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Simple Summary: The main aim of our study is to provide real-world data on the enrichment of
gene fusions in patients affected by colorectal carcinomas, melanomas, and lung adenocarcinomas
characterized by the absence of mutations in the main driver genes and in colorectal tumours with
microsatellite instability, using a comprehensive method. By demonstrating this enrichment in a
“real-world” cohort, we confirm the feasibility of this approach, suggesting a workflow applicable in
diagnostic practice. A second aim points towards a thorough investigation of NTRK gene fusions
detected in the study by applying different techniques. We therefore provide comparative data
across in situ methods and in vitro nucleic acid-based assays to document effective NTRK gene
fusion detection.

Abstract: Agnostic biomarkers such as gene fusions allow to address cancer patients to targeted
therapies; however, the low prevalence of these alterations across common malignancies poses
challenges and needs a feasible and sensitive diagnostic process. RNA-based targeted next genera-
tion sequencing was performed on 125 samples of patients affected either by colorectal carcinoma,
melanoma, or lung adenocarcinoma lacking genetic alterations in canonical driver genes, or by
a colorectal carcinoma with microsatellite instability. Gene fusion rates were compared with in
silico data from MSKCC datasets. For NTRK gene fusion detection we also employed a multitarget
qRT-PCR and pan-TRK immunohistochemistry. Gene fusions were detected in 7/55 microsatellite
instable colorectal carcinomas (12.73%), and in 4/70 of the “gene driver free” population (5.71%:
3/28 melanomas, 10.7%, and 1/12 lung adenocarcinomas, 8.3%). Fusion rates were significantly
higher compared with the microsatellite stable and “gene driver positive” MSKCC cohorts. Pan-TRK
immunohistochemistry showed 100% sensitivity, 91.7% specificity, and the occurrence of heteroge-
neous and/or subtle staining patterns. The enrichment of gene fusions in this “real-world” cohort
highlights the feasibility of a workflow applicable in clinical practice. The heterogeneous expression
in NTRK fusion positive tumours unveils challenging patterns to recognize and raises questions on
the effective translation of the chimeric protein.

Keywords: gene fusions; NTRK genes; next generation sequencing; gene panels; agnostic biomarker;
precision medicine; colorectal carcinoma; lung adenocarcinomas; melanoma; immunohistochemistry
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1. Introduction

Practicing precision medicine in oncology demands a detailed diagnostic process
for cancer patients, which is particularly valuable for patients at an advanced disease
stage. In this scenario, the diagnostic work-up requires a combination of in situ techniques
(immunohistochemistry and in situ hybridization) with molecular profiling by in vitro
nucleic acid-based assays. In solid tumours, a series of targets that are crucial for first line
treatment choice in the metastatic setting, such as EGFR mutations, ALK, ROS1 fusions in
lung adenocarcinomas, BRAF mutations in melanomas, and KRAS mutations in colorectal
carcinomas, have demanded the introduction of clinical routine investigation of a minimum
set of genes into the diagnostic practice [1–3]. Over the past years, the use of massively
parallel sequencing (aka next generation sequencing (NGS)) in the context of clinical
sequencing programs has enabled the identification of novel putative therapeutic targets,
some of which have been observed across different malignancies, regardless of the site
of origin [4–8]. The latter observation has led to the concept of the histology-agnostic
biomarker, which is currently guiding a paradigm shift in reasoning about therapeutic
options for oncological patients. Importantly, drugs targeting some of these markers
have demonstrated impressive responses in clinical trials, and approvals from regulatory
agencies are available or currently in process [9–11]. Among these, genomic rearrangements
inducing the generation of chimeric transcripts (i.e., “fusion genes”) have acquired a central
role among tumour agnostic biomarkers [12,13]. Recent studies identified a 3% to 6%
frequency of oncogenic and/or druggable gene fusions in cohorts of patients affected by
solid tumours when using a high throughput sequencing approach [14,15].

This scenario is reshaping molecular diagnostics, which has to counterbalance the effi-
cacy and cost effectiveness of testing strategies. Indeed, the main challenges for molecular
pathology laboratories are represented by the low prevalence of certain genetic alterations,
the need to use inclusive detection methods that allow for high sensitivity, and the demand
to modulate current testing modalities to integrate gene fusion detection. Recent studies
have documented enrichment of gene fusions in tumours lacking canonical driver muta-
tions and/or harbouring microsatellite instability (MSI), at least in the context of colorectal
cancer [16–20]. In this study, we sought to evaluate the added value in the daily practice
of pursuing the detection of gene fusions involving druggable genes in patients affected
by tumours either with a wild-type result in the main gene drivers assessed in diagnostic
practice according to the currently available guidelines and/or harbouring an MSI-high
status. We adopted a targeted NGS approach with a panel including 14 genes of interest,
which enabled the investigation of recent FDA/EMA approvals for gene fusions. We
reported on the feasibility and effectiveness of the methodology, thus providing real-world
data on gene fusion testing strategies.

2. Materials and Methods
2.1. Study Design

The study was carried out on a consecutive series of patients affected by sporadic
colorectal cancer (CRC), lung adenocarcinoma (LAC), or melanoma (MEL), who underwent
molecular diagnostic analysis on formalin fixed paraffin embedded (FFPE) tissue at our
institution (FPO-IRCCS Candiolo Cancer Institute, Candiolo, Italy) between 2015 and 2020.

