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The global demand for fish is rising and projected to increase for years to come. However, there is uncertainty
whether this increased demand can be met by the conventional approaches of capture fisheries and fish
farming because of wild stock depletion, natural resource requirements, and environmental impact concerns.
One proposed complementary solution is to manufacture the same meat directly from fish cells, as cell-
based fish. More than 30 ventures are competing to commercialize cell-based meat broadly, but the field
lacks a foundation of shared scientific knowledge, which threatens to delay progress. Here, we recommend
taking a research-focused, more open and collaborative approach to cell-based fish meat development that
targets lean fish and an unlikely but very attractive candidate for accelerating research and development, the
zebrafish. Although substantial work lies ahead, cell-based meat technology could prove to be a more effi-
cient, less resource-intensive method of producing lean fish meat.
Introduction
Over the next 30 years, the global population is projected to in-

crease from 7.7 billion to asmany as 9.7 billion people, with rapid

growth and urbanization in less developed parts of the world.1

Along with more people needing food, diets in developing coun-

tries are expected to consist of more meat, including finfish,2

which, moving forward, we refer to as ‘‘fish.’’ Based on these

trends, we likely face an expanding demand for meat for years

to come, and meeting this demand with more efficient use of re-

sources presents a key challenge.2

Fish and seafood—which includes fish, crustaceans, mol-

lusks, and other aquatic animals, but excludes reptiles, sea-

weeds, and other aquatic plants—already supports 20% of the

global demand for consumed animal protein.3 This percentage

is even higher, on average, in the Global South, ranging from

16.8% to 56.5% in low- or middle-income Asian and African

countries.4 Among several roles that it plays in our food system,

including substantial income generation, particularly in the

Global South,5 fish meat provides essential nutrition. As an ani-

mal protein, fish is a source of high-quality, easily digested pro-

tein,2 and supplies micronutrients not found as readily in plant-

derived foods such as iron, zinc, vitamin A, and vitamin B12.
6
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However, despite the current and growing importance of fish

and seafood in food security and nutrition for billions of people,

our ability to meet increased demand for fish is being called

into question. Pressure on fisheries stocks through capture fish-

eries has increased over the past 40 years to the point that

33.1% of stocks are overfished beyond biological sustainability

and some populations are in decline.5 Although some projec-

tions propose that, with improved management and policies in

place, wild fisheries could produce almost 20% more today,

and nearly all (98%) depleted stocks could recover globally by

2050,7 other reports indicate that output from capture fisheries

has stagnated and will not increase.8 Based on this current un-

derstanding and information, it remains unclear as to whether

conventional capture fishery methods can generate additional

output to help meet the growing demand for fish protein.

The other primary source of fish protein is fish farming, aspart of

aquaculture, which has been expanding in recent decades,

partially in response to dwindling wild fish stocks.5 Aquaculture,

now the fastest-growing foodproduction systemby total volume,5

ispredicted todouble its outputby2050.3,5,9 Althoughaquaculture

might beable to keeppacewith risingdemand, there are concerns

regarding its resource requirements and resulting pollution and
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Box 1. Beyond Plant-Based Meats

One proposed solution to address the increasing demand for meat is plant-based meat, which uses plants and other non-animal

ingredients to create products that look, smell, taste, and feel like animal meat. The plant-based meat industry has received media

and investment attention for its measurable impact on sustainability20 and commercial successes, most notably for plant-based

hamburgers (ground meat) from food technology companies Impossible Foods and Beyond Meat.21,22 Because the production of

plant-based meats does not involve the conversion of plant proteins into muscle proteins, their protein retention is high, approx-

imately 72%.23 With a growing set of products, plant-based meats (including plant-based fish products) are providing consumers

with more sustainable choices. Unfortunately, the contribution of plant-based meat production to improved planetary and food

sustainability, although measurable, might not actually be so pronounced when considering resource requirements for produc-

tion.23,24 Also, cultural associations with meat are difficult to change.23 Moreover, the range of uses for alternative meats is limited,

as they are not functionally equivalent to conventional meats.25 Made of multiple ingredients, plant-based meats cannot act as

replacements for the single ingredient of meat in the manufacturing process of existing products. Thus, alternative proteins are

generally restricted to new products, giving consumers more choices but not offsetting products that use traditional meat.
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habitat loss.10 As with all farming of meat that requires feed, fish

farming is essentially a method of transforming one source of pro-

tein (that contained in feed) into another (the fishmeat). Indoing so,

aquaculture requires tracks of arable land to grow soy and corn11

or the depletion of finite forage fish stocks to produce fishmeal, all

for feed.12 This is an inefficient formof protein conversion, as, on a

weighted average basis, the protein retention of aquaculture is

19% (ranging from 14% to 28%)11 (Figure S1), analogous to dis-

carding more than 80% of the feed protein inputs during produc-

tion. Although more sustainable feed input options are being pur-

sued (e.g., insects, food wastes, and fisheries by-products), there

remains a great deal of uncertainty as to whether these can be

scaled to meet demand.12 Given the concerns around output for

capture fisheries and sustainability for fish farming, it seems pru-

dent to investigate complementary solutions to help meet the ris-

ing demand for fish meat.

