AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Growth point and gestures: looking inside mathematical meanings

This is the author's manuscript
Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/1523159
since 2015-09-04T15:14:00Z

Published version:
DOI:10.1007/s10649-015-9611-5
Terms of use:

Open Access

Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

Metadata of the article that will be visualized in OnlineFirst

Please note: Images will appear in color online but will be printed in black and white.

Accepted

32
Abstract
The literature on gestures describes how they often comprise iconic, deictic and metaphoric dimensions, but the interplay between these dimensions can be very subtle and nuanced. Due to the abstract nature of the subject, the use of gestures in the learning of mathematics means that the metaphoric dimension is often prominent. However, iconic and deictic gestures also play their part, and it has not been clear how the transition from gestures that have primarily iconic and deictic dimensions to those that are primarily metaphoric arises. In this paper, we consider three cases in an attempt to identify the emergence of the metaphoric dimension of gesture. The vignettes are analysed from semiotic and cognitive perspectives as we attempt to explain elements of the evolution by describing it in terms of McNeill's concept of a growth point. In each example, the results highlight the evolution from a grounded to a more abstract blending following the particular point at which a switch from an emphasis on the iconic/deictic to the metaphoric dimension occurs.
33 Keywords Gestures - Metaphor - Semiotics - Growth point - Catchment separated by '-' Conceptual blending
34 Foot note information

Growth point and gestures: looking inside mathematical meanings
 \author{ 6

 Ferdinando Arzarello ${ }^{1} \cdot$ Ornella Robutti 1 •}

(C) Springer Science+Business Media Dordrecht 2015

Abstract

The literature on gestures describes how they often comprise iconic, deictic andmetaphoric dimensions, but the interplay between these dimensions can be very subtle and 12nuanced. Due to the abstract nature of the subject, the use of gestures in the learning of 13mathematics means that the metaphoric dimension is often prominent. However, iconic and14 deictic gestures also play their part, and it has not been clear how the transition from gestures 15 that have primarily iconic and deictic dimensions to those that are primarily metaphoric arises. 16 In this paper, we consider three cases in an attempt to identify the emergence of the metaphoric 17 dimension of gesture. The vignettes are analysed from semiotic and cognitive perspectives as 18 we attempt to explain elements of the evolution by describing it in terms of McNeill's concept 19 of a growth point. In each example, the results highlight the evolution from a grounded to a 20 more abstract blending following the particular point at which a switch from an emphasis on 21the iconic/deictic to the metaphoric dimension occurs.22

Keywords Gestures•Metaphor•Semiotics•Growth point•Catchment•Conceptual blending 23
"Beyond the traditional psychological concentration on mental structures and functions 26
'inside' an individual it [the semiotic framework] considers the personal appropriation of 28
signs by persons within their social contexts of learning and signing. Beyond behav- 29
ioural performance this viewpoint also concerns patterns of sign use and production, 30including individual creativity in sign use, and the underlying social rules, meanings and 31contexts of sign use as internalized and deployed by individuals. Thus a semiotic32approach draws together the individual and social dimensions of mathematical activity 3333

[^0]\[

$$
\begin{array}{ll}
\text { as well as the private and public dimensions. These dichotomous pairs of ideas are } & 34 \\
\text { understood as mutually dependent and constitutive aspects of the teaching and learning } & 35 \\
\text { of mathematics, rather than as standing in relations of mutual exclusion and opposition." } & 36 \\
\text { (Ernest, 2006, p. 68) }
\end{array}
$$
\]

In recent years, there has been a growing interest in analysis of gestures and how gestures matter, not only in communication (organising a discourse) but also in construction of mathematical meanings and concepts. This paper addresses the interesting issue of how the metaphoric dimension of gestures may evolve through mathematical discourse.

Mathematics has a special status in analysing gestures, because it seems to be the most abstract and conceptual of all fields, ostensibly having little necessary connection to physical experience. For gesture theorists, it is interesting to investigate how such abstract concepts are made present through the physicality of gestures. Recent work in cognitive science and mathematics education has begun to show that mathematics, far from being disembodied and wholly cerebral, has both roots and expression in bodily knowing (Arzarello, 2007; Arzarello \& Edwards, 2005; Edwards, 2009; Lakoff \& Núñez, 2000; Nemirovsky \& Borba, 2003; Nemirovsky, Tierney, \& Wright, 1998; Núñez, 2000, 2004; Núñez, Edwards, \& Matos, 1999; Radford, 2009; Robutti, 2006). One reason why researchers are interested in working with gestures is that they may reveal aspects of concept formation and links with embodied metaphors that underlie mathematical abstractions and artefacts designed to foster the development of these concepts (Arzarello, Robutti, Sabena, \& Paola, 2009; Edwards, 2009; Radford, 2009; Yoon, Thomas, \& Dreyfus, 2009, 2011, 2014). Gestures produced by mathematics teachers and learners provide a rich source of data, comparable in scope to that provided by language, which can be read in terms of bodily metaphors, object construction and the formation of mathematical concepts, and the relationships among mathematical concepts.