The cohort selection for the fusion evaluation was carried out by interrogating the
pathology reports with the following stringent inclusion parameters: (1) KRAS/NRAS/BRAF
wild-type CRCs; (2) LACs not harbouring EGFR, KRAS, NRAS, BRAF, and ERBB2 muta-
tions, and/or ALK, ROS1, RET rearrangements; (3) BRAF/NRAS wild-type MELs; and
(4) CRCs showing microsatellite instability. Tumours meeting the criteria described in
1–3 were labelled as part of the “gene driver free” cohort. A series of 161 candidate pa-
tients were identified. Archival haematoxylin and eosin (H&E) slides corresponding to
the leftover tissue following the diagnostic analysis were reviewed by a pathologist (CM).
Following the review of the tissue sample availability and tumour cell content, the final
cohort was composed of 125 cases (Figure 1). The molecular diagnostic analysis originally
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performed included the sequencing of hot-spot regions of different genes (Myriapod Colon
and Lung status kits, Diatech Pharmacogenetics, Jesi, Italy) on the MassARRAY System
(Agena Bioscience, Hamburg, Germany). CRCs and MELs were investigated for hotspots
in the KRAS/BRAF/NRAS genes; LACs were investigated for hotspots in five genes
(EGFR/KRAS/NRAS/BRAF/ERBB2). ALK and ROS1 fusions for diagnostic purposes
were scored negative by immunohistochemistry (IHC), with the VENTANA ALK (D5F3)
CDx Assay (Roche-Ventana, Tucson, AZ, USA) and with the anti- ROS1 antibody clone
D4D6 (Cell Signalling, Danvers, MA, USA; dilution 1:100, antigen retrieval with the BOND
Epitope Retrieval Solution 2, pH 9.0, for 30 min). RET fusions were analysed using the
EasyPGX ready ALK, ROS, RET, and MET qRT-PCR kit (Diatech Pharmacogenetics). CRCs
were assessed for microsatellite status using the MSI analysis system v1.2 panel (Promega
Corp, Madison, WI, USA), and the products were analysed by capillary electrophoresis
using an ABI 3100 Genetic Analyzer (Applied Biosystems, Foster City, CA, USA). The
samples were considered to be MSI when harbouring at least two unstable loci [10].

Figure 1. Representation of the “real-world” cohort of the study. (A) From an initial population of 161 patients, the
histopathological review excluded samples without sufficient tumour cell content. Seventy tumour samples “gene driver
free” and 55 MSI cases were eligible for RNA extraction and analysis, leading to a final cohort of 125 patients. (B) Final
cohort composition: number of melanoma (MEL), colorectal cancer (CRC), and lung adenocarcinoma (LAC) patients
according to gender, subdivided in “gene driver free”, and microsatellite instable (MSI) patients.

2.2. RNA Extraction

RNA was extracted from 7-µm-thick, mesodissected FFPE tissue sections using the
Maxwell® RSC RNA FFPE Kit (Promega) and quantified by Nanodrop 1000 and Qubit
(Thermo Fisher Scientific, Waltham, MA, USA) assays. Quality was assessed with the
Archer Pre-Seq RNA quality control (QC) qPCR Assay (ArcherDX, Boulder, CO, USA),
with a threshold Cq < 31.
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2.3. NGS-Based Fusion Transcript Identification

RNA-based NGS was performed with the Archer FusionPlex Lung panel (ArcherDX),
comprising 14 genes (ALK LRG_488, BRAF LRG_299, EGFR LRG_304, FGFR1 LRG_993,
FGFR2 LRG_994, FGFR3 LRG_1021, KRAS LRG_344, MET LRG_662, NRG1 NM_013956,
NTRK1 LRG_261, NTRK2 NM_001007097, NTRK3 NM_001007156, RET LRG_518, and ROS1
LRG_997). The selection of the panel was based on the feasibility of the library preparation
and on the coverage of the kinase coding-genes with the greatest prognostic and predictive
impact with respect to the malignancies included in the study. After cDNA synthesis end
repair and A-tailing, a compatible IonTorrent (Thermo Fisher Scientific) adapter was added
to each sample. Two anchored-PCR processes amplified the targets and their flanking
regions, allowing for the identification of both original transcripts, known fusions, and
non-canonical fusion partners [21]. Libraries were quantified and diluted at 50 pM for se-
quencing on IonTorrent GeneStudio S5 Plus (Thermo Fisher Scientific) for an expected depth
of at least 500,000 reads/sample. The Archer Analysis suite (version 6.2) was exploited
for the QC and fusion analysis. Samples with fusion QC unique start sites <10 and total
reads <500,000 were re-sequenced, and the UBAM was merged with Samtools [22]. Only
“strong evidence” fusions were considered as positive, by applying stringent default filters,
as follows: (i) reads that support the fusion ≥10; (ii) “fusion_percent_of_GSP2_reads”,
i.e., number of breakpoint reads that support the fusion/total number of reads spanning the
breakpoint ≥10%; and (iii) “min_unique_start_sites_for_strong_fusion” ≥10. Investigators
were blinded to the IHC and qRT-PCR results when assessing the data.

2.4. qRT-PCR for NTRK Genes

The qRT-PCR Easy PGX NTRK (Diatech Pharmacogenetics), which allowed for identi-
fying a total of 32 known NTRK1/2/3 gene fusions, was run from 200 ng of RNA. Data were
analysed with AriaDx software v 1.4 (Agilent, Santa Clara, CA, USA) and were interpreted
using the EasyPGX® Analysis Software v.4.0.9 (Diatech Pharmacogenetics). Investigators
were blinded to the NGS and IHC results when assessing the data outputs.

2.5. IHC

Three µm-thick tissue sections were stained using the pan-TRK assay, clone EPR17341,
in the form of the CE-IVD/class I US analytical assay by Roche-Ventana and the RUO anti-
body by Abcam. IHC reactions were performed on a Ventana BenchMark Ultra Autostainer
(Roche Diagnostics, Tucson, AZ, USA). For the Roche pan-TRK assay, we followed the
manufacturer’s instructions. The RUO antibody was diluted 1:500 and antigen retrieval
Ultra Cell Conditioning 1 (CC1) for 64 min was used. On each slide an external control was
included (KM12 cell block sections). Each immunohistochemical run included negative
controls with the use of a negative reagent control only. IHC scoring was performed
according to the European Society for Medical Oncology (ESMO) Translational Research
and Precision Medicine Working Group recommendations [9]. Investigators were blinded
to the NGS and qRT-PCR results when assessing the IHC reactions.

