
J
H
E
P
0
9
(
2
0
2
1
)
0
4
9

Published for SISSA by Springer

Received: April 9, 2021
Revised: July 16, 2021

Accepted: July 30, 2021
Published: September 9, 2021

Closed string deformations in open string field theory.
Part III. N = 2 worldsheet localization

Carlo Maccaferria and Jakub Vošmerab
aDipartimento di Fisica, Università di Torino, INFN Sezione di Torino and Arnold-Regge Center,
Via Pietro Giuria 1, I-10125 Torino, Italy

bInstitut für Theoretische Physik, ETH Zürich,
Wolfgang-Pauli-Straße 27, 8093 Zürich, Switzerland

E-mail: maccafer@gmail.com, jvosmera@phys.ethz.ch

Abstract: In this paper, which is the last of a series including [1, 2] we first verify that
the two open-closed effective potentials derived in the previous paper from the WZW
theory in the large Hilbert space and the A∞ theory in the small Hilbert space have
the same vacuum structure. In particular, we show that mass-term deformations given
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1 Introduction and summary

This paper is devoted to the evaluation of the open-closed effective couplings derived in [2]
in the WZW theory in the large Hilbert space [3, 4] and in the related A∞ theory in the
small Hilbert space [5]. There, deforming the pure open string field theory with an ele-
mentary open/closed coupling and integrating out the open string fields outside the kernel
of L0 (the “massive” open string fields if we work at zero momentum) we have obtained
effective couplings between arbitrary number of on-shell closed string states (representing
the deformation) and dynamical open strings in the kernel of L0. Formally these effective
couplings are physical string theory amplitudes computed respectively in the large Hilbert
space (for the WZW theory) and in the small Hilbert space (for the A∞ theory). Naively,
it should not matter in which theory we compute these amplitudes because if two theories
are related by field redefinition (as it is the case for the partially gauge-fixed WZW theory
and the A∞ theory) they should give rise to the same amplitudes. However this state-
ment, like many others based on the “canceled propagator” argument (i.e. the fact that the
propagator inverts QBRST), is only valid for S-matrix elements computed at generic values
of the external momenta. Zero momentum amplitudes, like the ones which give rise to
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algebraic couplings in the effective action, are an important exception because they receive
non-trivial contributions from the boundary of moduli space. Indeed it turns out that the
open-closed amplitudes of the WZW and A∞ theory in general differ from contributions
at the boundary of moduli space, which are in general not vanishing at zero momentum.
At a given order, a sufficient condition for the equality of two amplitudes with the same
external states is that all lower order amplitudes vanish.1 In fact this was already (im-
plicitly) observed in [6] where the same problem (without the closed string deformation)
was discussed. There it was shown that the quartic effective massless couplings obtained
from the WZW and the A∞ theory were the same, provided the cubic couplings were van-
ishing. This may seem surprising but in fact it is perfectly consistent with the possibility
of doing field redefinitions at zero momentum while staying in the massless cohomology,
and it essentially means that zero momentum amplitudes should be really thought of as
pieces of an effective potential which is obviously defined up to (constant) field redefini-
tions. In this paper we are mainly interested in (open)2-(closed) amplitudes giving rise to
mass-term deformations,2 so the only relevant lower order amplitude is just the effective
(open)-(closed) tadpole coupling a single closed string with a single massless open string.
But such a massless tadpole has to vanish anyway in order to allow for a stable vacuum in
perturbation theory and so the mass terms are guaranteed to coincide in the two theories.

The possibility of dealing with amplitudes at zero (open string) momentum is an
advantage of the (open) string field theory framework, which gives a unique consistent
way to deal with divergences coming from open string degeneration using the open string
propagator [8–10], something which is not possible in usual string perturbation theory. In
the case of the superstring, this consistent treatment of the zero momentum sector allowed
to discover surprising properties of some amplitudes. Indeed, inspired by a computation in
heterotic string theory (section 8 of [11]), it was shown in [12, 13] that the effective quartic
coupling of purely open or closed massless strings can often be computed by localization at
the boundary of the world-sheet moduli space reducing the four-point amplitude to a simple
two-point function (on the disk for open strings and on the sphere for closed strings). The
key property which ensures this mechanism is the global N = 2 superconformal symmetry
(the same which gives rise to space-time supersymmetry) and the fact that the states which
enter into the amplitude belong to the chiral ring, i.e. they sit in the short multiplets being
annihilated by one of the two supercurrents and are charged under the N = 2 R-charge.
This mechanism directly applies in our open-closed setting as well, provided the deforming
closed string state belongs to the chiral ring in both holomorphic sectors (and thus is a
NS-NS state) and combines with the quartic coupling of the massless open string already
computed in [13]. When some of the massless fields become tachyonic due to the closed
string deformation, the obtained potential becomes Mexican-hat-like and it identifies a new
less energetic vacuum for the initial D-brane system which, to the given order in the closed
string deformation, can be analytically characterised.

1A consequence of this fact is that exactly marginal deformations coincide in the two theories.
2Analogous couplings for open strings in the R sector have been obtained in [7].
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The paper is organized as follows. In section 2 we discuss the relation between the
open-closed coupling of the WZW and A∞ theory and in particular we show that when the
leading contribution to the effective tadpole is vanishing, then the leading order contribu-
tion to the mass deformation is the same in both theories. In section 3 we switch to the
N = 2 setup where we first show that if the deformed closed string belongs to the chiral
ring, its effective tadpole necessarily vanishes to first order. Subsequently we show that the
(open)2-(closed) coupling simplifies and it reduces to a boundary contribution in moduli
space given by a sum of two-point functions of auxiliary fields associated to the open and
closed strings. In section 5 we put to test our construction by switching on a Kalb-Ramond
deformation in the D3-D(−1) system, which perfectly fit in the N = 2 setting and therefore
has a vanishing massless tadpole. Appendix A contains some detailed calculations which
we use in the main text.

2 WZW-like vs A∞ effective potentials

Let us now focus on comparing the effective couplings for states ψ ∈ kerL0 ≡ P0H ob-
tained from the WZW-like SFT and A∞ microscopic SFTs modified by adding the Ellwood
invariant in the previous paper [2] of the series. We will do so explicitly only for a cou-
ple of lowest orders in perturbation theory, making no attempt to construct a full field
redefinition relating the WZW-like and A∞ SFT effective actions. Taking a lesson from
the field redefinition [14] relating these two theories at the microscopic level, it is to be
expected that the leading order O(ψ1, µ0) of the field redefinition for the effective actions
will be trivial. Below we will verify this expectation by showing (for a couple of lowest
orders) that the effective potentials predicted by the two SFTs consistently agree at any
given order provided that lower-order effective couplings vanish. In other words, we check
that at zero-momentum, the two theories yield effective potentials which impose identical
constraints on exactly marginal directions.