One innovative approach that has gathered increased attention

and investment of late is cell-based meat,13 intended as a direct

meat replacement, unlike plant-basedmeat, which is ameat alter-

native (Box 1). Grounded in a hypothesis articulated by Winston

Churchill in 1932 that it will someday be possible to produce

meat more efficiently and economically by growing it directly

from animal cells,14 cell-based meat proposes to do precisely

this. With current know-how in regenerative medicine, stem cell

science, muscle biology, tissue bioengineering, and bio-

processing, some suggest that commercial production of cell-

based meat might soon be possible.15 Proponents contend that

cell-based fish and seafood might mitigate some of the sustain-

ability issues associated with capture fisheries and aquaculture,

including uncertain supply, land demands, and stock depletion.16

To support development, cell-based meat has been backed pri-

marilybyprivate investorswithinaventurecapitalmodel, and there

are more than 30 funded startups (as of early 2020) pursuing end-

to-end food solutions in a system based on competition.13,17 An

amalgam of different factors, including an emphasis on impact,

andunique intellectualpropertyhas resulted incell-basedfishven-

tures selecting what are commonly known as fatty species of fish,

such as coho salmon and bluefin tuna,18,19while overlookingwhat

are likely tobe fundamentally simpler approaches. Theprivate sys-

temhasalso resulted inasevere lackof transparency, to theextent

that current technological progress is almost entirely unknown.13

Therefore, a different path to cell-basedmeat development seems

warranted.
In this Perspective we, a multidisciplinary team of authors, pro-

pose a simpler approach to cell-based meat development

grounded in a philanthropic, more open model. We outline the

case for why lean fish, a set of species with low fat content in their

muscle,26 shouldbe a focus for cell-basedmeat development as a

potentially more tenable first manufacturing solution. Here, we

summarize findings (see Table S1) from a conceptually based

investigation and a literature-based review. We start with a mini-

malist framework for cell-based lean fish production, cell to fork,

that includes core processing requirements. This is followed by

what are likely to be the benefits of selecting fish generally and

then lean fish specifically, over other consumed species with

respect to these production requirements. We then present a first

target lean fish species, zebrafish, that is best suited to accelerate

research and development, as the most understood and studied

fish species in all the life sciences by far.27–29 We conclude this

Perspective with recommendations for enabling the success of

the larger, non-profit, participatory effort required to establish

the science for later large-scale production of cell-based lean fish.

Finally, because the grand challenge of manufacturing skeletal

muscle at scale is so large, multidisciplinary, and complex, this

Perspective uses simple terminology and figure imagery in-

tended to maximize accessibility while maintaining scientific

integrity. We chose words and illustrations that are accurate

and consistent, but differ at times from terminology for a partic-

ular field.

A Framework for Cell-Based Lean Fish Production
We are proposing a conceptual framework based on some start-

ing technology elements that exist, but in order to meet the

objective of producing full skeletal muscle at a scale necessary

for mass consumption, we have to base our work on what is

known in the public domain and start with high-level system re-

quirements. Here, we run through an idealized manufacturing

solution to meet this need.

In this solution, cell-based lean fish will be produced by

creating many identical cells (step 1) that are then directed to

grow into skeletal muscle (step 2). These two steps are part of

‘‘bioprocessing,’’ the stage during the overall manufacturing pro-

cess where cells are alive. After bioprocessing, cell functioning is

no longer supported.

The cell-to-fork process is segmented as inputs, bio-

processing, and output (Figure 1). The primary inputs are starter
One Earth 3, July 24, 2020 55



Figure 1. Conceptual Framework for Cell-Based Lean Fish Production, Cell to Fork
As cellular inputs (A), there are one of two types of starter cells, a naturally occurring stem or progenitor cell, or an engineered cell, depending on future research.
Nutritional inputs (B) generally support the functioning of the cells, whereas amino acids are primarily assembled into the muscle in full-tissued meat. In bio-
processing (C), starter cells are directed through many rounds of doubling to create identical starter cells. Structuring involves directing starter cells to differ-
entiate down specific pathways into muscles that, with exercise (e.g., using electromechanical stimulation), develop into full-tissued meat. Bioprocessing occurs
in industrial cell-based meat bioreactors, liquid-containing vessels that support the large-scale processing and production of live animal cells. For fish cells,
bioreactors use three gas inputs, oxygen, air, and nitrogen (indicated as solid green circles). The output (D), full-tissued meat, is minimally refined and then enters
the world’s markets to become fully functional single-ingredient replacements in new and existing food products globally.
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cells sourced from a small tissue sample from an animal

(Figure 1A) and nutritional inputs, such as sugars and lipids

(Figure 1B), which support cell functioning and contain all the

amino acids (the building blocks of proteins) entering the system.

In bioprocessing (Figure 1C), the two steps that starter cells un-

dergo are doubling, whereby starter cells are produced on a large

scale (in high numbers), and structuring, whereby cells already

created are transformed into what we call ‘‘full-tissued meat.’’

By ‘‘full-tissued,’’ we are implying cell-based meat that retains

all the essential qualities, including taste and texture, of the con-

ventional meat it aims to replace as one ingredient. We call it

‘‘meat’’ and not ‘‘a fillet,’’ as the size and shape of the skeletal

muscle output from the solution has not yet been determined.

For the basic requirements of the first of the two bioprocesses,

doubling, starter cells are anticipated to be suspended in a liquid

composed primarily of water and other nutritional inputs of non-

animal origin (Figure 1B), probably sourced from plant or micro-

bial materials or harvested from other bioprocesses.30 Signaling

molecules (e.g., growth factors and hormones) are also required.

Here, starter cells are directed to replicate repeatedly in a biore-

actor (Figure 1C). With each doubling, a starter cell becomes two

starter cells, each able to perform identically to the original. The

doubling process must maintain starter cell health and perfor-

mance capability both for continued doubling and for subse-

quent processing steps.

Aneffectivedoublingbioprocess is essential to support the very

high number of starter cells that cell-based meat manufacturing

will require. As a ballpark estimate, assuming a single nucleus

wetmuscle cellmassof ca. 3.5310�12 kg/cell31 anddisregarding

thenegligiblepresenceof adipocytes (fat cells) in leanfishmuscle,
56 One Earth 3, July 24, 2020
approximately 45.2 billion starter cells must be grown in the

doubling bioprocess to produce a standard, daily portion

(5.5 oz/155.9g) of lean fish32 (seeTableS2).Using thesenumbers,

when starting from a single cell, feeding a million people a 5.5-oz

(155.9-g) portion of lean fish32 requires at least 64 doublings to

produce close to 17 quintillion starter cells, the number 17 fol-

lowed by 18 zeros. To produce these numbers, bioreactors will

need to be designed at the maximum scale at which an effective

doubling bioprocess can be maintained.