2.6. Fluorescence In Situ Hybridization (FISH) Analysis

FISH was performed on 5 µm-thick sections of FFPE samples corresponding to the
three cases identified as NTRK fusion positive by NGS, qRT-PCR, and IHC. FISH was
used with a confirmatory approach intent; hence, investigators were not blinded to other
data outputs when assessing FISH. The ZytoLight SPEC NTRK1 or NTRK3 Dual Color
Break-Apart Probes (Zytovision, Bremerhaven, Germany) were used following the man-
ufacturer’s instructions. Scoring was performed on multiple areas (range of 10–38) and
was acquired at 40× with the Metafer scanning system (MetaSystems srl, Milan, Italy) and
Axio Imager epifluorescence microscope (Carl Zeiss, Oberkochen, Germany). Multiple
fields were scanned as the IHC reactions showed heterogeneous patterns of TRK expres-
sion. Isis TissueFISH imaging software (MetaSystems srl) was used to analyse the NTRK
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rearrangements, with review by two independent observers with expertise in tissue-based
FISH analysis (LC/CM).

2.7. In Silico Analyses

“Gene driver positive” control population was selected in silico by interrogating two
independent cohorts of patients, accessed through the cBioPortal website [23,24]. We
interrogated the Memorial Sloane Kettering Cancer Centre (MSKCC) Metastatic Colorectal
Cancer dataset for CRCs and the MSK-IMPACT Clinical Sequencing Cohort for LACs
and MELs. The CRCs included in the MSK-IMPACT Clinical Sequencing Cohort were
not adequate because of the lack of MSI data. Each control set was selected based on
the following specific criteria: (1) the “gene driver positive” CRC cohort consisted of
microsatellite stable (MSS) CRCs with mutations affecting KRAS, NRAS, and BRAF genes
for the positions included in our analysis; (2) “gene driver positive” LACs consisted of
morphologically defined adenocarcinomas of the selected cohort harbouring mutations in
the EGFR, KRAS, NRAS, BRAF, and ERBB2 genes for the positions included in our analysis,
and/or and fusions in either ALK, ROS1, or RET genes; (3) the “gene driver positive” MEL
cohort consisted of the melanomas of the selected cohort positive for mutations in the
BRAF and NRAS genes for the positions included in our analysis; and (4) the CRC MSS
cohort was defined using the MSI score <10, as previously reported [7]. Cases presenting a
POLE-dependent profile (n = 8) were excluded. For gene rearrangements, we considered
only the 14 genes included in the Archer LungFusion Plex Panel (ArcherDx, Boulder, CO,
USA). Data were downloaded from the cBioPortal (https://www.cbioportal.org/, accessed
on 20 February 2021).

2.8. Statistical Analysis

Statistical analyses were performed using GraphPad Prims v.8. The Spearman test was
applied to evaluate the correlations between pre-seq and the Archer fusion QC. Fisher’s
exact test compared the fusion rates between the “gene driver free” and MSI series and the
in silico control series. p-values < 0.05 were considered statistically significant.

3. Results
3.1. Definition of “Gene Driver Free” and MSI Cohorts for Downstream Molecular Analyses

We identified 105 “gene driver free” cases (40 CRCs, 40 MELs, and 25 LACs) and
56 MSI CRCs for a total of 161 patients (Figure 1).

Following pathological review, small LAC samples, MEL micrometastases, and CRCs
with a low cellularity were excluded, leading to a final cohort of 125 cases, comprising
70 “gene driver free” and 55 MSI CRCs (Figure 1). Of note, the non-eligibility of these sam-
ples stemmed from the small amount of tissue left following previous molecular analyses,
and should not be interpreted as non-feasibility of the molecular analysis workflow de-
scribed in this study. Even if limited, a fraction of these samples could have been analysed,
however, we decided to err on a more conservative side, as tissue exhaustion would have
most likely occurred.

The majority (60%) of samples belonged to stage III-IV patients, whereas the remaining
40% of samples were predominantly composed of CRCs belonging to the MSI cohort
subjected to MSI testing for prognostic stratification, even in the early disease setting
(Table 1).

All of the MSI CRCs were wild-type in the target genes, and all of the colorectal cancers’
“gene driver free” were MSS. RNA extraction was successful for all of the cases, with an
average yield of 3.4 µg (range: 0.2–7 µg). Two samples showed an Archer PreSeq assay
Cq > 31, with values of 31.4 and 32, respectively. The clinico-pathological characteristics of
the series are shown in Table 1.

https://www.cbioportal.org/
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Table 1. Clinico-pathological features of the patient series.

Age (Range)

CRC
LAC MEL

MSI Driver-Free

68 (26–88) 62 (37–80) 66 (55–78) 65 (37–90)

Gender
Male 23 21 9 14

Female 32 9 3 14

Total 55 30 12 28

Specimen type

Resection 55 23 8 15

Biopsy 0 6 2 13

Cytologic sample 0 1 2 0

Total 55 30 12 28

Lesion type

Primary tumour 55 21 10 21

Metastatic deposit 0 9 2 7

Total 55 30 12 28

Stage

I 14 0 3 * 0

II 27 3 0 2

III 11 10 2 12

IV 3 17 7 14

Total 55 30 12 28
MSI—microsatellite instability; CRC—colorectal cancer; LAC—lung adenocarcinoma; MEL—melanoma. * Molec-
ular test performed on second primary tumours.