2.1 WZW-like and A∞ effective actions

Recall that in the previous paper [2] of the series, we have found that the effective A∞
action in marginal closed-string background, up to a non-dynamical cosmological constant,
takes the form

S̃(µ)(λψ) =
∞∑
k=0

∞∑
α=0

λk+1µαS̃k,α(ψ) , (2.1)

where the k + 1 open-string and α closed-string coupling S̃k,α(ψ) can be expressed as

S̃k,α(ψ) = 1
k + 1ωS(ψ, Ñk,α(ψ⊗k)) , (2.2)
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with cyclic products Ñk,α that can be extracted from an all-order expression given in the
coalgebra language. For the first couple of lowest orders, we explicitly obtain

Ñ0,1 = P0e , (2.3a)
Ñ0,2 = −P0E1(he) + P0M2(he, he) , (2.3b)

Ñ1,0(ψ) = P0Qψ , (2.3c)
Ñ1,1(ψ) = P0E1(ψ)− P0M2(he, ψ)− P0M2(ψ, he) , (2.3d)

Ñ2,0(ψ,ψ) = P0M2(ψ,ψ) , (2.3e)
Ñ3,0(ψ,ψ) = P0M3(ψ,ψ, ψ)− P0M2(ψ, hM2(ψ,ψ))− P0M2(hM2(ψ,ψ), ψ) , (2.3f)

...

where we have taken h = (b0/L0)P̄0 to be the propagator for the modes outside of kerL0 in
the Siegel gauge and P0 to be the projector onto kerL0. At the same time, the analogous
WZW-like effective action was found to read (again, up to a non-dynamical cosmological
constant)

S
(µ)
eff (λϕ) = λ

(
µ 〈 e, ϕ 〉 − µ2

2
〈

[he, h̃e], ϕ
〉

+O
(
µ3
))

+ λ2
(1

2 〈 ηϕ,Qϕ 〉 −
µ

2
〈
ηϕ,

[
h̃he,Qϕ

] 〉
+O

(
µ2
))

+ λ3
(
−1

6 〈 ηϕ, [ϕ,Qϕ] 〉+O (µ)
)

+ λ4
( 1

24 〈 ηϕ, [ϕ, [ϕ,Qϕ]] 〉 − 1
8
〈

[ηϕ,Qϕ], h̃h[ηϕ,Qϕ]
〉

+O(µ)
)

+O(λ5) , (2.4)

where h̃ = [ξ0−X0(b0/L0)]P̄0 denotes the dual propagator introduced in [2], which fixes the
η-gauge symmetry for the massive modes by setting ξ0P̄0Φ = 0 provided that the Siegel
gauge condition b0P̄0Φ = 0 is simultaneously imposed. Note that in order to facilitate
comparison between the two theories, we also fix the η-gauge symmetry of the effective
WZW-like action by assuming ξ0ϕ = 0, that is ϕ = ξ0ψ.

2.2 Open SFT effective vertices

Starting with the purely open effective couplings, the kinetic term

S̃1,0(ψ) = 1
2ωS(ψ,Qψ) = 1

2
〈
ψ,Qψ

〉
S (2.5)

is clearly identical in both theories. For the cubic effective coupling, the A∞ theory yields

S̃2,0(ψ) = 1
3ωS(X0ψ,m2(ψ,ψ)) = 1

3
〈
X0ψ,ψ

2〉
S (2.6)

while the WZW-like theory gives the cubic coupling
1
3
〈
X0ψ,ψ

2〉
S −

1
6
〈
ψ, [ψ, ξ0Qψ] + [ξ0ψ,Qψ]

〉
S . (2.7)
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Hence, we observe that the effective cubic couplings in the two theories coincide if ψ ∈
kerL0 is physical, that is, if

P0Qψ ≡ Ñ1,0(ψ) = 0 (2.8)

and we have S̃1,0(ψ) = 0. On the other hand, in agreement with the results of [14–16], it
is easy to check that in the general case when Qψ 6= 0, the WZW-like cubic coupling is
obtained from the A∞ cubic coupling by performing the corresponding field redefinition.
Moreover, if in addition ψ satisfies the projector condition

P0M2(ψ,ψ) ≡ Ñ2,0(ψ,ψ) = 0 , (2.9)

we have S̃2,0(ψ) = 0. As discussed in [17], such a condition can be realized e.g. by assuming
ψ to be of the form

ψ = cV 1
2
e−φ , (2.10)

where V1/2 is a h = 1/2 zero-momentum matter state belonging to the (anti)-chiral ring of a
worldsheet N = 2 superconformal algebra. It was then shown in [6] that upon assuming the
projector condition (2.9), the quartic couplings S̃3,0(ψ) computed using the WZW-like and
A∞ effective actions agree. Hence, in line with our expectation that the leading order of the
field redefinition relating the effective WZW-like and A∞ theories is trivial, we confirm (at
least to the quartic order) that the purely open effective couplings in the two theories at a
fixed order in perturbation theory agree, provided that lower order couplings vanish. Since
the vanishing of the effective potential order-by-order in perturbation theory is precisely
the requirement on massless modes to be exact moduli for any given background, we
conclude that both the WZW-like and the A∞ theory yield the same algebraic constraints
determining moduli spaces of open string backgrounds.

2.3 Open-closed effective vertices

Let us now extend this line of thought to include open-closed couplings generated by de-
forming the microscopic action with Ellwood invariant. Starting with the tadpole coupling
S̃0,1(ψ), this is clearly the same in the two theories. Moreover, assuming that the projector
condition

P0e ≡ Ñ0,1 = 0 (2.11)

holds, we clearly have S̃0,1(ψ) = 0. This is saying that at the leading order in µ, the
effective tadpole vanishes, so that the vacuum shift can be written as ψµ = O(µ2) and
therefore we obtain a consistent leading-order microscopic vacuum shift

Ψµ = µhe+O(µ2) . (2.12)

Similarly to the case of the open-string projector condition (2.9), we will see in subsec-
tion 3.2 below that the projector condition (2.11) is guaranteed to hold if the bosonic
Ellwood state takes the form

e = εij
[
X0U

i(i)U j(−i)
]
I + εij

[
U i(i)X0U

j(−i)
]
I , (2.13)
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where we have introduced chiral Fock states

U i = cUi1
2
e−φ , (2.14)

with Ui1/2 some zero-momentum matter states with h = 1/2 and belonging to the chiral ring
of some global worldsheet N = 2 superconformal algebra. As usual, I denotes the identity
string field. Also, εij is some polarization and we will assume that it already includes
the action of the gluing automorphism (fixed by the open-string background) which arises
when we map the original closed string field to a bi-local field the upper half-plane.