In the second bioprocess, structuring, billions of cells from the

doubling bioprocess will be seeded on ‘‘scaffolding,’’ a set of

surfaces meant to mimic the extracellular matrix in the species

and skeletal muscle tissue of interest.33 Among several roles,

the scaffolding should offer mechanical strength, oxygen and

nutrient input transport, and waste product removal,34 support-

ing the overall functioning and development of the cells.33 In a

process that is anticipated to require days rather than the

months needed to raise farmed fish, starter cells will be directed

to differentiate and fuse (forming multinucleated cells) by expo-

sure to specific chemical cues (growth factors and hormones),35

physical cues, and nutrient inputs,36 and will subsequently

develop into skeletal muscle tissue.37

With respect to the critical metric of high protein retention,11

bioprocessing is required to convert a large percentage of amino

acid mass input into full-tissued lean fish meat. In this pursuit,

bioprocessing is anticipated to occur in as closed a system as

possible (i.e., one where waste products are minimized and at

least partially reutilized to regenerate some of the inputs). With

this approach, it might be possible to design doubling and struc-

turing bioprocesses that achieve high efficiencies and outputs,



Figure 2. Three Potential Advantages of Fish
Cells for Cell-Based Meat Production
Fish cells have shown the ability to undergo more
doublings before they senesce (A). Fish cells also
tend to maintain their correct number of chromo-
somes, doubling to doubling, a quality known as
karyotypic stability (B), which, in general, improves
the reliability of cell functioning. Fish cells can also
be cultured in atmospheric air (C), likely simplifying
gas-handling requirements. See Table S1 for a
summary and references.
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and reduce associated resource use and waste production chal-

lenges. Thus, cell-basedmeat bioprocessing has the potential to

be less resource intensive than current animal protein production

systems. However, this must, ultimately, be determined later,

following considerably more research, development, and design

work, and after key limitations are overcome (see A Few Hur-

dles below).

Potential Advantages of Targeting Fish
Beyond the case for developing cell-based fish meat to help

meet growing demand, targeting fish offers engineering advan-

tages over other mammalian and avian cell-based meat ap-

proaches. For the doubling bioprocess, whereby bioreactors

are used to deliver very high numbers of starter cells, the

research literature indicates that fish cells are more advanta-

geous in a number of ways.16 Three potential advantages are

summarized in Figure 2, with additional detail on the particular

suitability of fish cells (and fish in general) for cell-based produc-

tion outlined in the summary table (Table S1).

First, fish cells might offer advantages over mammalian and

avian cells with regard to themain requirement of cell replication.

After repeated divisions, cultured mammalian and avian cells

(excluding embryonic stem cells) have been well documented

to eventually undergo senescence,38–41 a phenomenon that

causes cells to lose the ability to replicate. Some studies suggest

that cultured fish cells exhibit senescence and have proliferation

potential similar tomammalian cells.42–44 However, other studies

have found that fish cells are less susceptible to senescence and

are able to undergo many more doublings45–53(Figure 2A). With

specific regard to muscle stem cells, adult fish satellite cells iso-

lated from trout have been shown to be proliferative in vitro, in

contrast to quiescent satellite cells in adult mice.54,55

Given that cell-based meat starter cells must undergo many

rounds of doubling and endure extended bioprocessing runs

without aberration, cell stability is an important consideration.

The advantage here also goes to fish cells, which are known to

maintain the chromosome number, doubling to doubling,56–61

better than cells of mammalian and avian species

(Figure 2B).62,63 This feature is known as karyotypic stability.
A third likely advantage of fish cells for

the doubling bioprocess relates to gas

handling. In cell culture bioreactors, gas in-

puts from air, oxygen, and nitrogen, along

with agitation, are used to manage dis-

solved oxygen and pressure inside the

vessels.64 With mammalian and avian cell

culture systems a fourth gas input, carbon
dioxide, in conjunction with bicarbonate, is usually required for

pH control.65,66 Because fish cells (1) can readily grow in atmo-

spheric air67,68 (Figure 2C) and (2) have high intracellular buff-

ering capacity,16 doubling these cells will likely involve managing

only three gas inputs, oxygen, air, and nitrogen, and their asso-

ciated impact on process dynamics inside the bioreactor. Man-

aging three gases is less complex thanmanaging four gases and

bicarbonate buffering, simplifying process scale-up challenges

such as CO2 stripping
69 (see Note S1).

Lean Fish as a First Fish Meat
Complexity is often an impediment to scaling. A key element of a

meat’s complexity relates to the presence of fat cells (adipocytes)

within its primary muscle tissue matrix. Lean fish (e.g., cod,

pollock, haddock, tilapia) usually have 1%–2% fat content in their

muscles andanabundanceof liver lipids,26whereas fatty fish (e.g.,

salmonids and tunas) typically have 10%–20%muscle fat content

with low retention of lipids in the liver.26 Meanwhile, beef steak

could be called lean even if it contains nearly 10% fat,32 and,

even when excess fat is trimmed away, the fat content of chicken

(2.6%),70 beef (2.69%),71 and pork (2.17%)72 exceeds the litera-

ture-based definition of 1%–2% fat content in lean fish muscle.

Because lean fish get most of their lipid needs met by their

livers, with relatively few fat cells in the meat,26 we think it likely

(and make the assumption) that intermuscular fat does not play

a key biological role in lean fish muscle growth, and, therefore,

that structured cell-based lean fish meat can be manufactured

without having to process live fat cells. This could make the

meat simpler to produce, as challenges have been reported

with co-culturing fat and muscle cells. For one, muscle and fat

cells adhere differently to growth substrates,73 which would

make growing fat andmuscle together in one scaffolding system

more challenging. Another impediment relates to ‘‘crosstalk’’ be-

tween muscle and fat cells. Specifically, secretions of fat tissue

have been shown to reduce the doubling and differentiation per-

formance of adjacent muscle cells.74

As additional evidence to support the hypothesis that lean fish

meat will be the simplest to structure into full-tissued meat,

consider the visual appearance of lean fish compared to a piece
One Earth 3, July 24, 2020 57



Figure 3. Meat as Skeletal Muscle
Three different cuts of meat are shown with visible
patterning and varying fattiness: a piece of Pacific
cod, sashimi from Atlantic salmon species, and a
ribeye steak. Images are not to scale.
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of fatty fish and a beef steak. For this, we draw your attention to

Figure 3, which shows the structured skeletal muscle of these

three types of meat that need to be recreated by cell-based

meat technology.

The meat of Pacific cod, considered a lean fish or ‘‘white fish,’’

is low-fat muscle with 15.27 g of protein and 0.41 g of fat in a 100-

g serving.75 It has consistent, repeated patterning recognizable

to the naked eye. Consistent patterning is also readily visible in

the sashimi of salmon, a ‘‘fatty’’ fish26 (Figure 3) with 20.42 g of

protein and 13.42 g of fat in a 100-g serving.76 However, what

is not readily visible is that muscle and fat cells are well inter-

spersed throughout the peach-colored sections in the salmon

sashimi,77 unlike the more singular nature of lean fish meat.

Therefore, from an engineering perspective, it is easy to appre-

ciate that structuring might be more complex for the fatty meat

of salmon than for the lean meat of cod.