3.2. Targeted NGS QC Results Reveal High Feasibility of the Assay in FFPE Samples

The series of 125 cases underwent library preparation, including two RNAs with
Archer QC below the established standard and library preparation had a 100% success rate,
with only two melanin-rich melanoma samples achieving a suboptimal result (<200 nM).
Sequencing on the IonTorrent GeneStudio S5 instrument reached optimal read depth
levels for 112/127 (88%). The 15 cases with read depths below 500,000 reads/sample
were re-sequenced. The UBAM sequence files produced from these cases were merged,
and we obtained a final mean of 813,103 reads/sample (487,000–3,091,921), with a mean
on-target of 96%. The mean fusion QC value was 66.64 (range of 8.86–225). The two
melanin-rich samples with a fusion QC value below 10 (8.86 and 9.23, respectively) showed
a high number of total reads (1,107,457 and 1,146,724) and were included in the subsequent
analysis. To evaluate a possible relationship between PreSeq QC and sequencing data,
we correlated both the initial quantification and the Ct value of the PreSeq Archer kit,
identifying a significant correlation between lower Ct values (e.g., high quality RNAs)
and a higher Fusion QC score (Pearson r = −0.30, p < 0.001). No correlation was detected
between the initial RNA concentration and the Fusion QC score, or between the total reads
and the RNA quality control values.

3.3. MSI and ”Gene Driver Free” Patients Are Enriched for Fusion Genes, as Detected by the
Targeted RNA-Based NGS Panel

We identified 11 gene fusions (8.8%, 11/125), in 7 out of 55 MSI CRCs (12.73%) and in
4 out of 70 of the “gene driver free” population (5.71%), namely three MELs (3/28, 10.7%),
and one LAC (1/12, 8.3%), whereas no fusions were identified within the “gene driver free”
MSS CRCs (Table 2, Figure 2).



Cancers 2021, 13, 3376 7 of 17

Table 2. Summary of detected gene fusions.

ID Tumour Type Cohort Tumour Cell
Content (%) Rearrangement # READS Reading Frame

4_DRIVER FREE MEL Driver Free 90 BRAF Domain Duplication 258 In frame

53_DRIVER FREE MEL Driver Free 80 EGFR ex26→LOC100996654 45/67 n.a.

34_MSI CRC MSI-CRC 60 TPM3 ex7→NTRK1 ex10 72/513 In frame

11_DRIVER FREE LAC Driver Free 70 ETV6 ex4→NTRK3 ex14 23/23 In frame

1_MSI CRC MSI-CRC 50 ETV6 ex5→NTRK3 ex15 33/45 In frame

3_MSI CRC MSI-CRC 80 HGF intron16→ALK ex2 10/21 Out of frame

48_DRIVER FREE MEL Driver Free 80 MET ex14 skipping 342 In frame

28_MSI CRC MSI-CRC 50 STRN ex3→ALK ex20 78/252 In frame

53_MSI CRC MSI-CRC 70 TRIM24 ex3→BRAF ex10 61/170 In frame

55_MSI CRC MSI-CRC 80 CCDC6 ex1→RET ex12 122/784 In frame

44_MSI CRC MSI-CRC 70 NCOA4 ex9→RET ex12 54/68 In frame

MSI—microsatellite instability; CRC—colorectal cancer; LAC—lung adenocarcinoma; MEL—melanoma; n.a.—not assessable.

Figure 2. Schematic illustration of the detected gene fusions and rearrangements. The circos plot sum-
marizes the fusion events identified in the “real-world” cohort. The curved lines show partner genes,
with blue lines representing inter-chromosomal fusions, red lines indicating intra-chromosomal
fusion between different genes, and green lines representing intra-chromosomal rearrangements
within the same gene.

Two fusions involved NTRK3 with the canonical ETV6 partner, characterized by two
different breakpoints (Figure 2). The ETV6 ex5→NTRK3 ex15 was identified in a MSI CRC,
whereas the ETV6 ex4→NTRK3 ex14 fusion was detected in a LAC. Another NTRK gene
fusion was identified in an additional MSI CRC, which harboured the TPM3 ex7→NTRK1
ex10 (Figure 2). The other gene fusions detected in the MSI CRC cohort included two
cases with ALK fusions (HGF intron16→ALK ex2, and STRN ex3→ALK ex20), 2 cases
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with RET fusions (CCDC6 ex1→RET ex12, NCOA4 ex9→RET ex12) and one case with
the TRIM24 ex3→BRAF ex10 fusion (Figure 2). Within the “gene driver free” cohort, in
addition to the ETV6→NTRK3 fusion positive LAC, we also detected three rearrangements
in three independent melanoma patients: a rare EGFR ex26→LOC100996654 fusion, a
BRAF intradomain duplication between ex10 and ex18 and a MET ex14 skipping (Figure 2).
The Archer Analysis software also provided an evaluation of frame of the fused RNA: 9 out
of 11 rearrangements were predicted to be in frame. The HGF intron 16→ALK ex2 was
predicted to be out of frame, whereas the EGFR ex26→LOC100996654 was not predictable,
due to the unknown behaviour of the LOC100996654 partner (Table 2).