Let us now proceed with showing that, assuming the projector conditions Ñ0,1 =P0e=0
and Ñ1,0(ψ) = P0Qψ = 0, the coupling S̃1,1(ψ) computed in the A∞ SFT agrees with the
one computed in the WZW-like theory. This coupling of course determines the leading order
correction to the mass-term due to a non-zero closed string vev at zero momentum. Note
that restricting to the on-shell fields ψ is physically well justified, as it can be shown that the
algebraic correction to the Siegel gauge propagator h = (b0/L0)P̄0 coming from integrating
out the Nakanishi-Lautrup field does not contribute at this order in perturbation theory
— see [28] for an analogous result in the bosonic string. Starting on the A∞ side, we first
extract an explicit expression for the 1-product Ñ1,1, namely

Ñ1,1(ψ) = P0E1(ψ)− P0M2(he, ψ)− P0M2(ψ, he) . (2.15)

We will now continue by rewriting S̃1,1(ψ) in terms of the bosonic products and the PCO
zero mode X0 assuming that Qψ = 0 = P0e. Starting with the expression

S̃1,1(ψ) = 1
2ωS(ψ,E1(ψ))− 1

2ωS(ψ,M2(he, ψ))− 1
2ωS(ψ,M2(ψ, he)) . (2.16)

for the O(µ) mass-term correction, it is then shown in detail in appendix A.1 that ex-
panding the superstring products E1 and M2 in the large Hilbert space in terms of the
gauge products and eventually the bosonic products with explicit PCO insertions, the
expression (2.16) can be rewritten as

S̃1,1(ψ) = 1
2ωS(m2(X0ψ,ψ), he) + 1

2ωS(m2(ψ,X0ψ), he) . (2.17)

Finally, in order to facilitate the comparison with the WZW-like theory, we can re-
write (2.17) using the unsuspended notation in the large Hilbert space, namely3

S̃1,1(ηϕ) = −1
2
〈
[ηϕ,Qϕ], h̃he

〉
, (2.18)

3Recall that we define

ϕ = ξ0cV 1
2
e−φ ,

as well as

U i = ξ0cUi1
2
e−φ .
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which indeed agrees with the result (2.4) we obtained in the previous paper [2] from the
WZW-like theory.

Similarly, we can show that the subleading contribution to the effective tadpole S̃0,2(ψ)
computed in the A∞ theory agrees with the corresponding result obtained in the WZW-like
theory provided that the conditions Ñ1,0(ψ) = P0Qψ = 0 and Ñ0,1 = P0e = 0 are satisfied.
Here we start with the 0-product

Ñ0,2 = −P0E1(he) + P0M2(he, he) , (2.19)

which yields the subleading effective tadpole

S̃0,2(ψ) = −ωS(ψ,E1(he)) + ωS(ψ,M2(he, he)) . (2.20)

We then verify in detail in appendix A.2 that after expanding the superstring products E1
and M2 in terms of the bosonic products, the coupling S̃0,2(ψ) can be rewritten as

S̃0,2(ψ) = +1
2
〈
ξ0ψ, [Qξ0he, he]

〉
. (2.21)

Finally, we can rewrite this in terms of the partially gauge-fixed string field ϕ = ξ0ψ and
the dual propagator h̃ as

S̃0,2 = −1
2
〈
ϕ, [h̃e, he]

〉
, (2.22)

so that again we obtain exact agreement with the result (2.4) of the WZW-like SFT.
These findings clearly constitute evidence that the two effective SFT describe the same

perturbative physics for any given background. In order to characterize the field redefinition
relating the two effective SFTs to all orders, one will first have to get a firm handle on the
structure of the effective WZW-like vertices in a future project.

3 N = 2 localization of open-closed couplings

In this section we will argue that the computation of certain effective open-closed cou-
plings can be simplified considerably provided the background admits a certain N = 2
superconformal symmetry. We will thereby generalize the results of [13] (and subsequently
of [6, 12, 17]) by including on-shell closed string insertions. In particular, we will see
that in the cases where the background supports a global worldsheet N = 2 supercon-
formal symmetry such that all matter states with h = 1/2 carry U(1) R-charge q = ±1,
the leading-order tadpole S̃0,1 vanishes and the leading-order mass-term correction S̃1,1
localizes on the boundary of the bosonic worldsheet moduli space, where the propagator
degenerates to an infinitely long strip.

3.1 R-charge decomposition of matter fields

In more detail, we will assume that we can pick a global N = 2 superconformal algebra
{T,G±, J} with the above-described features in relation to its spectrum of irreducible
representations. We can then decompose any h = 1/2 matter state as

V 1
2

= V+
1
2

+ V−1
2
, (3.1)
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and correspondingly (writing ϕ = ξ0cV 1
2
e−φ)

ϕ = ϕ+ + ϕ− , (3.2)

where the states with superscript ± carry U(1) R-charge ±1. We will further assume
that both left- and right-moving components of the on-shell closed string insertion can be
decomposed as

Ui1
2

= (Ui1
2
)+ + (Ui1

2
)− , (3.3)

and correspondingly, calling U i = ξ0cUi1
2
e−φ

U i = (U i)+ + (U i)− . (3.4)

We then have

J0V±1
2

= ±V±1
2
, (3.5)

together with

G±(z)V∓1
2
(0) = 1

z
V∓1 (0) + reg. , (3.6a)

G±(z)V±1
2
(0) = reg. , (3.6b)

where J0V±1 = 0 and we have denoted |V∓1 〉 = G±− 1
2
|V∓1

2
〉. Also note that we have

Qϕ± = cV±1 − γV
±
1
2
, (3.7)

where γ = eφη. Similarly for Ui1
2
.

3.2 Computing the leading-order tadpole

Let us first consider the leading-order effective tadpole coupling S̃0,1(ψ) = ωS(ψ, e). Ex-
panding e in terms of the on-shell closed string state in picture −1, we can write

S̃0,1(ψ) = εij
〈
ψ, [(X0U

i)(i)U j(−i)]I
〉

+ εij
〈
ψ, [U i(i)(X0U

j)(−i)]I
〉
. (3.8)

Using the form ψ = cV1/2e
−φ, the matter part of the coupling S̃0,1(ψ) is therefore propor-

tional to the boundary 3-point functions

〈
V 1

2
(0)

[
G− 1

2
Ui1

2

]
(i)Uk1

2
(−i)

〉
, (3.9a)〈

V 1
2
(0)Ui1

2
(i)

[
G− 1

2
Uk1
]

(−i)
〉
, (3.9b)

where G denotes the N = 1 (local) worldsheet supercurrent. However, it was argued
in [12, 17] that such correlators always vanish whenever the background supports a global
worldsheet N = 2 superconformal symmetry generated by {T,G±, J} such that
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G = G+ +G− and all matter states with h = 1/2 carry U(1) R-charge q = ±1. Hence,
we conclude that in such cases the leading-order tadpole S̃0,1(ψ) vanishes. Moreover, we
can prove a somewhat stronger result, namely that Ñ0,1 = P0e vanishes. Using that
|I〉 = |0〉+ L−2|0〉+ . . ., we eventually obtain

P0e = −εij c∂c
({[

G− 1
2
Ui1

2

]
Uj1

2

}
1

+
{
Ui1

2

[
G− 1

2
Uj1

2

]}
1

)
e−φ , (3.10)

where {AB}k denotes the field in the symmetric OPE of A with B at the order of singularity
z−k. However, it was again argued in [12, 17] that the OPE of G− 1

2
V 1

2
with W 1

2
does not

have integer poles whenever the local N = 1 superconformal symmetry generated by {T,G}
enhances to a global worldsheet N = 2 superconformal symmetry with the above-described
parameters. In such cases, we therefore have P0e = 0.