Evenwhen trimmed of some fat, a ribeye steak contains visible

fat and marbling (16.9 g of fat and 19.55 g of protein in a 100-g

serving)78 in a less regular-looking, interwoven pattern (Figure 3).

It is easy to see how recreating awhole steak, with all its complex

structuring, including the fat content, might prove a tougher chal-

lenge. This is particularly apparent when comparing the steak

with the relatively simpler structures of the sashimi of salmon

and the meat of cod, the simplest.

Beyond minimizing manufacturing complexity, a selection of a

lean fish species for cell-based meat development offers unex-

pected potential for impact, as illustrated in Figure 4. Lean fish

meat represents a very large existing market: the world’s most

captured fish species by mass is Alaska pollock (Figure 4A),5

whereas Nile tilapia is one of the top four most farmed fish spe-

cies in the world.5 Other highly consumed lean fish include cod,

haddock, and hake.5 Lean fish meat also has similar sensory

qualities across species (Figure 4B) and is virtually interchange-

able in recipes and foodstuffs across the world (Figure 4C).

The claim that lean fish meat has similar sensory qualities

across species (Figure 4B) is supported by evidence that lean

fish muscle tissue has less variation in flavor, species to species.

In a comparative study of the flavor profiles of 17 species of North

Atlantic fish by a trained taste panel, the lean species, having 1%–

2% fat content, were generally grouped away from those species

with a higher fillet fat content.79 This attribute suggests that a sin-

gle or small number of successfully developed cell-based lean fish

species could support demand for lean fish broadly.

In addition to lean fish having similar flavor, species to species,

it should also be simpler to recreate a sensory experience fully

recognized as lean fish meat rather than one recognized as

tuna or salmon, which have been shown to have more complex,

volatile flavor profiles.80 Targetingmeat with a simpler flavor pro-
58 One Earth 3, July 24, 2020
file could reduce the development time

and cost. Our hypothesis is further sup-

ported by noting how the lean fish meats

of multiple species are often used inter-
changeably across a broad range of mass-market fish products

(Figure 4C). Examples of such products include fish sticks, fish

fillet sandwiches, fish and chips, fish tacos, fish kebabs, fish bur-

gers, fish nuggets, fish rolls, fish squares, fish fingers, fish chow-

der, and surimi.81,82

Of note, lean fish meat is among the purest forms of animal

protein from a macronutrient perspective, providing high protein

content with virtually no fat (often <1%) and no carbohy-

drates.75,83–85 Lean fish consumption has also been shown to

confer comparable health benefits to omega-3-rich fatty fish

on risk factors for cardiovascular disease and type 2 dia-

betes.83,86 Considering that cell-based meat will also contain

no environmentally derived toxins or contaminants such as mer-

cury and plastics, cell-based lean fish could be an ideal, single-

ingredient health and wellness animal protein.

Overall, cell-based lean fish meat could be a healthy animal

protein that is easier to produce as full-tissued meat than other

cell-based equivalents. It could result in more impact thanmeets

the eye,5 potentially providing a less resource-intensive replace-

ment for the meat of several mass-market captured and farmed

lean fish species. Because lean fishmeat is virtually interchange-

able across species, we next consider a nuanced question:

‘‘Which species will most accelerate research and development

for cell-based lean fish production?’’ As we return briefly to

Figure 4A, the answer becomes obvious: zebrafish.

Meet Zebrafish, an Ideal First Species for Research and
Development
A popular aquarium fish native to South Asia and formally known

as Danio rerio, zebrafish is a small freshwater fish approximately

30–50 mm in length.87,88 In addition to serving as pets, zebrafish

are sold and consumed as food at roadside huts in India (Dr.

John Postlethwait, personal communication). These supporting

roles aside, zebrafish’s largest contribution is in science as the

most researched fish in the world by far (Figure 5).

With over 3,250 institutes in over 100 countries studying the

species,89 a dedicated peer-reviewed journal,90 and data main-

tained and curated by the Zebrafish Information Network,91 no

other fish species comes close to matching zebrafish’s large

knowledge base and devoted research community. This is illus-

trated in Figure 5, comparing the number of results returned

when searching the National Institutes of Health PubMed data-

base of publications for frequently studied species of fish, where

the 40,322 publications returned for zebrafish is much greater

than for any other species (see Table S3).

As 82% of genes associated with human diseases and disor-

ders have a zebrafish counterpart,92 zebrafish are studied exten-

sively to unlock potential cures and treatments for a broad range



Figure 4. The Impact and Versatility of Cell-Based Lean Fish
Lean fish species (A) include the most captured species (Alaska pollock), the fourth most farmed species of fish (Nile tilapia; top three, in order, are grass carp,
silver carp, and common carp), and easily themost understood and studied of all fish species in the life sciences, zebrafish, used extensively formedical and other
scientific research. Because lean fish meat has similar sensory qualities across species (B), it is virtually interchangeable as input material for many products (C).
Images not to scale. [Zebra Danio]/[Encyclopedia Britannica] via Getty Images, [Nile tilapia] via Shutterstock, [Alaska pollock] via NOAA.
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of diseases.93 Autism, epilepsy, amyotrophic lateral sclerosis,

and numerous cancers are all active targets of scientific investi-

gation.94,95 In particular, research into muscular dystrophy has

contributed to a deep understanding of zebrafish muscle devel-

opment.96

In addition to all this knowledge that can be borrowed to help

establish cell-based lean fish science and technology, decades

of zebrafish investigations have resulted in a powerful research

toolkit that is extremely relevant to cell-based meat develop-

ment. Experimental procedures have been defined for isolating

different starter cell types from zebrafish, such as embryonic

stem cells97,98 and muscle stem cells.99 For muscle stem cell

isolation, established genetic markers exist that can help ensure

cell population purity during the procedure.100–103 Protocols also

exist to generate muscle cells from zebrafish starter cells on the

lab bench.97,98 Additionally, an extensive genetic engineering

toolkit is available to turn genes on and off within the zebrafish

genome.27 This toolkit should allow for zebrafish starter cells to

be genetically engineered for enhanced performance for both

doubling and structuring bioprocessing. Among the contents

of the zebrafish toolkit, there are numerous fluorescence imaging

techniques available to provide cell-based meat scientists with

real-time optical cues on cell status and viability.104 These

make it easy to distinguish muscle cells from other cells.105

With all these benefits, the expansive zebrafish toolkit has the

potential to simplify and accelerate research and development

and to facilitate eventual production of cell-based meat for con-

sumption.