Besides specifying their inherent differences, research in psychology informs us about an intimate unity between speech and gesture, with some evidence of a common semantic system involving both gesture and speech (Goldin-Meadow, 2003). Empirical evidence shows in fact that they are semantically and pragmatically co-expressive, they are essentially synchronous in time and meaning and they develop together in children. In quite expressive terms, McNeill claims that gestures have an active constitutive role in thought: "gestures do not just reflect thought but have an impact on thought. Gestures, together with language, help constitute thought". (McNeill, 1992, p. 245, emphasis in the original)

2 Semiotic aspects in connection with gestures

Gestures can be analysed in order to gain an insight into cognitive processes, as well as language or actions with tools and media. So, gestures are particularly interesting in mathematics education, as a means of understanding better students' (or teachers') ways of reasoning. When a gesture, an action and a word are used together in synchronicity, we have a "semiotic node", that is a piece of the students' semiotic activity to achieve knowledge
objectification (Radford, Demers, Guzmán, \& Cerulli, 2003). From a semiotic-cultural viewpoint, this mobilisation of more than one semiotic resource, produced synchronically, with a coordination of gesture, gaze and words, is particularly important, because it marks a new moment in the conceptualisation, namely a new element, which was not present before, enters the scene with a meaning. Often, it consists of a gesture along with locative words and timerelated expressions, to achieve a coordination of time, space and movement. In this way, researchers can locate specific points in students' semiotic activity where gestures and words achieve a coordination of time, space and movement leading to the social objectification of abstract mathematical spatial-temporal relationships. Since knowledge objectification is the process of becoming aware of certain conceptual states of affairs, semiotic nodes are associated with the progressive course of becoming conscious of something.

Students become more and more conscious of mathematical meanings by working together and by mutual interaction with materials and tools. In introducing semiotic nodes, which mark their awareness of mathematical meanings, they make use of gestures, mediated actions and words all together, at particular points that are simultaneously sensual and conceptual (Radford, Cerulli, Demers, \& Guzmán, 2004).

In his work, McNeill (1992) classified gestures using a number of dimensions. Of these iconic, deictic and metaphoric (rather than beat and cohesive ${ }^{1}$) are the ones of most interest in mathematics. He made it clear that these should be seen as overlapping dimensions, rather than discrete categories, stating that "Most gestures are multifaceted-iconicity is combined with deixis, deixis is combined with metaphoricity, and so forth. Rather than categories we should think in terms of dimensions." (McNeill, 1992, p. 38) Thus, a gesture may be, for example, simultaneously iconic, deictic and metaphoric. The iconic dimension relates to how the form of a gesture visually resembles the entity it is intended to describe, or as McNeill puts it, they are "gestures in which the form of the gesture and/or its manner of execution embodies picturable aspects of semantic content". (McNeill, 1992, p. 39) The deictic dimension of a gesture reflects the way it points, to either a physical place or an abstract idea represented at a specific point in a space. The metaphoric dimension involves the manner in which gestures convey abstract rather than concrete concepts. The intertwining of these aspects is particularly relevant when a mathematical discourse is analysed: in fact, mathematical inscriptions like graphs or formulas are deeply intermingled with the semantic content of mathematical concepts, and gestures can deeply reflect that (Lim et al., 2009). Moreover, a gesture is often not introduced alone, but, especially in mathematics, it is often aligned synchronically with words or other signs. This is described by Radford (2003) in terms of the semiotic node and by Arzarello (2006) as a semiotic bundle. More precisely, iconic gestures that mimic inscriptions (e.g. of an increasing function) can also assume a metaphorical aspect while the discourse is developing. Gestures can thus "enact symbols and provide grounding of novel and abstract ideas and representations" (Nathan, 2008, p. 377); we will deepen this point below in our examples 2 and 3.

3 Growth points and catchments

The constitutive role of gestures in thinking depends upon imagery, as a "form that directly embodies meaning". (McNeill, 2005, p. 56) In fact, "imagery [...] is embodied in gestures that universally and automatically occur with speech. Such gestures are a necessary component of

[^1]speaking and thinking". (ibid., p. 15) McNeill proposes an explanatory model based on a mechanism of language-gesture integration: the "growth point". ${ }^{2}$ His model combines in a dialectical way both the static and dynamic dimensions of language. In the static dimension (after de Saussure, 1916), which has been the focus in traditional linguistics, language is regarded as an object, trying to uncover the organisation of the langue system. In the dynamic dimension, after Vygotsky (1934/86), language is considered as a process, and gestures are a special route through which to access this language. The reason that gestures provide this special route is that in their unity with speech, they contribute dynamically to focusing the attention of the subject. As pointed out by MacNeill (2006, p. 2), this was observed at the beginning of the last century, by Saussure himself and by Wundt:
"...language requires two simultaneous modes of thought-what Saussure, in recently
discovered notes composed around 1910 [11 - Saussure, F. de, 2002], termed the
$$
129
$$
'double essence' of language (although he expressed this without reference to gestures).
Wundt, 1970, writing at almost exactly the same time, had a similar insight in thismaterially from no apparent gesture at all to elaborate multidimensional displays; but, hypo-
The construct of a growth point has been evoked in science education (Pozzer-Ardenghi \& 156 Roth, 2008) to study communicative meaning units and, in particular, to identify the moments 157 when new ideas are brought into conversations. In our research, we include the growth point 158 for two main reasons. The first is that with its dynamic nature, the growth point constitutes a psychological account of the genesis of new knowledge in the learner. The second concerns