3.3 Localizing the leading-order mass-term correction

Let us now consider the leading-order mass-term correction S̃1,1 which arises after turning
on the µ-deformation. Starting with the expression (2.18) for S̃1,1 in the large Hilbert
space, we can first rewrite this as

S̃1,1(ηϕ) = 1
2εij

〈
[ηϕ,Qϕ], ξ0

b0
L0
P̄0[(ηU i)(i)(QU j)(−i)]I

〉
+

+ 1
2εij

〈
[ηϕ,Qϕ], ξ0

b0
L0
P̄0[(QU i)(i)(ηU j)(−i)]I

〉
. (3.11)

This is analogous to the Berkovits-like form of the quartic effective action of [6] and the
Berkovits-like form of the obstruction at third order of [17]. The amplitude (3.11) contains
one Siegel-gauge propagator insertion (and therefore has to be evaluated by integrating
over one bosonic worldsheet modulus — the length of the Siegel-gauge strip), it is shown
in detail in appendix A.3 using the techniques developed by [13] that S̃1,1 can be recast as
(suppressing from now on the insertion points of the closed string fields at ±i for the sake
of clarity)

S̃1,1(ηϕ) = −1
2εij

〈(
[ηϕ+, Qϕ−]−[ηϕ−, Qϕ+]

)
,P0
[
(U i)+(U j)−−(U i)−(U j)+]I〉

− 1
2εij

〈
[ϕ+, Qϕ+], P0

[
(U i)−η(U j)− − η(U i)−(U j)−

]
I
〉

− 1
2εij

〈
[ϕ−, Qϕ−], P0

[
(U i)+η(U j)+ − η(U i)+(U j)+]I〉 . (3.12)

That is, the computation of S̃1,1 localizes on the boundary of the bosonic worldsheet moduli
space, where the Siegel-gauge strip degenerates to an infinite length. Let us now define
the closed-string auxiliary fields G±1 , G0 through the bulk-boundary OPE (which of course
depends on the superconformal boundary condition we are imposing)

G±1 = εij lim
z→z∗

[
(Ui1

2
)±(z)(Uj1

2
)±(z∗)

]
, (3.13a)

G0 = εij lim
z→z∗

[
2z
(

(Ui1
2
)−(z)(Uj1

2
)+(z∗)− (Ui1

2
)+(z)(Uj1

2
)−(z∗)

)]
. (3.13b)
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We also recall the definitions of the open-string auxiliary fields from [13]

H±1 = lim
z→0

[
V±1

2
(z)V±1

2
(−z)

]
, (3.14a)

H0 = lim
z→0

[
2z
(
V−1

2
(z)V+

1
2
(−z)− V+

1
2
(z)V−1

2
(−z)

)]
, (3.14b)

It is then straightforward to show that

P0
(
[ηϕ+, Qϕ−]−[ηϕ−, Qϕ+]

)
= +2ηcH0 + . . . , (3.15a)

P0[ϕ±, Qϕ±] = −2cH±1 + . . . , (3.15b)

P0εij
[
(U i)±η(U j)± − η(U i)±(U j)±

]
I = +2ξc∂ce−2φG±1 + . . . , (3.15c)

P0εij
[
(U i)+(U j)−−(U i)−(U j)+]I = −ξ∂ξc∂ce−2φG0 + . . . , (3.15d)

where . . . denote possible additional terms which, however, do not contribute into the final
expression for the effective coupling. We can therefore write

S̃1,1 = 2〈G−1 |H+
1 〉+ 2〈G+

1 |H
−
1 〉+ 〈G0|H0〉 , (3.16)

where we have noted that

〈c∂cξe−2φ(z)c(w)〉L = −(z − w)2 , (3.17a)
〈c∂cξ∂ξe−2φ(z)cη(w)〉L = −1 . (3.17b)

Recalling the expression for the (4-open,0-closed) coupling S̃30

S̃3,0 = 〈H+
1 |H

−
1 〉+ 1

4〈H0|H0〉 (3.18)

reported in [13], it is evident that the (4-open,0-closed) and (2-open,1-closed) terms con-
tribute into the effective action S̃(µ) at zero momentum as (completing squares)

S̃(µ) ⊃ S̃3,0 + µS̃1,1 (3.19a)

= 〈H+
1 + 2µG+

1 |H
−
1 + 2µG−1 〉+ 1

4〈H0 + 2µG0|H0 + 2µG0〉+

− 4µ2
(
〈G+

1 |G
−
1 〉+ 1

4〈G0|G0〉
)
. (3.19b)

Carefully inspecting the definitions (3.13) and (3.14) (and assuming we are working in a
unitary sector of the total matter CFT), all terms in the expression (3.19b) can be seen
to be negative semi-definite (where semi- is accounting for the possibility that our set
of auxiliary fields may not be linearly independent). This shows that provided that the
(deformed) generalized ADHM constraints

H±1 = −2µG±1 +O(µ2) , (3.20a)
H0 = −2µG0 +O(µ2) , (3.20b)
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are solvable, the corresponding matter fields (V±1/2)∗ (and the respective string field ϕ∗)
determine, to the given order in perturbation theory, a global minimum of the effective
potential

Ṽ (µ) = −S̃(µ) . (3.21)

This clearly occurs in the case when the positive semi-definite undeformed quartic potential
−S̃3,0 in (3.19b) is non-zero and the mass-term correction µS̃1,1 renders some of the modes
tachyonic. Also note that while the conditions (3.20) are clearly sufficient for obtaining a
global minimum of the effective potential, the semi-definitness of (3.19b) means that the
generalized ADHM constraints (3.20) are not always necessary, namely they can be over-
constraining. While this does not happen in the example of the D(−1)/D3 system, which is
analyzed in detail below, it turns out that there exist other backgrounds for which the inner
product 〈·|·〉 can become degenerate on the set of auxiliary fields {H±1 ,H0}. An example
of such a background is provided by the D(−1)/D7 system recently investigated by [18].

The effective potential (3.21) then has a generalized Mexican-hat shape and gives the
tachyon potential (to given order in perturbation theory) for such modes. Since the string
field ϕ∗ then solves the effective (massless) equation of motion and we have argued that
there are no additional constraints coming from out-of-gauge equations for R, it follows
that Φ∗ ≡ Φ(µ)(ϕ∗) = ϕ∗ + R(µ)(ϕ∗) solves the full SFT equation of motion. Provided
that they are solvable, the equations (3.20) therefore determine a classical solution of
the full SFT corresponding to a barely relevant deformation. Also note that since the
perturbative vacuum4 H±1 = H0 = 0 clearly gives S̃(µ) = 0, the effective potential differ-
ence ∆Ṽ (µ) = −∆S̃(µ) between the perturbative vacuum and the classical solution given
by (3.20) is equal to

∆Ṽ (µ) = 4µ2
(〈

G+
1
∣∣G−1 〉+ 1

4
〈
G0
∣∣G0

〉)
+O(µ3) ≡ Ṽ (µ)

min . (3.22)

This computes the difference between the energies of the initial brane configuration and
the classical solution (tachyon condensate).