Another set of benefits of choosing zebrafish is especially pro-

nounced in the initial stages of research,where it will be invaluable

to have a supply of embryos and fish readily available to source

live starter and other cells. Zebrafish meets this need well, as

the species is raised in labs around the world,89 produces many
offspring, and has a short generation time.106 The selection of

an aquaculture-raised or wild species for research would require

frequent trips to hatcheries or natural waterways, adding consid-

erable cost, complexity, and delays to cell-based research.

Ensuring starter cell health will also be critical for cell-based

meat development and production. Fortunately, zebrafish cell

sources can be obtained from facilities designated specific-

pathogen-free (SPF),107 a term for laboratory animals that are

guaranteed to be free of particular infectious agents. Addition-

ally, the process for establishing a zebrafish SPF facility and

cell line is well defined.107 SPF-sourced cells will eliminate the

need for numerous safety and quality tests by the research

and development teams, and should reduce the likelihood of

incidental research findings caused by contamination events.

Our findings leave little doubt that to accelerate the develop-

ment of cell-basedfish it is best to start simpler, savingmorecom-

plex variations for later. Furthermore, starting with zebrafish is a

clearchoice for researchanddevelopment, and is likely the fastest

path possible to producing full-tissued, cell-based fish meat.

A Few Hurdles
Numerous technological challenges exist, and although a full list

of the known obstacles is outside the scope of this Perspective,

we highlight a few key areas for development. A successful

manufacturing solution will require a complete integration of

these elements and others.

Starter Cells

With comparatively few fish cell lines available overall,16 it will be

essential in the long term to have starter cells to support the wide

variety of fish meats consumed globally. In the short term, a new

set of starter cells must be established from zebrafish embryos

and live fish. Unfortunately, currently available zebrafish starter

cells are not well suited to large-scale cell-based lean fish
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Figure 5. Zebrafish Is the Most Studied Fish
Species in the Life Sciences
Search results are shown for fish commonly
featured in research within the PubMed database of
the US National Library of Medicine National In-
stitutes of Health. The search query included the
common OR species name, where the search terms
were indicated with quotations for specificity (e.g.,
‘‘Zebrafish’’ OR ‘‘Danio rerio;’’ ‘‘Rainbow trout’’ OR
‘‘Oncorhynchus mykiss’’). Zebrafish (Danio rerio)
revealed 40,322 publications, and the comparative
publication counts for other fish are shown. Scien-
tific illustration is of a zebrafish. [Zebra Danio]/
[Encyclopedia Britannica] via Getty Images.
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production, as they require animal serum for growth.59,108 This

poses challenges for bioprocessing control and scalability, as

the composition of animal serum can vary batch to batch, in

addition to ethical concerns.

Signaling Molecules

At present, the cost of signaling molecules (i.e., growth factors

and hormones) is prohibitively high, given the amounts needed

formass production.109 Potential solutionsmight include (1) rede-

signing signaling molecules to enhance effectiveness and lower

costs,110 (2) genetic engineering of starter cells so that they

generate their own growth factors in large enough quantities,109

and (3) use of other non-consumed cells (e.g., microbes) in the

bioprocess to serve as growth factor production factories.110 A

combination of these solutions might be used within the doubling

and structuring steps in cell-based lean fish manufacture.

Bioreactors

With little existing know-how for growth of fish cells in bioreac-

tors16 and no existing operational full-scale or pilot production

plants for cell-based fish (or cell-based meat for that matter),

bioreactor design is a major focus of current and future research

efforts.31 Customized designs will be needed for the doubling

step and the structuring step, each of which might require a se-

ries of bioreactors. Overall, bioreactor design needs to support

the efficient conversion of inputs into maximal amounts of full-

tissued lean fish meat with minimal waste production.

Scaffolding

Although some small-scale tissue engineering applications exist

today,16 a scaffolding solution set for full-tissued meat has yet to

be demonstrated or openly developed. Scaffold designs might

need to be customized for specific lean fish species and tissue

types.33 This work, required before a full manufacturing solution

for lean fish meat can be developed, will include computer

modeling and prototyping to optimize scaffolding mechanical

strength, nutrient transport, and waste product removal.111

Life-Cycle Assessment

Early-stage predictive life-cycle assessments do exist today

but are not the same across the board and compare different an-

imal protein production systems.30,112–114 Nonetheless, a main

conclusion from these predictive pieces, although imperfect, is

that the energy burden of cell-basedmeat is high,30,113,114 which
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could be reduced through the use of decar-

bonized energy sources such as renew-

ables. However, it is only after the commer-

cial-scale cell-based lean fish approach is

further developed that accurate assess-
ments can be made, which also consider inputs such as water,

and cellulose that humans cannot directly digest.

Unknowns, Limitations, and Assumptions
The selection of lean fish for production and zebrafish for

research and development is straightforward, but the path

ahead is not. A manufacturing solution for cell-based lean fish

meat will integrate many existing, enhanced, and new-to-the-

world technologies. Before all this technology is designed and

built, extensive knowledge must be developed through experi-

mentation. Although the gaps in knowledge are fewer and

smaller for zebrafish than for any other species of fish, the future

is full of unknowns. One major unknown is whether the produc-

tion of full-tissued cell-based meat (with any species) is even

feasible for a single manufacturing facility, let alone at the scale

required to support global demand.

Other unknowns that cannot be addressed until a solution is

much further along include ‘‘How much will a serious research

effort cost?,’’ ‘‘How long before a manufacturing facility is oper-

ational?,’’ ‘‘Will cell-based lean fish manufacturing costs and

prices be low enough for global, mass-market appeal and

disruption?,’’ and ‘‘How will cell-based lean fish be approved

and regulated under different frameworks around the world?’’

Ultimately, the answers to these questions influence whether

cell-based lean fish will realize its potential as a complementary

solution to the increasing demand for fish.

As a limitation, the cell-to-fork framework indicates that one set

of starter cells is needed to develop structured meat. Lesser

amountsofother terminalcell types (fibroblasts toprovideconnec-

tive tissue, for example) might also be required, which would add

some bioprocessing complexity. Regardless, lean fish meat

should be simpler to structure than meat with a greater presence

of adipocytes (fat cells). Another potential input, animal serum

(e.g., fetal bovine serum) as a source of hormones, growth factors,

and nutrition, is not mentioned in our proposedmanufacturing so-

lution as, for one, animal serumcomposition varies batch tobatch,

hindering process scale-up.