3.4. Enrichment of Gene Fusions in the Study Cohort Is Significantly Higher When Compared to
Microsatellite Stable and “Gene Driver Positive” MSKCC Cohorts

We evaluated rates of gene fusions detection in “gene driver free” versus “gene
driver positive”, MSS versus MSI patients by interrogating publicly available datasets
of the Memorial Sloane Kettering Cancer Centre (in silico MSKCC cohorts). Of note, for
the definitions of “gene driver free” and “gene driver positive” in the in silico MSKCC
cohorts we considered only mutations in genes and gene positions sequenced for diagnostic
purposes, thus allowing comparison with our cohort. Hence, we considered “gene driver
free” MSS CRC patients without mutations in KRAS, NRAS and BRAF, LAC patients
without EGFR, KRAS, NRAS, BRAF and ERBB2 mutations and with no ALK, ROS1 and RET
fusions and MEL patients without BRAF and NRAS mutations. All patients harbouring
mutations outside the covered regions were excluded. An MSI score cut-off of 10 was
applied to discriminate between the CRC MSI (MSI score > 10) and MSS (MSI score < 10).
The in silico cohorts are summarized in Figure 3. In the MSKCC MSI-CRC cohort, 4.04%
(4/96) of patients harboured a gene fusion in the included genes, with a significantly higher
prevalence compared with the MSS cases (8/987, 0.78%, p = 0.016). Similarly, the frequency
of gene fusions we detected in our MSI-CRC cohort (12.73%, 7/55) was significantly higher
than that observed in the MSKCC MSS-CRC cohort (p < 0.0001). Our MSI-CRCs showed a
higher prevalence of fusions than the MSKCC MSI-CRC cohort, although the difference was
not statistically significant (12.73% versus 4.04%, p = 0.09). We observed that the MSKCC
MSI-CRC cohort also included patients (64/97, 66%) with either a BRAF, NRAS, or KRAS
mutation, whereas our MSI-CRC cohort was entirely composed of BRAF/NRAS/KRAS
wild-type tumours. When analysing only the MSKCC CRC cases that were MSI and
BRAF/NRAS/KRAS wild-type, the rates of gene fusion detection were superimposable
(12.73%, 7/55 in the study cohort and 12.04%, 4/33 in the MSKCC cohort). Interestingly, all
of the reported fusions in the MSKCC cohort (n = 4) involved an NTRK gene (two NTRK3
and two NTRK1 fusions), whereas in our series, we detected two NTRK gene fusions
(one NTRK3 and one NTRK1), two ALK, two RET, and one BRAF gene fusions. Within the
context of “gene driver free” patients, 3.04% (35/1152) and 5.71% (4/70) of cases harbouring
gene fusions were identified in the MSKCC and in the present cohort, respectively; both
rates were significantly higher than those observed in the “gene driver positive” MSKCC
cohort (0.70%, 11/1564). Those “gene driver positive” tumours from the MSKCC cohort
harbouring a fusion were represented by the following: (i) two CRCs with a NRAS p.G13D
(CLVS1-FGFR1 fusion) and BRAF p.V600E (BRAF-intragenic rearrangement), respectively;
(ii) two melanomas showing concomitant fusions and driver gene mutations, one with a
BRAF p.V600E and the BRAF-intragenic rearrangement and one with a NRAS p.Q61R and
an NTRK1 gene fusion; and (iii) seven LACs patients displaying both driver gene mutations
and fusions, of which four harboured the same EGFR ex19 deletion (p.E746_A750del), two
KRAS (p.G12C and p.G12V) mutations, and one BRAF p.V600E mutation. Five of these
patients carried BRAF rearrangements, one showed a FGFR3 fusion, and one an NTRK1
gene fusion. When dissecting the “gene driver free” patients according to histology, in our
“gene driver free” CRC cohort, which was also MSS, we did not identify any fusions. These
types of patients also showed a low frequency of fusions in the MSKCC cohort (1.30%,
6/463), which was not significantly different from the prevalence observed in the CRC
“gene driver positive” (0.33%, 2/603 p = 0.15). In the “gene driver free” LACs, the fusion
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detection rate was 8.33% (1/12) in our cohort compared with the 4.08% (21/515) observed
in the in silico MSKCC cohort, the latter being significantly higher than the 0.88% (7/791)
observed in the “gene driver positive“ LACs of the in silico MSKCC cohort (p < 0.001). The
difference between our cohort and the MSKCC in silico cohort did not reach significance,
most likely due to the low number of LAC cases in our study. The “gene driver free” MEL
cases showed a higher frequency of fusion events both in our (10.71%, 3/28) and in the in
silico MSKCC cohort (4.60%, 8/174), the first being significantly higher than that of in silico
MSKCC MELs (1.76%, 2/170, p = 0.02), and the second showing a trend for significance
(p = 0.07).

Figure 3. Comparison of the distribution of fusion gene detection rates across “real-world” and in silico cohorts. (A) Graph-
ical representation of the in silico microsatellite instable (MSI) cohort and the description of fusion prevalence in both the in
silico and the “real-world” MSI cohorts. (B) Graphical representation of the cohort as a whole (top) and of the subgroups of
cases according to the distinct histology and comparison between “real-world” and in silico data. The percentage of samples
harbouring a fusion and significant p-values of the contingency tables are shown in a horizontal bar plot. Fusion positive
cases are color-coded according to the legend (bottom-left). Dashed red lines separate the study cohort (“real-world”) from
the in silico Memorial Sloane Kettering Cancer Centre (MSKCC) cohorts.