4 Testing the construction with non-commutative instantons

Let us now apply these results to a general NSNS deformation of the D(−1)/D3 system
in flat space. We will denote by k the number of D(−1) branes and by N the number of
D3 branes, whose worldvolume we take to be compactified on a 4-torus with unit volume.
This system has been already studied in a first-quantized setting with the Kalb-Ramond
field in the bulk background [19]. Moreover tachyon condensation in a D(−1)/D3 system
with a B-field has been also analyzed using the numerical SFT methods (level truncation)
in [20]. So we are in a nice set-up where we can compare our exact SFT approach to
existing results. We recall the set-up of [13, 17, 22], where the bosonic X1, . . . , X4 and

4The choice ϕ = 0 indeed corresponds to the true perturbative vacuum of the effective SFT (to the given
order in µ) because the tadpole term vanishes at leading order in µ.
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fermionic ψ1, . . . , ψ4 target coordinates span the euclidean D3 worldvolume. We will also
find it convenient to introduce the complexified fermions

ψr± = 1√
2

(ψ2r−1 ± iψ2r) . (4.1)

Generally, we will take the latin indices r, s = 1, 2 to run over the complexified coordinates
and µ, ν = 1, . . . , 4 over the standard euclidean coordinates. The localizing U(1) R-current
can then be expressed as J = J1 +J2 where Jr = :ψr−ψr+ :. We therefore write the matter
part of µe as

µεµν

[
(Uµ1

2
)±(i)(Uν1

2
)±(−i)

]
I = µεr±s±

[
ψr± (i)ψs±(−i)

]
I , (4.2a)

µεµν

[
(Uµ1

2
)±(i)(Uν1

2
)∓(−i)

]
I = µεr±s∓

[
ψr± (i)ψs∓(−i)

]
I , (4.2b)

where Uµ1/2 = ψµ. Hence, for (Uµ1/2)± we can write
(
U2r−1

1
2

)±
= + 1√

2
ψr± , (4.3a)(

U2r
1
2

)±
= ∓ i√

2
ψr± . (4.3b)

The polarization tensor µεµν is determined by the corresponding NSNS field deformation,
as well as by the boundary conditions imposed by the D(−1)/D3 system. At leading order
in the deformation, we expect to be able to identify (note that we set α′ = 1)

µεµν = C

( 1N×N 0N×k
0k×N −1k×k

)(
δgµν + 2πδBµν

)
(4.4)

where the precise value of the factor C will be determined momentarily. Also note that the
gluing-condition dependence of εµν is responsible for the appearance of the Chan-Paton
factor in (4.4) where the upper-left Chan-Paton sector is localized on the D3-brane stack
and the lower-right corner is localized on the D(−1)-brane stack. Let us also isolate the
bulk dependence of µεµν by stripping the Chan-Paton factor, namely by defining

µε̃µν ≡ C
(
δgµν + 2πδBµν

)
. (4.5)

Performing the corresponding bulk-boundary OPE, we when obtain

G±1 =
(

1
N 1N×N 0N×k
0k×N − 1

k1k×k

)
:ψ1±ψ2± : (ε̃1±2± − ε̃2±1±) , (4.6a)

G0 =
(

1
N 1N×N 0N×k
0k×N − 1

k1k×k

) ∑
r=1,2

(ε̃r−r+ − ε̃r+r−) . (4.6b)

Note that the relative normalization of the bulk-boundary OPE coefficients in the respective
Chan-Paton sectors will prove instrumental for recovering the correct form of the Fayet-
Iliopoulos terms in the corresponding 4d N = 2 gauge theory action (see for instance
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eq. (4.11) of [23]). This normalization was fixed so that we obtain correctly normalized
1-point functions of bulk operators on UHP for the stacks of k D(−1) branes and N D3
branes compactified on a 4-torus with unit volume, as one can easily check. It is also
immediately clear that the metric deformation does not enter the auxiliary fields G±1 and
G0 at all (because only the antisymmetric part of the polarization tensor enters (4.6)):
that is, we have G±1 = G0 = 0 when only metric deformations are turned on. Considering
the explicit form (4.5) of µε̃µν , we can rewrite the bulk auxiliary fields as

2µG±1 = ζC(δB)
(

1
N 1N×N 0N×k
0k×N − 1

k1k×k

)
:ψ1±ψ2± : , (4.7a)

2µG0 = 2ζR(δB)
(

1
N 1N×N 0N×k
0k×N − 1

k1k×k

)
. (4.7b)

where we have introduced the combinations

ζC(δB) ≡ 4πiC(δB13 ∓ iδB14 ∓ iδB23 − δB24) , (4.8a)
ζR(δB) ≡ 4πiC(δB12 + δB34) . (4.8b)

Recalling then the expressions for H±1 , H0 from [13, 17], which can be computed from the
matter field

V 1
2
≡
(
Aµψ

µ wα∆Sα
w̄α∆̄Sα aµψ

µ

)
, (4.9)

(where Aµ is the U(N) gauge field of the D3 branes, aµ are the U(k) transverse scalars
of the D(−1) branes in the D3 directions and wα, w̄α are the N × k and k ×N stretched
string moduli with ∆ and Sα the bosonic and fermionic twist fields — see [17] for our
conventions), we can finally establish by substituting into the general formula (3.19b) that
the effective potential can be written as5

Ṽ (µ) − Ṽ (µ)
min = +tr

∣∣∣[A1+, A2+]− w+w̄+ + ζC(δB)
N

∣∣∣2+

+ tr
∣∣∣[ a1+ , a2+] + w̄+w+ −

ζC(δB)
N

∣∣∣2+

+ 1
4tr

 ∑
r=1,2

[(Ar+)†, Ar+]−w+(w+)†+(w̄+)†w̄+ + 2ζR(δB)
N

2

+

+ 1
4tr

 ∑
r=1,2

[ (ar+)† , ar+]−w̄+(w̄+)†+(w+)†w+ −
2ζR(δB)

k

2

+

+O(µ3) . (4.10)

We have therefore recovered the correct F- and D-term structure of the corresponding 4d
N = 2 gauge theory action (see [23]) with FI terms ζC(δB) and ζR(δB). At this point