Also, because bioprocessing needs to achieve efficient con-

version of protein inputs into fish meat, our proposed framework

focuses on themass of amino acids that enter andmove through
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the manufacturing process to be assembled and structured into

skeletal muscle. It excludes from consideration other inputs and

outputs, such as energy, water (the largest contributor to meat’s

mass), and waste streams, all of which will factor into the finan-

cial and environmental costs of producing cell-based meat.

A complete discussion on the sustainability of meat consump-

tion is outside the scope of this Perspective, as food production

and its impact on the environment involve complex systems

with high variability.24,115,116 Some of this variability is captured

across such standardized metrics as greenhouse gas emissions,

land use, and water use.24,115 Nevertheless, as authors, we align

with scientists who report that the production of animal protein,

overall, is putting the future health of the planet at risk.8,12,115,117

We see that cell-based lean fish technology has the potential to

be a less resource-intensive method of making fish meat than

conventional methods.16 However, whether this potential can be

realized is unknown. To make a fair assessment, research and

development must be much further along, and standardized ap-

proaches for comparing conventional animal protein production

must be established, given the influence of animal growth stage,

animal size, and feed composition on protein retention.118,119

Additionally, we have offered only limited detail regarding the

potential nutritive benefits of cell-based lean fish, noting that

conventional lean fish can provide health benefits similar to

those from omega-3-rich fatty fish.83,86 A full nutritional and

compositional analysis of cell-based lean fish must be under-

taken later as soon as sufficient biomass is produced.

With no information available on the sensory attributes of ze-

brafish meat, we assume that full-tissued cell-based zebrafish

meat will receive widespread consumer acceptance, given that

lean fish meat has similar sensory attributes, species to species,

and because zebrafish is eaten at roadside huts in India (J. Post-

lethwait, personal communication). If not, we expect this founda-

tional zebrafish research and development to expedite progress

on cell-based equivalents to commonly consumed species of

lean fish, more than making up for any lost time.

Finally, an important topic not discussed in this Perspective is

animal welfare. Although the author team hypothesizes that fish

are sentient and can suffer, sentience is not provable.120 Never-

theless, we assume that a manufacturing solution for cell-based

lean fish will make positive contributions to animal welfare

because it will not require the mass capture or farming of fish.

Conclusions and Recommendations
With as many as 2 billion more people expected on our planet in

the next 30 years,1 the demand for animal protein, and fish spe-

cifically, is likely to rise. There is, however, high uncertainty as to

whether conventional capture fisheries can support this

increased demand5,7,8 or whether fish farming can sustainably

expand outputs given its input requirements.9,11,12 A potential

complementary solution to the growing demand for fish meat

is to investigate cell-based fish, making the same meat directly

from fish cells. More than 30 private ventures have been

launched in pursuit of cell-based meat broadly, and at least six

are specifically devoted to cell-based fish.17

Unfortunately, it would seem that for-profit interests got

involved too soon, resulting in a host of systemic impediments

to successfully and rapidly advancing cell-based meat technol-

ogy. Among these, cell-based meat ventures are incentivized
to generate and carve out know-how in the form of specific intel-

lectual property (IP), despite the strong need for building knowl-

edge and advancing basic research first. Without a shared foun-

dation of know-how, development teams must each ‘‘reinvent

the wheel’’ to solve many of the same technical challenges,

which is highly inefficient system-wide for such an important

and urgent planetary challenge. Also, because they are busi-

nesses, ventures are under considerable pressure to focus on

future revenue streams and food products instead of advancing

the research and development needed beforehand.

Limited access to transdisciplinary expertise is yet another

systemic problem with the current approach, as cell-based

ventures lack the resources or openness to engage the wide

range of world-class scientists, engineers, and technologists

they (and Earth) need in tackling this critical work. In addition

to species-specific expertise, support is needed right now

from thought leaders in regenerative medicine, stem cell sci-

ence, muscle biology, tissue bioengineering, bioprocessing,

and computational modeling. Environmental economics, food

science and nutrition, and large-scale process engineering

are among other fields that will also certainly play impor-

tant roles.

Bringing all these pieces together to build out and realize a

cell-to-fork framework requires substantial investment. Unfortu-

nately, the current venture model for cell-based meat, which tar-

gets minimal spending and maximal returns, has resulted in total

funding that is less than 0.03% or 3/10,000 of the annual global

market for meat.121,122 Given what is at stake and the need to co-

create all this knowledge, this for-profit model does not seem

appropriate in the short term.

As scientists, we conclude that a generosity-based approach

should be pursued right now to accelerate cell-based fish

research and development. Instead of protecting early know-

how as IP, we recommend beginning anew and opening the

door to the co-creation of knowledge. For maximum speed and

efficiency, we further suggest society pool its resources to

advance what is likely a simpler first solution, lean fish.

On this journey, we pledge to share our work more openly,

including hypotheses, methods, protocols, formulations, find-

ings, results, failures, and other learnings. We also promise to

hold ourselves to the highest academic and research standards

and publish our work through vetted, peer-reviewed venues. By

sharing our knowledge, information, and ideas freely, we aim to

participate in and demonstrate the kind of collaborative knowl-

edge building, insight discovery, and innovative thinking required

to accelerate planet-critical solutions.

To further engage the appropriate breadth and level of talent,

we strive to partner with leading individual researchers, univer-

sities, and research institutes. Because growing lean fish meat

and regenerating human and zebrafish muscle are similar pur-

suits, we look to accelerate lean fish research and development

side-by-side with regenerative medicine. Aided by a more open

approach, we aspire to freely engage all the expertise needed to

advance the fastest path to a manufacturing solution for cell-

based lean fish.

Instead of adopting a for-profit model before the science has

been established, we suggest society fund and accelerate

knowledge development through philanthropy, as a gift to our

shared future. With unconditional grants, we aim to place
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decision-making for planet-critical science and technology in the

hands of scientists, outside of special interests.

Ultimately, we see that developing cell-based lean fish tech-

nology has the potential to support the global demand for fish

more sustainably than current production methods. We also

see that a concerted, collaborative effort, based on simpler solu-

tions built from the ground up, is best suited for this endeavor.

With this, we come together to conserve planetary health and

contribute to a world with enough food for all. Who will join us?