[^2]the fact that it frames context as an inherent part of the model. In fact, in contrast to typical approaches in psycholinguistics, growth point analysis incorporates context as an integral part of the process of forming and unpacking meaning, rather than as an external input. As McNeill (2005) points out, "a growth point is always connected to the discourse context, including any social interactive aspects". (p. 82) Again, this aspect is developed from an original idea from Vygotsky. ${ }^{3}$ Context is incorporated into the dialectic model automatically, because each growth point constitutes what Vygotsky termed a psychological predicate-a point of differentiation of noteworthy content from a background; the background, or context, is an integral part of the growth point, without which it does not exist.

Context is formalised in the growth point model as a field of opposition, and empirically recovered via catchments. A catchment is defined as a "thematic discourse unit realized in an observable thread of recurring gestural imagery". (McNeill, 2005, p. 18) Thus, a catchment is recognisable when some gestural features are seen to recur in at least two (not necessarily consecutive) gestures. According to McNeill, a catchment indicates discourse cohesion, and it is due to the recurrence of consistent visuospatial imagery in speaker's thinking. Catchments may therefore be of great importance for research such as ours, since they provide us with information about the underlying meanings in a discourse, and about their dynamics:

By discovering the catchments created by a given speaker, we can see what this speaker

[^3]
3.1 Conceptual blending

One way to analyse the complex relationship between the semiotic role of gestures and the construction of mathematical ideas is through the theory of conceptual blending (Fauconnier \& Turner, 2002). This theoretical framework describes how two or more mental spaces, "small conceptual packets constructed as we think and talk, for the purposes of local understanding and action" (Fauconnier \& Turner, 2002, p. 40), are integrated into a new, blended mental space. Crucially, the inputs are not just transferred wholesale into the blend, but a combination of the processes of composition of projections from the inputs, completion and elaboration (or 'running the blend') "develops emergent structure that is not in the inputs [i.e. the mental spaces]." (Fauconnier \& Turner, 2002, p. 42) In mathematics, the two input spaces are often both abstract conceptual spaces, comprising knowledge of two domains that may be related or unrelated. An example from mathematics, given by Edwards (2009, p. 128), is the manner in which the notion of a number line draws on "two input spaces: our knowledge of numbers (initially whole numbers, and later, rational and real numbers), and our imagery and knowledge of the geometric entity called a 'line'." A second mathematical example, taken from Fauconnier and Turner (2002, p. 25) describes complex numbers as a blend of knowledge of real numbers and geometric knowledge of the properties of vectors in 2-space. Researchers such as Lakoff and Núñez (2000) have described how many important ideas in mathematics comprise conceptual blends, and that these convey powerful cognitive benefits, such as compression of ideas, "where the blended objects are given their own identity and the inputs are 'relegated behind the scenes'". (Alexander, 2008, p. 13; see also Tall, 2008) The production of gestures draws on knowledge of one's immediate physical environment (Edwards, 2009), with the mental space representing this referred to by Liddell (1996) as "real space". Thus, one of the input spaces behind gestures can be considered to be real space, with Liddell (1998) calling such a conceptual blend a grounded blend, and Parrill and Sweetser (2004) using the term blending model for describing the possible connections between iconic and metaphoric aspects of gestures involved in conceptualisation of meaning.

This framework of conceptual blending has previously proved a useful means for analysing gestures (Edwards, 2009; Yoon et al., 2011). We now present several examples, along with analyses from several perspectives, in an attempt to use the notion of grounded blends to describe what may be involved in the evolution in emphasis from the iconic to the metaphoric as the dominant dimension of a gesture. Our aim is to provide evidence for the hypothesis that an evolution from the prominence of an iconic to a metaphoric dimension of a gesture, part of a sequence of catchments, may indicate a process of construction of a mathematical concept. As defined by McNeill (2005), the dominant dimension of a gesture is a function of the input space employed: when this includes knowledge of the real world or comes from an embodied experience, then the gesture is primarily iconic; when it is knowledge from an abstract context (here mathematical), then the gesture is primarily metaphoric. Our proposal is that during the catchment, as the gesture recurs, the input spaces in the grounded blend may alter. Furthermore, we suggest that language has a key role in changing the blend through movement from one mental space to another.

For example, if one gestures the shape seen in the representation in Fig. 1a, in the context of a discussion about the outdoors, it may be understood primarily as iconic, referring to a hill or mountain. However, if the surrounding discussion is mathematical and the word "graph" is used, then, while the gesture may draw from both concrete and abstract input spaces, it may be seen as primarily metaphoric, picturing a parabola. Accessing the mathematical knowledge about parabolas may then give further information on related properties of quadratic functions.