5Here we also implement the reality conditions (Aµ)† = Aµ, (aµ)† = aµ, (w̄α)† = wα which follow from
the reality of the string field; see [17] for a discussion.
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we note that by performing a suitable rotation of the coordinate axes along the D3-brane
worldvolume, we can always arrange that δB13 = δB14 = δB23 = δB24 = 0 which gives
ζC(δB) = 0. Namely, we can always set Bµν to be proportional to a combination of the
selfdual and anti-selfdual t’Hooft symbols η3

µν , η̄3
µν . Requiring that the effective potential

attains a minimum, we then obtain the non-commutative ADHM constraints

µC(a,w, w̄) = O(µ2) , (4.11a)
µ̃C(A,w, w̄) = O(µ2) , (4.11b)
µR(a,w, w̄) = +2ζR(δB)/k +O(µ2) , (4.11c)
µ̃R(A,w, w̄) = −2ζR(δB)/N +O(µ2) , (4.11d)

where we have introduced the real and complex hyper-Kähler moment maps

µC(a,w, w̄) ≡ [ a1+ , a2+] + w̄+w+ , (4.12a)

µ̃C(A,w, w̄) ≡ [A1+, A2+]− w+w̄+ , (4.12b)

as well as

µR(a,w, w̄) ≡ [ (ar+)† , ar+] + (w+)†w+ − w̄+(w̄+)† , (4.13a)

µ̃R(A,w, w̄) ≡ [(Ar+)†, Ar+]− w+(w+)† + (w̄+)†w̄+ . (4.13b)

These results are clearly in agreement with standard literature on the subject [23–26] (where
we can recover the more usual sign conventions for µR, µ̃R by rescaling Ar+ → iAr+).
The constraints (4.11) then determine the moduli space Mk,N (ζR) of non-commutative
instantons whose dimension turns out to be dimMk,N (ζR) = 4kN . It is also apparent
from (4.10) that upon setting ζC(δB) = 0, only the D-terms contribute to the mass-squared
(m+)2 and (m̄+)2 of the stretched string modes w+ and w̄+, namely

(m+)2 = −ζR(δB)
(1
k

+ 1
N

)
+O(µ2) , (4.14a)

(m̄+)2 = +ζR(δB)
(1
k

+ 1
N

)
+O(µ2) . (4.14b)

It is therefore clear from (4.14) that for ζR(δB) > 0, we obtain that w+ becomes tachyonic
and w̄+ acquires real mass, while for ζR(δB) < 0 we have that w̄+ becomes tachyonic
and w+ acquires real mass. By analyzing the stretched string spectrum in the presence
of a B-field (see e.g. [20, 24]) and denoting 2πδB12 ≡ δb, 2πδB34 ≡ δb′, it is not hard to
independently find that

(m+)2 = − 1
2π (δb+ δb′) +O((δB)2) , (4.15a)

(m̄+)2 = + 1
2π (δb+ δb′) +O((δB)2) , (4.15b)

so that comparing (4.14) with (4.15) (and recalling the definition (4.8)), it finally follows
that we need to identify

C = 1
4πi

kN

k +N
. (4.16)
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Assuming that the non-commutative ADHM equations (4.11) are solved, we can therefore
use (3.22) to compute the mass defect

Ṽ
(µ)

min = −(ζR(δB))2
(1
k

+ 1
N

)
+O(µ3) (4.17a)

= −
(
δb+ δb′

2π

)2 kN

k +N
+O((δB)3) . (4.17b)

The corresponding full SFT solution should therefore be interpreted as a true D(−1)/D3
bound state. Observe that the result (4.17b) can be independently obtained from space-
time supersymmetry considerations: starting with the expressions6

MD(−1) = 1
2π2 , (4.18)

MD3 = 1
2π2

√
(1 + b2)(1 + (b′)2) , (4.19)

for the masses of a single D(−1) and D3 brane in a B-field, and also noting the expres-
sion [20, 21]

M(k,N) = 1
2π2

√
[k + (1− bb′)N ]2 + (b+ b′)2N2 (4.20)

for the mass of the bound state of k D(−1) and N D3 branes in a B-field (which follows
from requiring that the bound state saturates the BPS bound with 8 supercharges [21]), it
is not hard to show that we indeed obtain a mass defect

kMD(−1) +NMD3 −M(k,N) = +
(
δb+ δb′

2π

)2 kN

k +N
+O

(
(δB)3

)
, (4.21)

which is consistent with the result (4.17b). This independently verifies our worldsheet
calculations.

A couple of comments are in order. First, note that provided that we choose the B-field
to be anti-selfdual (that is b = −b′), we obtain

G0 = G±1 = ζR(δB) = ζC(δB) = m+ = m̄+ = Ṽ
(µ)

min = 0 , (4.22)

so that the strings stretching between the D(−1) and D3 branes are massless and the system
is bound only marginally, as it is well known (see e.g. [24]). Also note that as opposed to
the case without a B-field, it is a known result [24, 26] that the non-commutative ADHM
equations (4.11) have a non-trivial solution even in the case k = N = 1. For generic values
of the B-field (where the D(−1)/D3 system forms a true bound state), it is also clear that
the constituent Dp-branes cannot be separated by an open-string marginal deformation.
Generic non-zero B-field therefore resolves the small-instanton singularity in the moduli
space which normally appears at zero B-field. Furthermore, had we considered D(−1)
branes instead of D(−1) branes, the localizing current would instead read J = J1− J2 and

6Our normalization conventions in (4.6) and below are consistent with taking the D3 branes to be
compact with volume set to 1. Also note that we are setting go = 1.
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we would therefore obtain ζR(δB) = 4πiC(δB12 − δB34). The system would then become
marginally bound for selfdual values of the B-field.

Note that when the D(−1)/D3 system forms a true bound state, it clearly cannot be
described using a boundary state with the conventional Dirichlet or Neumann conditions.
This therefore must be an example of an unconventional boundary state which, while being
otherwise consistent, does not satisfy any gluing conditions of the type

(αµm + Ωµ
νᾱ

ν
−m)‖D(−1)/D3, η〉〉 = 0 , (4.23a)

(ψµr + iηΩµ
νψ̄

ν
−r)‖D(−1)/D3, η〉〉 = 0 , (4.23b)

where Ωµ
ν is an automorphism of the oscillator algebra. Given the fact that the bound state

saturates the BPS bound while conserving 8 spacetime supercharges, it is to be expected
that the corresponding boundary state will satisfy gluing conditions for the (localizing)
global N = 2 superconformal algebra. Using the methods developed in this paper, it
should be possible to study such boundary states perturbatively around the region in the
B-field moduli space, where the stretched D(−1)/D3 strings become massless. It also
turns out that it is possible to write down exact analytic expressions for such boundary
states at certain points in both bulk and boundary moduli space using a Gepner-like
construction [27].

