostimulants today, like seaweed extracts and 
humic/fulvic acids.

The reader may refer to a recent review by Caradonia et  al. (2019) for 
further information on the regulation of biostimulants in other countries.

2 �The establishment of the term ‘biostimulant’
The word ‘biostimulant’ appeared when it became evident that some products 
applied to plants were able to stimulate growth at low doses, which could 
neither be explained by the supply of nutrients nor by some plant protection 
against pests and pathogens. The pioneering work of two research teams 
should be mentioned here.

In the 1980s to early 1990s, at the School of Forestry and Environmental 
Studies of the Yale University, Professor G. P. Berlyn and his team studied the 
response of woody and grass species to bioactive substances – seaweed 
extracts, humic acids and vitamins – combined in a proprietary mixture named 
RootsTM. Improvements in root and shoot growth, drought resistance and 
nitrogen use efficiency were reported (Russo and Berlyn, 1991). There are two 
remarkable things to be pointed out in this paper. First its title, ‘The Use of 
Organic Biostimulants to Help Low Input Sustainable Agriculture’, which, to 
the best of our knowledge, is the first to use the word ‘biostimulant’ in a peer-
reviewed article. The scope of using biostimulants in agriculture is also far-
reaching: low-input agriculture. The second thing is how the authors describe 
the action of their biostimulant product. After listing the bioactive ingredients 
of Roots, they propose that ‘the innovation of mixing them and capitalizing on 
their synergistic effects is a real contribution in terms of agricultural production’. 
Whether the unique properties of biostimulant products rely on synergistic 
and/or emerging properties of blended bioactive compounds is an issue 
which we will cover later in this chapter. In a later article describing the effects 
of Roots on beans (Russo and Berlyn, 1992), the authors define biostimulants 
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UAVs. see Unmanned aerial vehicles (UAVs)
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