Fig. 1 The role of language in establishing mental spaces

Similarly, if we meet the gesture in Fig. 1b in a discussion about movies or television
programmes, we may well focus primarily on its iconic and deictic dimensions, referring or pointing to a movie or television screen. However, if the context of the discussion is mathematical and uses language about two-dimensional shapes, then the dominant dimension may be metaphoric and we "see" it as representing a geometric figure, a rectangle, opening access to the corresponding mathematical properties that our cognitive structures contain about rectangle.

3.2 The case of Alessio: building numbers with gestures

In the context of the fairy tale "The three little pigs", 3-year-old kindergarten children are involved in counting three objects. The activity is directed not only at memorising the counting sequence but also at synchronising gesture and speech in the act of counting, which means showing one object a time, pronouncing the numeral corresponding to the object and finally recognising that the last numeral said is also the quantity counted. To take one thing each time and to count the things have a background in the metaphor "Arithmetic is Object Collection". (Lakoff \& Núñez, 2000) The teacher pays attention to the use that the children make of gestures along with words, and in doing this, she supports the use not only of the deictic gestural dimension-pointing to objects while counting-but also the iconic and metaphoric dimensions-representing the cardinality of the set of objects examined.

In the excerpts below, the teacher guides the children in counting their set of three things, while they are sitting down on the floor in a circle.
11:02 Teacher: Then, children, let's try to count how many things we have, shall we 270
count together? 272
11:05 Children: one, two, 273
11:08 Teacher: let's put up the finger, then we count them. 276
11:11 Altogether: one, two, three (the teacher and the children count showing the objects 278
with their index finger). 279
11:15 Teacher: how many are they? 280
11:17 Someone: three. 283
11:22 Teacher: how many are they? 283
11:23 Someone: like that. 286
11:24 Teacher: like that, good, or like that, (she shows the children which kind of 288
gesture: with three fingers as in Fig. 2c, or without the thumb) or also that is ok. (While 29064

Fig. 2 a Alessio opens his hand after trying to keep the thumb and little finger closed. b Alessio opens first his thumb and then his index finger. \mathbf{c} The teacher helps Alessio to open his fingers
the teacher is following some children, Alessio is trying to associate his three fingers - 291
index, medium and ring finger - with the three objects. In doing this, he opens his hand 292
after trying to keep his thumb and little finger closed - Fig. $2 \mathrm{a}-$ so he is no longer able 293
to repeat the gesture for correspondence between his three fingers and the three objects. 294
After that, he tries again, starting with his hand completely closed and he opens first the
thumb, then the index finger - Fig. 2b). You must add one more finger to the gun, here296
you are, excellent! Three, excellent! (Fig. 2c). 297
Research into the existence of a correspondence between fingers and numbers is necessary to be 299
sure of both the representation and its correctness (Fig. 2b), and Alessio is especially involved in 300
looking for that correspondence, in that he wants to be sure that his gesture and the numbers of his 301
fingers exactly fit the quantity of objects he has with him. It is a matter not only of a match between 302the number of fingers and the number of objects, but also of the representation of "three" with his
fingers. So, his gesture, which has an iconic dimension because of the fingers corresponding to the303
objects, evolves and acquires both a metaphoric dimension and an abstract meaning, representingthe cardinality of a set. The iconic and metaphoric dimensions of the gestures co-exist, and theirimportant meaning appears in the sequence of Alessio's movements. His concentration on remem-bering the correct gesture that means "three" in an abstract and symbolic way is transferredsimultaneously in the process of finger-object matching. In doing this, the child is not only satisfiedhe can remember the gesture as a sign for "three", but he also tries to reconstruct his own meaning,searching for a reason for the gesture. The gesture is the same (index, medium and ring finger open,and thumb and little finger closed), but has two dimensions: iconic and metaphoric, representing theconcept of "three" as a cardinal number. The sequence of catchments, comprising gestures that allinvolve open and closed fingers, marks the evolution in Alessio's imagery and representation of thenumber and his awareness of counting as a process with a result, in terms of cardinality, thatcorresponds exactly with the number of objects, and represents it. Alessio's gesture of three openfingers is the result of the growth point to generalise the number "three" (like a gun with one morefinger-Fig. 2c), although without an explicit linguistic component other than the teacher's. Alessioapproaches abstraction with the help of the teacher, who supports him in moving his fingers to a newrepresentation of the number "three". Alessio's grounded blend is changing, and now, with the helpof the teacher, it includes a mathematical context: if at the beginning the child was looking for anembodied, physical correspondence between fingers and objects, he now detaches his thinking fromthe physical world to approach an abstract concept of number, representing it with his fingers. Thisnew grounded blend essentially includes an abstract, mathematical input space, while the previousone was based on a correspondence with reality (objects). And the gesture of showing "three" haschanged its primary emphasis, from Fig. 2b-iconic - to Fig. 2c-metaphoric. This evolution takesplace with the help of a word ("three"), which supports a changing in the blend space from physicalto more abstract.