3.5. Expression of TRK Chimeric Proteins in NTRK Fusion Positive Tumours Is Variable, as
Detected by Immunohistochemistry

For the NTRK1/2/3 gene fusion detection, we also investigated two alternative meth-
ods, i.e., multi-target qRT-PCR and IHC using both the CE-IVD/class I US analytical assay
pan-TRK by Roche-Ventana and the RUO pan-TRK antibody by Abcam. These two as-
says share the same antibody clone (EPR17341). The success rate of qRT-PCR was 98.4%
(123/125). Cases with test failure were MELs rich in melanin pigment. All of the identified
fusions were confirmed in two independent experiments. IHC scoring was performed
using a highly conservative approach, as suggested by international recommendations [9],
as follows: any detectable staining in cancer cells, even when focal and/or faint, was
considered as a possible positivity of the assay. Accordingly, we detected specific staining
in 13/125 cases (10.4%), with overall concordant results between the two assays. Out of
the 13 cases showing a TRK expression, three (23%) harboured an NTRK fusion: these
corresponded to one LAC harbouring an ETV6→NTRK3 and two CRCs, harbouring the
TPM3→NTRK1 and the ETV6→NTRK3 fusions, respectively (Figure 4).
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Figure 4. Summary of the detected fusion events involving NTRK genes. Each panel consists of a schematic three-tier
representation of the fusion identified by the NGS assay and the two pan-TRK antibody IHC stainings. The fusion point is
identified by a red bar at the chromosomal loci. Below the chromosomal ideograms, the canonical transcripts reported by
Ensembl (release 103) illustrate the transcriptional context of the involved genes (exons are indicated by orange boxes and
introns are indicated by grey arrow-headed lines). Each row is a different isoform of the transcript reported by Ensembl. At
the bottom, the fusion points between the Archer sequenced exons (blue boxes) and the exact chromosomal position of the
breakpoint are reported. (A) Representation of the fusion between TPM3 and NTRK1 genes. The illustration reports the
rearrangement breakpoint, the Archer panel technical output confirming the fusion, and the COSMIC ID. Representative
micrographs of the CRC sample harbouring the fusion show a diffuse cytoplasmic expression with focal membranous
linear patterns in the experiments run with both CE-IVD and RUO assays (scale bars: top panels, 100 µm; bottom panels,
50 µm). (B) Representation of the fusion between the ETV6 ex4 and NTRK3 ex14 genes. The illustration reports the
rearrangement breakpoint, the Archer panel technical output confirming the fusion, and the COSMIC ID. IHC images
highlight the presence of a subpopulation of tumour cells of the LAC with papillary features displaying an intense nuclear
expression, as demonstrated by both assays (scale bars: top panels, 100 µm; bottom panels, 50 µm). (C) Representation of
the fusion between ETV6 ex5 and NTRK3 ex15 genes. The illustration reports the rearrangement breakpoint, the Archer
panel technical output confirming the fusion, and the COSMIC ID. A weak cytoplasmic expression is present in this CRC in
both experiments, with the RUO assay showing a slightly more granular staining (scale bars: top panels, 50 µm; bottom
panels, 25 µm).
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The TPM3→NTRK1 CRC showed strong and diffuse cytoplasmic staining in >80% of
tumour cells, featuring occasional linear staining along the membrane (Figure 4A). The
ETV6→NTRK3 LAC showed an intense but focal nuclear expression (<10% of tumour cells)
(Figure 4B). The ETV6→NTRK3 CRC showed faint cytoplasmic staining identified in a
subpopulation of 30% of tumour cells in the RUO assay, and faint/barely perceptible cyto-
plasmic staining in about 30% of tumour cells when using the CE-IVD assay (Figure 4C).
These results are in line with the number of unique starting sites (SS) detected by the NGS
panel—the fusion involving NTRK1 was identified by 72 unique SS reads, whereas the two
less expressed fusions of NTRK3 by 23 (ETV6→NTRK3 in the LAC) and 33 (ETV6→NTRK3
in the CRC) unique reads (Table 2). Based on these data, the sensitivity of IHC for both
antibodies was 100%, and the specificity was 91.7%. Tumours showing TRK expression
without evidence of an NTRK fusion according to the molecular assays used displayed
faint cytoplasmic staining in most of the cases (8/10), whereas two cases displayed focal
expression (<10% of tumour cells) of a moderate intensity, either cytoplasmic or nuclear. In
the NTRK gene fusion positive cases, we also performed FISH analysis with the specific
probes for the NTRK gene involved in the fusion (Figure 5). In the CRC sample harbouring
the ETV6→NTRK3 fusion and showing faint/barely perceptible IHC staining, FISH with
NTRK probes revealed a subpopulation of cells (quantified as 17%) harbouring split-apart
signals. More challenging was the ETV6→NTRK3 fusion positive LAC, where occasional
nuclei with signals that were slightly apart could be observed, even though we acknowl-
edge that the distance separating the signals was borderline according to the standard FISH
scoring criteria. In addition, the latter FISH pattern would be consistent with a negative
result according to the 15% cut-off conventionally applied in diagnostic FISH testing for
gene fusion detection. Finally, the FISH test performed on the TPM3→NTRK1 fusion
positive CRC showing a diffuse and strong pan-TRK expression resulted in suboptimal
quality following several attempts on multiple tumour blocks: only occasional nuclei
presented signals, which were slightly split-apart; nevertheless, the test would be scored as
indeterminate in diagnostic practice.

Figure 5. Cont.
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Figure 5. Representative IHC and FISH images of the cases identified as harbouring an NTRK
gene fusion (scale bars—IHC images: 50 µm; scale bars—FISH images = 5 µm). (A,B) The FISH
test for the CRC harbouring the intrachromosomal TPM3→NTRK1 rearrangement, as identified
by NGS, and displaying strong and diffuse panTRK expression by IHC was suboptimal in terms
of quality. Following multiple attempts in all of the available tumour blocks, in scattered tumour
cells showing red and green signals, the NTRK1 probes appeared slightly split-apart. This FISH
test would have led to an indeterminate result in a diagnostic setting. (C,D) In the LAC sample
harbouring the ETV6→NTRK3 fusion, occasional (<10%) nuclei with signals pertaining to NTRK3
probes that were slightly split-apart could be identified. It should be acknowledged that according
to standard FISH scoring criteria, (i) the distance between signals may be debatable and (ii) the test
would be considered negative, given that the positive nuclei do not reach the 15% cut-off used in the
diagnostic setting. (E,F) The CRC sample harbouring the ETV6→NTRK3 fusion showed split-apart
NTRK3 signals in about 17% of the tumour cell population (here illustrated). This FISH test meets
the criteria for the identification of a genetic rearrangement involving NTRK3.