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.
oneear.2020.06.005.
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83. Tørris, C., Molin, M., and Småstuen, M.C. (2017). Lean fish consumption
Is associated with beneficial changes in themetabolic syndrome compo-
nents: a 13-year follow-up study from the Norwegian Tromsø study. Nu-
trients 9, 247.

84. Haddock, U.S. (2019). FoodData Central (Department of Agriculture).
https://fdc.nal.usda.gov/fdc-app.html#/food-details/333374/nutrients.

85. Hake, U.S. (2019). FoodData Central (Department of Agriculture). https://
fdc.nal.usda.gov/fdc-app.html#/food-details/518532/nutrients.

86. Telle-Hansen, V.H., Larsen, L.N., Hostmark, A.T., Molin, M., Dahl, L., Al-
mendingen, K., and Ulven, S.M. (2012). Daily intake of cod or salmon for
2 weeks decreases the 18:1n-9/18:0 ratio and serum triacylglycerols in
healthy subjects. Lipids 47, 151–160.

87. Meyers, J.R. (2018). Zebrafish: development of a vertebrate model or-
ganism. Curr. Protoc. Essent. Lab. Tech. 16, e19.

88. Ulloa, P.E., Iturra, P., Neira, R., and Araneda, C. (2011). Zebrafish as a
model organism for nutrition and growth: towards comparative studies
of nutritional genomics applied to aquacultured fishes. Rev. Fish Biol.
Fish. 21, 649–666.

89. Kinth, P., Mahesh, G., and Panwar, Y. (2013). Mapping of zebrafish
research: a global outlook. Zebrafish 10, 510–517.

90. Ekker, S.C., ed. (2019). Zebrafish 15, 6. https://www.liebertpub.com/toc/
zeb/15/6.

91. Zebrafish Information Network, (2019). https://zfin.org/.

92. YourGenome (2014). Why use the zebrafish in research?. https://www.
yourgenome.org/facts/why-use-the-zebrafish-in-research.

93. Bradford, Y.M., Toro, S., Ramachandran, S., Ruzicka, L., Howe, D.G.,
Eagle, A., Kalita, P., Martin, R., Taylor Moxon, S.A., Schaper, K., et al.
(2017). Zebrafish models of human disease: gaining insight into human
disease at ZFIN. ILAR J. 58, 4–16.

94. Khan, K.M., Collier, A.D., Meshalkina, D.A., Kysil, E.V., Khatsko, S.L., Ko-
lesnikova, T., Morzherin, Y.Y., Warnick, J.E., Kalueff, A.V., and Echevar-
ria, D.J. (2017). Zebrafishmodels in neuropsychopharmacology andCNS
drug discovery. Br. J. Pharmacol. 174, 1925–1944.

95. Letrado, P., de Miguel, I., Lamberto, I., Dı́ez-Martı́nez, R., and Oyarzabal,
J. (2018). Zebrafish: speeding up the cancer drug discovery process.
Cancer Res. 78, 6048–6058.

96. Berger, J., and Currie, P.D. (2012). Zebrafish models flex their muscles to
shed light on muscular dystrophies. Dis. Models Mech. 5, 726–732.

97. Ciarlo, C.A., and Zon, L.I. (2016). Chapter 1. Embryonic cell culture in ze-
brafish. In Methods in Cell Biology, H.W. Detrich, M. Westerfield, and L.I.
Zon, eds. (Academic Press), pp. 1–10.

98. Xiao, Y., Gao, M., Gao, L., Zhao, Y., Hong, Q., Li, Z., Yao, J., Cheng, H.,
and Zhou, R. (2016). Directed differentiation of zebrafish pluripotent em-
bryonic cells to functional cardiomyocytes. Stem Cell Rep 7, 370–382.

99. Ratnayake, D., and Currie, P.D. (2019). Fluorescence-activated cell sort-
ing of larval zebrafish muscle stem/progenitor cells following skeletal
muscle injury. In Myogenesis: Methods and Protocols, S.B. Rønning,
ed. (Springer New York), pp. 245–254.

100. Knappe, S., Zammit, P., and Knight, R. (2015). A population of Pax7-ex-
pressing muscle progenitor cells show differential responses to muscle
injury dependent on developmental stage and injury extent. Front. Aging
Neurosci. 7, https://doi.org/10.3389/fnagi.2015.00161.
64 One Earth 3, July 24, 2020
101. Berberoglu, M.A., Gallagher, T.L., Morrow, Z.T., Talbot, J.C., Hromowyk,
K.J., Tenente, I.M., Langenau, D.M., and Amacher, S.L. (2017). Satellite-
like cells contribute to pax7-dependent skeletal muscle repair in adult ze-
brafish. Dev. Biol. 424, 162–180.

102. Pipalia, T.G., Koth, J., Roy, S.D., Hammond, C.L., Kawakami, K., and
Hughes, S.M. (2016). Cellular dynamics of regeneration reveals role of
two distinct Pax7 stem cell populations in larval zebrafish muscle repair.
Dis. Models Mech. 9, 671–684.

103. Gurevich, D.B., Nguyen, P.D., Siegel, A.L., Ehrlich, O.V., Sonntag, C.,
Phan, J.M., Berger, S., Ratnayake, D., Hersey, L., Berger, J., et al.
(2016). Asymmetric division of clonal muscle stem cells coordinatesmus-
cle regeneration in vivo. Science 353, aad9969.

104. Cook, Z.T., Brockway, N.L., Tobias, Z.J.C., Pajarla, J., Boardman, I.S.,
Ippolito, H., Nkombo Nkoula, S., and Weissman, T.A. (2019). Combining
near-infrared fluorescence with Brainbow to visualize expression of spe-
cific genes within a multicolor context. Mol. Biol. Cell. 30, 491–505.

105. Moss, J.B., Price, A.L., Raz, E., Driever, W., and Rosenthal, N. (1996).
Green fluorescent protein marks skeletal muscle in murine cell lines
and zebrafish. Gene 173, 89–98.

106. Squire, J.M., Knupp, C., and Luther, P.K. (2008). Zebrafish—topical,
transparent, and tractable for ultrastructural studies. J. Gen. Physiol.
131, 439–443.

107. Kent, M.L., Buchner, C., Watral, V.G., Sanders, J.L., Ladu, J., Peterson,
T.S., and Tanguay, R.L. (2011). Development and maintenance of a spe-
cific pathogen-free (SPF) zebrafish research facility for Pseudoloma neu-
rophilia. Dis. Aquat. Org. 95, 73–79.