3.3 The case of Cyril: building the gradient with gestures

329The second case we present involves Cyril, a student attending the third year of secondary 330
school (11th grade, 16-17 years old): the case is widely discussed from another standpoint in331
Arzarello and Robutti (2008). Cyril's class had been introduced to the fundamental concepts of 332
calculus at the beginning of high school (in the 9th grade, see Arzarello, Pezzi, \& Robutti, 333
2007). Thus, the students had gradually become acquainted with the concept of functions and 334
of their variations (first in a qualitative and then in a quantitative way). Moreover, they had 335
developed the habit of using different types of software (Excel, Derive, Cabri-Géomètre, TI- 336
interactive, Graphic Calculus) to represent functions, using both their Cartesian graphs and 337
algebraic representations. The approach to the derivative concept is now pursued using 338
Graphic Calculus, see Fig. 3.339
We will comment on some excerpts from the activity of a group of three students, who 340
interact with the graphs described in Fig. 3 (they are on the screen of their computer while they 341
are working with the function $f: x \rightarrow 0.5 x^{3}-5 x^{2}+3$) and with their teacher. They are answering 342
the following specific question-asked by the teacher while discussing with them-Imagine 343
that you do not have the red curve (the one with a minimum), but you are seeing the tangent 344
moving. Do you have any information on the concavity of the slope function? 345
The students have had previous experience with sketching functions, know the concepts of 346
increasing/decreasing functions and have solved problems using first and second finite 347
differences of functions, but they do not yet know the notion of derivative. Moreover, while 348
they are good at using the Graphic Calculus program, they do know that the graph of the 349"quasi" tangent, constructed as a line joining two points very close together on the curve, is not 350the real tangent, because of the inherent approximation.351
Initially, Cyril is working with a computerised graphical mathematical environment 352
(Fig. 4). We observed the semiotic resources introduced and used by students and teacher, 353

Fig. 3 The blue graph (with a maximum and a minimum) is that of the function $f: x \rightarrow 0.5 x^{3}-5 x^{2}+3$; the red graph (with a minimum) is the graph of the slope of the "quasi" tangent (namely a secant between two very near points on the blue curve) to the function; software Graphic Calculus allows one to see the genesis of the two graphs through a point P that moves in time tracing the graph of the function f, the corresponding moving "quasi" tangent and the graph of its slope, which is drawn in real time while P moves

Fig. 4 The graphs and tangent line on the computer screen
which are as follows: the inscriptions on the screen (the two dynamic graphs and the moving tangent line in Fig. 4), Cyril's gestures and words and teacher's words (Arzarello, 2007). Cyril explains how the tangent is varying. Initially, the distances on the screen representing small sections of graph are represented by Cyril's gestures (see Figs. 4 and 5), which are primarily iconic.
The dominant iconic dimension of gestures is supported by explanations in words, which
are embodied and iconic (Tall, 2008), and relates the sizes of the two distances he has captured by gestures:

Cyril: The x-interval is the same.
Teacher: The x-interval is the same. [i.e., you are right] delta $x[\Delta x]$ is the same.
This moment is crucial, insofar as it marks the growth point, which generates the sequence of catchments and the corresponding evolution of gesture's dimensions (iconic and metaphoric). For this reason, we call the gestures in Fig. 5 the basic gestures. This evolution is also

Fig. 5 a-b Two of Cyril's gestures
marked by the intervention of the teacher, who plays a version of the semiotic game (Arzarello 370 \& Paola, 2007; Arzarello \& Robutti, 2008; Robutti, 2009), namely he reflects the gesture back,371 but with correct terminology attached, naming the concept delta $x[\Delta x]$. Initially, Cyril does 372 not pick up on the Δx, but persists with his iconic perspective, and the iconic idea that points is "further apart".

34.56 Cyril: To explain it you can say that... this line must join two points that on the y

interval are further apart.
However, the sequence of successive catchments (Fig. 6a-c, f), comprising fresh gestures 379 (Fig. 6d, e, g) and simultaneous utterances, signals a key change in his thinking. Actually, the 380 repetition of the basic gesture of Fig. 5a in these catchments is accompanied by a shift in the terminology and in the gesture, from the simple iconicity of the distance to the richer meaning of the delta $x[\Delta x]$ itself. The gestures in Fig. 6d, e, g-along with the words - make the co-variation of the Δy versus Δx and its relationship with the steepness of the tangent explicit:
35.03 Cyril: Delta...eh, indeed, however there are some points where... to explain it 385
one can say that this straight line (35.10) [Fig. 6a] must join two points (35.12) [Fig. 6b] 387
on the y-axis (35.14), which are farther from each other,... [Fig. 6c] hence it is steeper 388
towards (35.16)... [Fig. 6d] 389
35.18 Student G: Yes 390
35.19 Cyril: Let us say towards this side. When, here, ...when ...however it must join 393
two points that are farther...(35.24) [Fig. 6e]... that is there is less ... less distance 394
(35.26) [Fig. 6f] 395
35.27 Teacher: More or less far?] 396
35.28 Cyril: Less... less far [he corrects what he said before] 398
35.29 Teacher: Eh? 400
35.30 Cyril: On the y-axis I am saying 403