5 Discussion and outlook

In this paper, following the construction started in [28, 29] and continued in [1, 2], we have
first established that the effective potential derived from the WZW theory in the large
Hilbert space and the one derived from the A∞ theory in the small Hilbert space have the
same vacuum structure, although they are in general related by a zero momentum field
redefinition. Then we have explicitly evaluated the first superstring open-closed effective
couplings using a powerful localization technique which considerably simplifies the evalu-
ation of the involved chiral four-point functions by reducing them to the boundary of the
worldsheet moduli space. The method gives a completely universal form for the quartic
effective potential which can be used at will for general different backgrounds enjoying a
worldsheet N = 2 superconformal symmetry. We expect there is a rich structure that
waits to be uncovered in this direction and what we have done up to now is probably just
a small step. Here we offer several possible directions for future research.

• We have only studied the localization of the mass terms in case of a NS-NS deforma-
tion. It would be useful to search for similar mechanisms in case of R-R deformations.

• It would be useful, possibly taking advantage of the N = 2 spectral flow, to study
what happens to localization after adding the R sector.

• It would be interesting to study the problems related to closed string degeneration
along the lines of what has been proposed in [1] for the bosonic string. In addition to
this, when N = 2 superconformal symmetry is present, there is good chance that one
could use analogous localization mechanisms directly in the open-closed superstring
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field theory [30]. This would have the advantage of giving us control on both open
and closed string degeneration in a full field theoretical way, while not having to deal
with the complicated off-shell structure of the open-closed vertices which typically
deal with the interior of the moduli space, far from the localization locus at Riemann
surface degeneration. This has been studied in heterotic string field theory [12] and
indeed shown to happen. This could also possibly reveal new localization channels
associated with closed string degeneration.

• It would be also interesting to extend the localization mechanism to higher orders to
understand possible underlying patterns.

In overall terms, including [1, 2], we hope our works will trigger new exciting research on
the physics of open and closed strings and on the non perturbative structure of string theory.
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A Detailed calculations

Here we give some detailed calculations and proofs of various results used in the main body
of this paper.

A.1 Proof of (2.17)

Here we will show in detail the equivalence of the leading-order mass-term correction in
the A∞ and WZW-like open superstring field theories assuming the projector conditions
Qψ = 0 = P0e. We will notice that our calculation is analogous to (but somewhat simpler
than) the calculation of the coupling S̃3,0(ψ) presented in [22] and [17]. The projector
condition P0e = 0 then turns out to play a role somewhat similar to that of the projector
condition P0M2(ψ,ψ) = 0.

Let us start with the expression (2.16) for S̃1,1(ψ). Going to the large Hilbert space (for
the sake of computational convenience), substituting for E1 in terms of µ2 and e from [2]
and using cyclicity of M2, we can first rewrite this in the large Hilbert space as

S̃1,1(ψ) = 1
2ωL(ξ0ψ, µ2(ψ, e)) + 1

2ωL(ξ0ψ, µ2(e, ψ))− ωL(ξ0M2(ψ,ψ), he) . (A.1)
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Next we note that the third term of (A.1) can be rewritten as

−ωL(ξ0M2(ψ,ψ), he) = 1
2ωL(ξ0ψ,M2(ψ, he)) + 1

2ωL(ξ0ψ,M2(he, ψ)) . (A.2)

Substituting the standard relationM2 = [Q,µ2] into the third term of (A.1), using cyclicity
of µ2 and Qψ = Qe = 0, as well as the Hodge-Kodaira relation for the propagator h, as
well as the projector condition P0e = 0, we eventually obtain

S̃1,1(ψ) = +1
2ωL(ξ0ψ, µ2(ψ, e)) + 1

2ωL(ξ0ψ, µ2(e, ψ))+

+ 1
2ωL(ξ0ψ,Qµ2(ψ, he)) + 1

2ωL(ξ0ψ,Qµ2(he, ψ))+

− 1
2ωL(ξ0ψ, µ2(ψ, e))− 1

2ωL(ξ0ψ, µ2(e, ψ)) (A.3a)

= 1
2ωL(ψ,X0µ2(ψ, he)) + 1

2ωL(ψ,X0µ2(he, ψ)) (A.3b)

We now notice that it is possible to rewrite
1
2ωL(ψ,X0µ2(ψ, he)) = −1

4ωL(ψ,X0m2(ξ0ψ, he)) + 1
4ωL(ξ0ψ,X0m2(ψ, he)) , (A.4a)

1
2ωL(ψ,X0µ2(he, ψ)) = +1

4ωL(ξ0ψ,X0m2(he, ψ))− 1
4ωL(ψ,X0m2(he, ξ0ψ)) , (A.4b)

because the string fields

µ2(ψ, he) + 1
2m2(ξ0ψ, he)−

1
2ξ0m2(ψ, he) , (A.5a)

µ2(he, ψ)− 1
2ξ0m2(he, ψ) + 1

2m2(he, ξ0ψ) , (A.5b)

are clearly in the small Hilbert space. Substituting then X0 = Qξ0 + ξ0Q in the terms on
the r.h.s. of (A.4) and moving the BRST operator Q around (using again that P0e = 0 as
well as that [m2, e] = 0), we eventually obtain

S̃1,1(ψ) = −1
4ωL(ψ, ξ0Qm2(ξ0ψ, he)) + 1

4ωL(ξ0ψ,Qξ0m2(ψ, he))+

+ 1
4ωL(ξ0ψ, ξ0Qm2(ψ, he))+

+ 1
4ωL(ξ0ψ,Qξ0m2(he, ψ)) + 1

4ωL(ξ0ψ, ξ0Qm2(he, ψ))+

− 1
4ωL(ψ, ξ0Qm2(he, ξ0ψ)) (A.6a)

= +1
4ωL(ψ, ξ0m2(X0ψ, he))−

1
4ωL(ψ, ξ0m2(ξ0ψ, e))+

+ 1
4ωL(X0ψ, ξ0m2(ψ, he))− 1

4ωL(ξ0ψ, ξ0m2(ψ, e))+

+ 1
4ωL(X0ψ, ξ0m2(he, ψ))− 1

4ωL(ξ0ψ, ξ0m2(e, ψ))+

+ 1
4ωL(ψ, ξ0m2(e, ξ0ψ)) + 1

4ωL(ψ, ξ0m2(he,X0ψ)) (A.6b)

= +1
4ωL(ψ, ξ0m2(X0ψ, he)) + 1

4ωL(X0ψ, ξ0m2(ψ, he))+

+ 1
4ωL(X0ψ, ξ0m2(he, ψ)) + 1

4ωL(ψ, ξ0m2(he,X0ψ)) . (A.6c)
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Using cyclicity of m2, we can therefore write

S̃1,1(ψ) = +1
2ωS(m2(ψ,X0ψ), he) + 1

2ωS(m2(X0ψ,ψ), he) . (A.7)

A.2 Proof of (2.21)

Paralleling the calculation in appendix A.1, we will now verify that the effective coupling
S̃0,2(ψ) obtained from the A∞ theory can be rewritten in a way which is suitable for the
comparison with the analogous prediction of the WZW-like theory, assuming that lower
order couplings vanish by virtue of the conditions P0e = P0Qψ = 0. Starting with the
expression