4. Discussion

Here, we report a significant number of gene fusions detected by a relatively small,
targeted RNA-based NGS panel (14 genes) in a real-world cohort of advanced stage patients
affected by colorectal cancer, melanoma, or lung adenocarcinoma proven to be wild-type
by diagnostic hotspot mutational analysis for actionable alterations, or with a diagnosis of
MSI colorectal carcinoma. In addition, we provide comparative data for distinct techniques
employed for NTRK gene fusion detection, and show the following: (i) 100% sensitivity
of immunohistochemistry, yet challenging patterns to be recognized in order not to miss
a possible gene fusion; (ii) good performance of multiplex qRT-PCR, even though not all
of the samples could be successfully analysed; and (iii) an excellent performance of an
RNA-based NGS panel, even when the pre-sequencing quality control was suboptimal for
a relatively small subgroup of samples.

We have recently witnessed the detection of specific genetic alterations in a histology-
independent fashion, leading to the establishment of tumour agnostic biomarkers. MSI
has pioneered this field; as a predictor of the response to immunotherapy, it led to the
first agnostic approval (pembrolizumab treatment) in 2017 [25]. More recently, gene
fusions involving kinases have been described across several malignancies. Among these,
NTRK gene fusions represent the boldest example overall, with a prevalence of 0.3%
in a plethora of common malignancies and high frequencies (>95%) in a handful of rare
histologies [9]. NTRK gene fusion positive tumours have also provided successful examples
of novel targeted therapies in the clinical setting, with substantial and durable responses
documented for first generation TRK inhibitors, which led to FDA and EMA approvals
of larotrectinib and entrectinib for patients at an advanced stage [26]. Moreover, several
trials targeting gene fusions are on-going, e.g., in the case of FGFR1/2/3, ROS1, ALK, and
RET genes [27]. The RET inhibitor selpercatinib has recently been approved for lung and
thyroid cancers harbouring RET gene mutations or fusions [10], and pralsetinib has been
recently reported to be a new, well-tolerated, promising treatment option for patients with
RET fusion-positive LACs [28]. Other examples of rare, yet actionable genetic alterations
in more than one histology are offered by rearrangements of the MET (skipping of exon
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14) and BRAF genes. Retrospective studies and clinical trials have shown that MET exon
14 skipping alterations confer sensitivity to MET inhibitors (crizotinib or capmantinib) [29].
A more complex scenario is reported for BRAF rearrangements: indeed, although both
the V600E variant and the non-V600E mutations are approved targets for LACs, CRCs,
and MELs [30], little is known about BRAF fusions and intra-domain duplications. Kinase
domain duplications are reported as a mechanism of resistance to classical BRAF inhibition;
however, lesions harbouring this alteration have been proven to be sensitive to the pan-RAF
inhibitor LY3009120 [31]. Different fusion partners have also been recently shown to confer
heterogeneous oncogenetic potentials to BRAF fusions [32]. In particular, in organoid
models of CRCs, TRIM24-BRAF fusions conferred resistance to EGFR and MEK inhibition,
whereas substantial sensitivity to RAF and ERK inhibition was reported both in single and
combined therapy [32].