Fig. 6 a-g Cyril's catchments

35.31 Teacher: Yes

35.33 Cyril: It slopes gently from this side. In fact here is the point [Fig. 6 g].

The teacher's use of the expression Δx has helped Cyril's grounded blend evolve, so that he is now accessing a mental space related to differentiation and employing it to form a grounded blend. Now, he has access to the use of Δx and Δy in representing gradients. In this way, the gestures are now not only simply more iconic but also increasingly metaphoric in dimension, pointing him towards abstract mathematics. Hence, he begins to express, with both gesture and speech, the fact that for equal and small Δx, the corresponding Δy is different (e.g. bigger and bigger when the slope increases). While he is still using nonmathematical expressions -such as "less distance"-there is an indication that he is beginning to think in terms of the abstract notion of gradient, referred to by the terms "steeper" and "slants". The basic gesture of Fig. 5 has evolved: the catchments of Fig. 6 and the intertwined fresh gestures make this evolution palpable. Cyril has thus conceptualised a mathematical meaning, first showing an idea with a gesture that is mostly iconic and then generalising it with the same gesture shown in catchments, which then also evolves to acquire a metaphoric dimension in itself: from the source domain represented by the dynamic figure on the screen (Figs. 5a, b, and 6a, b) to the target of steepness (Fig. 6d) represented as a relationship between the vertical (Fig. 6f) and the horizontal displacement (Fig. 6e).

3.4 The case of Ava and Noa: building an antiderivative with gestures

It is not always easy to see a clear evolution from an emphasis on the iconic dimension to the metaphoric one. The interplay may take place over some time, with language and other aspects of the semiotic resources all playing their part. In this example, two teachers Ava and Noa are working on a task where they have to construct a graph of a tramping track given the graph of its gradient (see Fig. 7). While graphical derivatives are considered, this kind of graphical

Fig. 7 The graph of the gradient of the tramping track
antiderivative task is often not covered in the local secondary school curriculum and so would 431
be unfamiliar to students, as it proved to be to these teachers. The teachers worked on the task 432
in a semi-clinical setting, with a researcher present. Their work was audio and video taped and 433
later transcribed (see Yoon et al., 2011 for full details). 434
Following a "warm-up" task, and 1 min and 30 s after receiving the problem statement, Noa
118a 10.28 Noa Let's do positives and negatives, so uphill, downhill. [pointing with 438
index fingers to sections of the graph in Fig. 7, above and below the distance axis] 439
118b 10:37 Noa Uphill, downhill [places her hands flat across the sections of the graph 440
above and below the distance axis-see Fig. 8a] 442
121 10:45 Ava This [points to the gradient graph in Fig. 7] is a gradient graph and it's 443
going uphill downhill and we're at the top. That make sense? 445
122 10:59 Noa Yes. 446
123 11:00 Ava So the top is going to be here? 448
124a 11:05 Noa Probably.. [pauses for 6 seconds to think] 450
124b 11:11 Noa Yes, that's the same shape as there. [pauses and thinks for 12 seconds] 453
124c 11:23 Noa But just generally on the graph, the gradient (..) plus gradient is up [see 453
Fig. 4b] and negative gradient is down isn't it? [see Fig. 8c] So this would be all uphill 456
[places her hand flat on the section of the graph above the distance axis] 457
The gestures here mark a sequence of catchments where the hand, with fingers open or 459
closed, is used to gesture the direction of the graph. However, Noa's comment that "... 460
generally on the graph, the gradient... plus gradient is up and negative gradient is down isn't 461
it?" accompanied by her two gestures (see Fig. 8) seems to indicate that she is thinking about 462
the gradient of graphs in general, and hence, her gestures likely comprise a grounded blend 463
involving conceptual structures related to gradients of graphs. Thus, it appears that these two 464
gestures are removed from the tramping context and have a primarily metaphoric dimension. 465
However, a short time later when Ava and Noa refer to gradient, they are interpreting the 466
gradient on the given graph and so appear to be thinking firmly in a physical tramping context, 467
translating it with meanings such as "very steep" and "difficult walking". 468
140 12:29 Noa And we are going along the gradient is quite small so not very steep, but 460
then it gets steeper. 471
141 12:40 Ava But the gradient gets - here the gradient is very steep, this is hard. This is 473
difficult. 474
142 12:46 Noa Yes that's right. That's the hardest place. 476
143 12:48 Ava This is difficult walking. 478