108. Liu, C.L., Watson, A.M., Place, A.R., and Jagus, R. (2017). Taurine
biosynthesis in a fish liver cell line (ZFL) adapted to a serum-free medium.
Mar. Drugs 15, https://doi.org/10.3390/md15060147.

109. Ben-Arye, T., and Levenberg, S. (2019). Tissue engineering for clean
meat production. Front. Sust. Food Syst. 3, https://doi.org/10.3389/
fsufs.2019.00046.

110. Mitchell, A.C., Briquez, P.S., Hubbell, J.A., and Cochran, J.R. (2016). En-
gineering growth factors for regenerative medicine applications. Acta
Biomater. 30, 1–12.

111. Kahan, S., Camphuijsen, J., Cannistra, C., Potter, G., Cosenza, Z., and
Shmulevich, I. (2020). Cultivated meat modeling consortium: inaugural
meeting whitepaper. Authorea. https://doi.org/10.22541/au.158057683.
31004563.

112. Tuomisto, H.L., and Teixeira de Mattos, M.J. (2011). Environmental im-
pacts of culturedmeat production. Environ. Sci. Technol. 45, 6117–6123.

113. Tuomisto, H.L., Ellis, M., and Haastrup, P. (2014). Environmental impacts
of cultured meat: alternative production scenarios, In: 9th International
Conference on Life Cycle Assessment in the Agri-Food Sector (San Fran-
cisco, CA).

114. Lynch, J., and Pierrehumbert, R. (2019). Climate impacts of cultured
meat and beef cattle. Front. Sust. Food Syst. 3, https://doi.org/10.
3389/fsufs.2019.00005.

115. Poore, J., and Nemecek, T. (2018). Reducing food’s environmental im-
pacts through producers and consumers. Science 360, 987–992.

116. Hunter, M.C., Smith, R.G., Schipanski, M.E., Atwood, L.W., and Morten-
sen, D.A. (2017). Agriculture in 2050: recalibrating targets for sustainable
intensification. BioScience 67, 386–391.

117. Godfray, H.C.J., Aveyard, P., Garnett, T., Hall, J.W., Key, T.J., Lorimer, J.,
Pierrehumbert, R.T., Scarborough, P., Springmann, M., and Jebb, S.A.
(2018). Meat consumption, health, and the environment. Science 361,
eaam5324.

118. Winfree, R.A., and Stickney, R.R. (1981). Effects of dietary protein and
energy on growth, feed conversion efficiency and body composition of
Tilapia aurea. J. Nutr. 111, 1001–1012.

119. Chou, B.-S., and Shiau, S.-Y. (1996). Optimal dietary lipid level for growth
of juvenile hybrid tilapia, Oreochromis niloticus X Oreochromis aureus.
Aquaculture 143, 185–195.

120. Browman, H.I., Cooke, S.J., Cowx, I.G., Derbyshire, S.W.G., Kasumyan,
A., Key, B., Rose, J.D., Schwab, A., Skiftesvik, A.B., Stevens, E.D., et al.
(2018). Welfare of aquatic animals: where things are, where they are
going, and what it means for research, aquaculture, recreational angling,
and commercial fishing. ICES J. Mar. Sci. 76, 82–92.

121. Cellular / Acellular Agriculture industry snapshot (2019). https://docs.
google.com/spreadsheets/d/1-
GxB1FjgRIyuELLP9vvLBUv4hqHXGqrK_j-oP9su-
a8/edit#gid=0.

122. Our meatless future: how the $2.7T global meat market gets disrupted.
July 15, 2020. https://www.cbinsights.com/research/future-of-meat-
industrial-farming/.

https://fdc.nal.usda.gov/fdc-app.html#/food-details/175167/nutrients
https://fdc.nal.usda.gov/fdc-app.html#/food-details/175167/nutrients
https://fdc.nal.usda.gov/fdc-app.html#/food-details/173394/nutrient
https://fdc.nal.usda.gov/fdc-app.html#/food-details/173394/nutrient
https://fdc.nal.usda.gov/fdc-app.html#/food-details/333374/nutrients
https://fdc.nal.usda.gov/fdc-app.html#/food-details/518532/nutrients
https://fdc.nal.usda.gov/fdc-app.html#/food-details/518532/nutrients
https://www.liebertpub.com/toc/zeb/15/6
https://www.liebertpub.com/toc/zeb/15/6
https://zfin.org/
https://www.yourgenome.org/facts/why-use-the-zebrafish-in-research
https://www.yourgenome.org/facts/why-use-the-zebrafish-in-research
https://doi.org/10.3389/fnagi.2015.00161
https://doi.org/10.3390/md15060147
https://doi.org/10.3389/fsufs.2019.00046
https://doi.org/10.3389/fsufs.2019.00046
https://doi.org/10.22541/au.158057683.31004563
https://doi.org/10.22541/au.158057683.31004563
https://doi.org/10.3389/fsufs.2019.00005
https://doi.org/10.3389/fsufs.2019.00005
https://docs.google.com/spreadsheets/d/1-GxB1FjgRIyuELLP9vvLBUv4hqHXGqrK_j-oP9su-a8/edit#gid=0
https://docs.google.com/spreadsheets/d/1-GxB1FjgRIyuELLP9vvLBUv4hqHXGqrK_j-oP9su-a8/edit#gid=0
https://docs.google.com/spreadsheets/d/1-GxB1FjgRIyuELLP9vvLBUv4hqHXGqrK_j-oP9su-a8/edit#gid=0
https://docs.google.com/spreadsheets/d/1-GxB1FjgRIyuELLP9vvLBUv4hqHXGqrK_j-oP9su-a8/edit#gid=0
https://www.cbinsights.com/research/future-of-meat-industrial-farming/
https://www.cbinsights.com/research/future-of-meat-industrial-farming/

	A More Open Approach Is Needed to Develop Cell-Based Fish Technology: It Starts with Zebrafish
	Introduction
	A Framework for Cell-Based Lean Fish Production
	Potential Advantages of Targeting Fish
	Lean Fish as a First Fish Meat
	Meet Zebrafish, an Ideal First Species for Research and Development
	A Few Hurdles
	Starter Cells
	Signaling Molecules
	Bioreactors
	Scaffolding
	Life-Cycle Assessment

	Unknowns, Limitations, and Assumptions
	Conclusions and Recommendations
	Supplemental Information
	Acknowledgments
	Author Contributions
	Declaration of Interests
	References