In this context, the challenge for diagnostic practice is two-fold: (i) to cope with the
low rate of detection of these alterations across common malignancies and (ii) to re-think
molecular testing based more likely on the genetic alteration rather than the site of origin
of the tumour. Hence, major efforts are currently being put in place to identify a subgroup
of patients who may be the most likely carriers of these rearrangements [14,15]. Our
study demonstrates a high frequency of targetable kinase fusions in tumours lacking a
concomitant alteration in canonical driver genes, or with a background of instability of
the microsatellite sequences when in the context of CRC. The correlation between the
enrichment of gene fusions and MSI CRCs has been previously reported. Cocco and co-
workers [16] reported a 5% fusion detection in MSI/MMR-deficient colorectal carcinoma
and 15% MSI/MMR-deficient colorectal carcinoma with wild-type RAS/BRAF. Similarly,
Sato et al. [20] identified 11 fusion kinases in MSI CRCs that lacked oncogenic KRAS/BRAF
missense mutations. Of note, both studies observed that kinase fusions were associated
with sporadic MSI CRC and with MLH1 promoter hypermethylation status [16,20]. These
data are in line with our sporadic series of MSI CRCs, which were all RAS/BRAF wild-type.
It appears, therefore, that in CRCs, mutual exclusivity between mutations in the main
MAPK genes and gene fusion events happens in the context of an MSI background [16,20].
Indeed, no significant gene fusion enrichment was observed in “gene driver free” MSS
patients, as identified in our cohort and in the in silico MSKCC datasets re-analysed here.
With respect to the degree of mutual exclusivity between mutations in cancer associated
driver genes and fusion events across distinct histologic types, a pioneering in silico work
analysing nearly 9000 cases of the TCGA cohort from 33 different tumour types identified
299 driver genes, with few patients with concomitant mutations and fusions in cancer-
related genes (around 6%, when considering variants affecting also tumour suppressor
genes) [15]. The rare simultaneous detection of chimeric transcripts in driver genes and
mutations of the MAPK pathway has also been documented in patients with melanoma,
pancreatic, and lung cancers [17–19]. Of note, all of the studies reporting on this mutual
exclusivity were based on wide genomic screening, with a declared discovery research
approach. Although a comprehensive genomic profiling of tumours would be informative
from the beginning for advanced stage patients, its large-scale applicability in clinical
diagnostic practice is still questionable. Nevertheless, clinical sequencing can be exercised
at different levels of complexity. In this study, we aimed to downscale this approach to
a minimum number of genes analysed in the clinical setting with the implementation of
an additional panel, which was rather small yet informative with respect to the current
FDA/EMA approvals. We were able to demonstrate that rare alterations inducing the
generation of chimeric transcripts are significantly increased in LACs, MELs, and MSI-
CRCs that have a wild-type result for the limited number of genes currently analysed to
decide standard of care first line treatment. The proven feasibility of the method and the
identification of these “enriched populations” encourage the pursuit of gene fusions in this
context. Data were provided across three different malignancies, thus paving the way for
an agnostic process that is centred on the genetic alterations and feeds distinct histologic
types. Given the complexity of NTRK gene fusion detection, which involves three different
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genes, we also sought to investigate the performance of different testing strategies that
can be easily applied in diagnostic practice. All of the NTRK gene fusions identified in
our series by targeted RNA-based NGS have been previously reported and are part of
the 32 known NTRK fusions included in the qRT-PCR assay. This is the reason for the
100% sensitivity of this assay, which per se has a limited reference range. Nevertheless,
three melanoma samples particularly rich in melanin failed to be analysed by qRT-PCR,
whereas they showed acceptable results with RNA-based NGS. The ability of NGS to
identity chimeric transcripts has been widely described and debated. In a recent paper [33],
commercially available multitarget sequencing methods were compared in order to evalu-
ate NTRK1/2/3 fusions, and the authors reported a strong concordance across different tests.
Heyer and colleagues [34] described an increase in the fusion diagnostic rate from 63% to
76% compared with mono-target FISH and qRT-PCR. Immunohistochemistry represents a
possible screening tool in the context of the so called “two-step approach”, where a reflex
molecular test is mandatory in order to ascertain whether the detected expression stems
from the presence of an NTRK gene fusion [9]. Indeed, the TRK inhibitor prescription relies
on the identification of NTRK gene fusion at a molecular level. In our study, we report a
100% sensitivity and 91.7% specificity for this technique. NTRK expression was variable
in terms of pattern, intensity, and pervasiveness across the tumour cell population. The
expression detected in tumours that were proven NTRK wild-type featured preferably faint
and/or barely perceptible staining; however, two cases showed nuclear or cytoplasmic
expression of a moderate intensity. A strong TRK expression was only observed in two
cases harbouring an NTRK gene fusion. The TPM3-NTRK1 fusion positive CRC displayed
strong and diffuse cytoplasmic staining with focal membrane enhancement, whereas the
ETV6-NTRK3 fusion LAC showed strong nuclear expression in a subpopulation (10%) of
tumour cells. Finally, the ETV6-NTRK3 fusion positive CRC demonstrated faint/barely
perceptible cytoplasmic staining, which was too subtle to be detected at first glance. Of note,
tumours harbouring NTRK3 fusions have been previously shown to have much weaker and
more focal staining for pan-TRK than tumours with NTRK1/NTRK2 fusions [9,35], and a
lower sensitivity of pan-TRK assays has been specifically reported for NTRK3 fusions [9,35],
which also typically show nuclear expression patterns [9,35]. Taken together, these results
support the recommendation of considering any type of staining whenever IHC is used as
a screening tool [9], and suggest being very conservative in the assessment of this assay.
Nevertheless, the detailed comparative data we report may open questions on the response
to TRK inhibitors. The expression of the protein product of the NTRK chimeric gene is
of particular importance because it represents the pharmacological target. It remains to
be determined whether the variable and possibly heterogeneous TRK expression that we
document here may result from fusions that did not effectively or pervasively result in
the translation of the protein and whether this may correspond to differential response to
TRK inhibitors. Of note, the retrospective evaluation of our NGS data of NTRK fusion posi-
tive tumours confirmed this heterogenous expression: the absolute quantity of the NTRK
chimeric transcripts, calculated as the number of unique reads, was highly variable within
the positive samples, and correlated with both the qRT-PCR and IHC results. Finally, we
also tested the FISH analysis, even though it was uniquely used as a confirmatory method-
ology in those cases identified as positive by NGS and IHC. The output of this technique
was challenging in terms of performance and interpretation, thus further discouraging its
implementation in the context of NTRK gene fusion testing.

5. Conclusions

In conclusion, we have demonstrated a strategic workflow for enriched gene fusion
detection in cancer patients, easily applicable to the clinical setting, at first diagnosis, and
over the treatment course. This was demonstrated in three different malignancies, thus
paving the way for an agnostic process centred on genetic alteration to pursue feeding dis-
tinct malignancies to be investigated. Although mutations in canonical driver cancer genes
and gene fusions are not entirely mutually exclusive events, there is a clear enrichment of
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chimeric genes in tumours that have been proven to be wild-type following the essential
molecular screening currently offered to all advanced stage patients. Similarly, MSI CRC
patients are worth additional investigation. Our comparative data specific to NTRK gene
fusion detection show the feasibility of RNA-based NGS targeted panels on FFPE samples,
and the variable TRK expression in NTRK fusion positive tumours, thus voicing a word of
caution whenever interpreting this assay and opening questions related to the correlation
with response to TRK inhibitors, which remains to be determined.

Our study focussed on a pragmatic approach to detect actionable gene fusions in
a “real-world” clinical setting, exploiting a relatively small but informative panel and
correlation with previous molecular results. This has the advantage of providing a feasible
and easily accessible additional test with enrichment in the detection of actionable genetic
alterations. Nevertheless, we should acknowledge that the use of large NGS panels leading
to a comprehensive genomic profiling of tissue and/or liquid biopsies would represent
a further level of informativeness for unselected patients at an advanced disease stage,
even with respect to a higher likelihood of decoding possible mechanisms behind therapy
resistance. Major drawbacks in this scenario relate to test accessibility and the accurate
management and interpretation of output data, best handled within multidisciplinary
molecular tumour boards.
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