Fig. 8 a-c The sequence of gestures for lines 118-124
This gesture (Fig. 8b) is again a basic gesture for our story; the speech and gestures in Fig. 8 480
form the growth point of all the subsequent evolution of catchments in Ava and Noa's semiotic 481productions.482
Hence, when they next gesture to indicate the slope of the track (see Fig. 7), they begin by 483referring to the context rather than a mathematical graph. They still employ terms such as484
"steep hill" and "going up". Their grounded blend appears to have a primarily iconic, rather 485
than metaphoric, dimension, although at some point there seems to be a crossover to the latter 486
in their thinking. The whole of this discussion is accompanied by continuous gesturing. 487
152 13:24 Noa Steep hill [gesture as in Fig. 9a] and still going up but not as sharply. So 488
it's really, really steep section. 490
153 13:34 Ava Really, really steep hill. 492
154 13:36 Noa And then the point of inflection [gesture in Fig. 9b] and then starting to 493
get not so steep up to the summit. 495
155 13:45 Ava Yes. 496
156 13:48 Noa And then we are starting to go downhill, negative gradient. [gesture by 498
both Ava and Noa in Fig. 9c]. 500
157 13:52 Ava Yip, yip. Downhill. 502
158 13:54 Noa And it's quite gentle gradient, getting steeper gradient to the point where 503
it is the hardest gradient [gesture in Fig. 9d] and then it starts levelling off and getting 505
easier again until you get to like a bottom. And then we start going back up, gentle to a 506
harder point. 507
159 13:21 Ava But not as hard as it was over there. 508
160 13:23 Noa But not as hard as it was over there. And then gradient is getting easier - 510
we're still going up but we're flattening off and then we reach another point where we've 512
got to the top. 513

Fig. 9 The sequence of gestures for lines 152-158

Initially, they both begin with the similar embodied, physical context ideas of "going up"
and "really steep", but the use of the term "point of inflection" by Noa appears to mark a crucial point. Although she expresses the term in an interrogative manner, suggesting that she is very uncertain of its correctness, it may be that it brought a graphing schema from calculus to the forefront of her thinking. This enabled a change in her blend at that point to include knowledge of mathematical graphs. Hence, her very next comment, 12 s later, now includes both the embodied physical idea of "starting to go downhill" and the mathematical concept of "negative gradient". Her following comments comprise a mixture of terms, but now, the gestures relate to "gentle gradient", "steeper gradient" and "hardest gradient", and finally, she talks about "the gradient is getting easier". Thus, her grounded blend seems to have employed the mathematical concept of gradient to assist in the transition from the graph in Fig. 7 to an antiderivative constructed through gestures. At the same time, the gestures have evolved from a primarily iconic dimension to a mostly metaphoric one, moving from representing physical "steepness" to the abstract mathematical idea of instantaneous gradient at a point on a graph as measured by a tangent line. This evolution is again marked by a starting growth point, namely when a hand gesture is used to represent, not the physical steepness of a hill, but the mathematical gradient of a tangent line to a graph, and by a sequence of catchments, which mark the evolution of the gestures from mostly iconic to include a more abstract, metaphoric dimension.

4 Discussion

McNeill describes catchments as a "thread of recurring gestural imagery" (McNeill, 2005, p. 19): as such, they show how language and imagery can contribute to making sense of mathematical concepts through their dialectic. In our examples, we have shown that through the blending of imagistic and discursive aspects, catchments can contribute to making apparent the new concepts of the following: the number three, incremental ratio and the instantaneous gradient of a function. The three examples are characterised by a production of catchments completely linked to the context. And framing the abstraction of mathematics in a context is crucial for having a growth point.

The growth point, introduced by McNeill as a mark of the beginning of information prior to its full articulation, is made of imagery and linguistic components, articulated in a context. In our three examples, the presence of a growth point is essential to the construction and development of mathematical meanings and is independent of the age of the subjects involved. Both very young and older students show similar use of a growth point: the dialectic between words and gestures determines a sort of instability and a process involving catchments, until the production of a final and static sign. The analysis of this process provides us with an interpretation of the cognitive activity of students, marked by subsequent steps where the interaction with the teacher, or between students, is an essential part. The cognitive activity is particularly evident when students are using multiple gestures, as in the examples discussed above, because we can observe the process of catchment development and the evolution of meaning. When a gesture is initially introduced with an iconic dimension, it is not sufficient to provide information about the cognitive activity, but if at a certain point there is a switch in emphasis from the iconic to the metaphoric dimension, it means that there is a cognitive evolution from a grounded to a more abstract blending. All three of the examples above show this evolution.

In describing and analysing data, we have considered at least three types of intertwined semiotic resources: speech, gestures and inscriptions. We have considered the multimodal semiotic resources used by students and teachers in a systemic way, taking into account the signs introduced in the social interaction, their evolution and their mutual relationships. They constitute a unit in our analysis, which is inherently composed of different modalities, in view of the dynamic evolution. This aspect is parallelled in gesture studies by McNeill's growth point analysis, in which the gesturespeech unity is the basis for the analysis. Both approaches are inspired by Vygotsky's intuition that to understand a complex phenomenon/process, it is important to consider a minimal psychological unit that retains the essential properties of being a whole. In the case of Vygotsky, the minimal unit is the "word meaning". In the case of McNeill and gesture studies, the minimal unit includes gesture and speech. However, in our analysis, the minimal unit entails all the activated semiotic resources, such as speech, gesture, inscriptions and so on, as well as signs coming from technological devices (such as a graph). In our last two examples, inscriptions on the screen or on the paper are crucial in the formation of a grounded blend from which the successive productions of catchments evolved. In the first example, the experience with concrete objects is essential in finding a correspondence between object and finger and hence in supporting the grounded blend that gives rise to the production of catchments.