S̃0,2(ψ) = −ωS(ψ,E1(he)) + ωS(ψ,M2(he, he)) , (A.8)

we can first rewrite this in the large Hilbert space as

S̃0,2(ψ) = −ωL(ξ0ψ, µ2(e, he))− ωL(ξ0ψ, µ2(he, e))− ωL(ξ0ψ,M2(he, he)) . (A.9)

Substituting the standard relation M2 = [Q,µ2] into the third term, using cyclicity of µ2
and Qe = P0e = 0, as well as the Hodge-Kodaira relation for the propagator h, we can
write

−ωL(ξ0ψ,M2(he, he)) = −ωL(ξ0ψ,Qµ2(he, he))+
+ ωL(ξ0ψ, µ2(e, he)) + ωL(ξ0ψ, µ2(he, e)) . (A.10)

so that the coupling can be rewritten as

S̃0,2(ψ) = −ωL(ξ0ψ,Qµ2(he, he)) (A.11a)
= −ωL(ψ,X0µ2(he, he)) (A.11b)

We now notice that it is possible to rewrite

−ωL(ψ,X0µ2(he, he)) = 1
2ωL(ψ,X0m2(ξ0he, he))+

+ 1
2ωL(ψ,X0m2(he, ξ0he)) , (A.12)

because the string field

µ2(he, he) + 1
2m2(ξ0he, he) + 1

2m2(he, ξ0he) (A.13)

is clearly in the small Hilbert space. Substituting then X0 = Qξ0 + ξ0Q in both terms
on the r.h.s. and moving the BRST operator Q around (using again that P0e = 0), we
eventually obtain

S̃0,2(ψ) = 1
2ωL(ψ, ξ0Qm2(ξ0he, he))+

+ 1
2ωL(ψ, ξ0Qm2(he, ξ0he)) (A.14a)

= −1
2ωL(ξ0ψ,m2(Qξ0he, he)) + 1

2ωL(ξ0ψ,m2(ξ0he, e))+

− 1
2ωL(ξ0ψ,m2(e, ξ0he))−

1
2ωL(ξ0ψ,m2(he,Qξ0he)) . (A.14b)
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Finally, using that [m2, e0] = 0, the second and the third term cancel, so that we can write

S̃0,2(ψ) = −1
2ωL(ξ0ψ,m2(Qξ0he, he))

− 1
2ωL(ξ0ψ,m2(he,Qξ0he)) (A.15a)

= +1
2
〈
ξ0ψ, [Qξ0he, he]

〉
. (A.15b)

This is then easily compared with the corresponding result in the WZW-like theory.

A.3 Proof of (3.12)

Starting with the large Hilbert space form (2.18) of the O(µ) mass-term correction, we can
first use the N = 2 R-charge conservation and c-ghost saturation to decompose

S̃1,1 = S̃±±1,1 + S̃±∓1,1 , (A.16)

where we define

S̃±±1,1 ≡ +1
2εij

〈
[ηϕ+, Qϕ+], ξ0

b0
L0
P̄0[η(U i)−Q(U j)−]I

〉
+

+ 1
2εij

〈
[ηϕ+, Qϕ+], ξ0

b0
L0
P̄0[Q(U i)−η(U j)−]I

〉
+

+ 1
2εij

〈
[ηϕ−, Qϕ−], ξ0

b0
L0
P̄0[η(U i)+Q(U j)+]I

〉
+

+ 1
2εij

〈
[ηϕ−, Qϕ−], ξ0

b0
L0
P̄0[Q(U i)+η(U j)+]I

〉
, (A.17a)

S̃±∓1,1 ≡ +1
2εij

〈
[ηϕ+, Qϕ−], ξ0

b0
L0
P̄0[η(U i)−Q(U j)+]I

〉
+

+ 1
2εij

〈
[ηϕ+, Qϕ−], ξ0

b0
L0
P̄0[Q(U i)+η(U j)−]I

〉
+

+ 1
2εij

〈
[ηϕ−, Qϕ+], ξ0

b0
L0
P̄0[η(U i)+Q(U j)−]I

〉
+

+ 1
2εij

〈
[ηϕ−, Qϕ+], ξ0

b0
L0
P̄0[Q(U i)−η(U j)+]I

〉
. (A.17b)

First, note that we can rewrite

εij

〈
[ηϕ±, Qϕ±], ξ0

b0
L0
P̄0[η(U i)∓Q(U j)∓]I

〉
=

= −εij
〈

[ϕ±, Qϕ±], b0
L0
P̄0Q[η(U i)∓(U j)∓]I

〉
(A.18a)

= εij
〈
[ϕ±, Qϕ±], P0[η(U i)∓(U j)∓]I

〉
− εij

〈
[ϕ±, Qϕ±], [η(U i)∓(U j)∓]I

〉
+ εij

〈
[Qϕ±, Qϕ±], b0

L0
P̄0[η(U i)∓(U j)∓]I

〉
(A.18b)

= +εij
〈
[ϕ±, Qϕ±], P0[η(U i)∓(U j)∓]I

〉
, (A.18c)
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where we have first moved η to cancel ξ0, then moved one of the Qs through the propagator
(using the Hodge-Kodaira decomposition in the process) and finally, in the last equality
we have used R-charge conservation (together with the ghost number saturation) as well
as the fact that the closed string state η(U i)∓(U j)∓ is inserted at midpoint (which ensures
vanishing of the contact term in (A.18b)). Similarly, we obtain

εij

〈
[ηϕ±, Qϕ±], ξ0

b0
L0
P̄0[Q(U i)∓η(U j)∓]I

〉
=

= −εij
〈
[ϕ±, Qϕ±], P0[(U i)∓η(U j)∓]I

〉
. (A.19)

Completely analogous manipulations can also be applied to rewrite S̃±∓11 . Eventually, we
obtain

εij

〈
[ηϕ±, Qϕ∓], ξ0

b0
L0
P̄0[η(U i)∓Q(U j)±]I

〉
=

= +εij
〈
[ηϕ±, Qϕ∓], P0[(U i)∓(U j)±]I

〉
, (A.20a)

εij

〈
[ηϕ±, Qϕ∓], ξ0

b0
L0
P̄0[Q(U i)±η(U j)∓]I

〉
=

= −εij
〈
[ηϕ±, Qϕ∓], P0[(U i)±(U j)∓]I

〉
. (A.20b)

Altogether we have therefore established that S̃1,1 can be rewritten in a purely localized
form

S̃1,1 = −1
2εij

〈(
[ηϕ+, Qϕ−]−[ηϕ−, Qϕ+]

)
,P0
[
(U i)+(U j)−−(U i)−(U j)+]I〉

− 1
2εij

〈
[ϕ+, Qϕ+], P0

[
(U i)−η(U j)− − η(U i)−(U j)−

]
I
〉

− 1
2εij

〈
[ϕ−, Qϕ−], P0

[
(U i)+η(U j)+ − η(U i)+(U j)+]I〉 . (A.21)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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