Thus, we maintain the data which support our hypothesis that the evolution from the prominence of an iconic to a metaphoric dimension of a gesture, part of a sequence of catchments, can indicate a process of construction of a mathematical concept, independent of the age of students and the difficulty of the task. Further, this passage is also characterised by the use of language and of other signs coming from the context where the students are working together. This complex minimal unit of analysis (called a semiotic bundle in Arzarello, 2006) features the mathematical discourse, stressing its similarities to, and differences from, discourses produced in everyday conversation.

References

Alexander, J. C. (2008). Mathematical blending. Retrieved on 22.2.2010 from http://papers.ssrn.com/sol3/papers. cfm? abstract id=1404844.
Alibali, M. W., Kita, S., \& Young, A. J. (2000). Gesture and the process of speech production: We think, therefore we gesture. Language and Cognitive Processes, 15(6), 593-613.
Arzarello, F. (2006). Semiosis as a multimodal process, RELIME, Revista Latinoamericana de Investigación en Matemática Educativa, Numero Especial, 267-299.
Arzarello, F. (2007). Mathematical landscapes and their inhabitants: Perceptions, languages, theories. In E. Emborg \& M. Niss (Eds.), Proceedings of ICME 10 (pp. 158-181). Copenhagen: Roskhilde University Press.

Arzarello, F., \& Robutti, O. (2008). Framing the embodied mind approach within a multimodal paradigm. In M. G. Bartolini Bussi \& L. D. English (Eds.), Handbook of international research in mathematics education (pp. 716-745). New York: Taylor \& Francis.
Arzarello, F., Pezzi, G., \& Robutti, O. (2007). Modelling body motion: An approach to functions using measure instruments. In W. Blum, P. L. Galbraith, H. W. Henn, \& M. Niss (Eds.), Applications and modelling in mathematics education. ICMI Study 14 (pp. 129-136). Berlin: Springer.
Arzarello, F., Robutti, O., Sabena, C., \& Paola, D. (2009). Gestures as semiotic resources in the mathematics
de Saussure, F. (1916). Cours de linguistique générale. Paris: Payot.
Edwards, L. (2009). Gestures and conceptual integration in mathematical talk. Educational Studies in Mathematics, 70(2), 127-141.
Fauconnier, G., \& Turner, M. (2002). How we think: Conceptual blending and the mind's hidden complexities. New York: Basic Books.
Goldin-Meadow, S. (2003). Hearing gesture: How our hands help us think. Cambridge: Harvard University Press.
Kita, S. (2000). How representational gestures help speaking. In D. McNeill (Ed.), Language and Gesture: Window into thought and action (pp. 162-185). Cambridge: CUP.
Krauss, R. M. (1998). Why do we gesture when we speak? Current Directions in Psychological Science, 7, 54 59.

Lakoff, G., \& Núñez, R. (2000). Where mathematics comes from: How the embodied mind brings mathematics into being. New York: Basic Books.
Liddell, S. K. (1996). Spatial representation in discourse: Comparing spoken and signed language. Lingua, 98, 145-167.
Liddell, S. K. (1998). Grounded blends, gestures and conceptual shifts. Cognitive Linguistics, 9(3), 283-314.
Lim, V. K., Wilson, A. J., Hamm, J. P., Phillips, N., Iwabuchi, S., Corballis, M. C., et al. (2009). Semantic processing of mathematical gestures. Brain and Cognition, 71, 306-312.
MacNeill, D. (2006). Gesture and thought. The Summer Institute on Verbal and Non-verbal Communication and the Biometrical Principle, Sept. 2-12, Vietri sul Mare (Italy). Retrieved on March 31, 2014 from: http:// meneilllab.uchicago.edu/pdfs/dmcn_vietri_sul_mare.pdf.
McNeill, D. (1992). Hand and mind: What gestures reveal about thought. Chicago: University of Chicago Press.
McNeill, D. (2002). Gesture and language dialectic. Acta Linguistica Hafniensia: International Journal of Linguistics, 34(1), 7-37.
McNeill, D. (2005). Gesture and thought. Chicago: University of Chicago Press.
McNeill, D., Quek, F., McCullough, K.-E., Duncan, S., Furuyama, N., Bryll, R., et al. (2001). Catchments, prosody and discourse. Gesture, 1(1), 9-33.
Nathan, M. J. (2008). An embodied cognition perspective on symbols, grounding, and instructional gesture. In M. DeVega, A. M. Glenberg, \& A. C. Graesser (Eds.), Symbols and embodiment: Debates on meaning and cognition (pp. 375-396). Oxford: Oxford University Press.
Nemirovsky, R., \& Borba, M. (2003). Perceptual-motor activity and imagination in mathematics learning. In N. Pateman, B. Dougherty, \& J. Zilliox (Eds.), Proceedings of the 27th conference of the international group for the psychology of mathematics education (Vol. 1, pp. 105-109). Honolulu: University of Hawai'i.
Nemirovsky, R., Tierney, C., \& Wright, T. (1998). Body motion and graphing. Cognition and Instruction, 16(2), 119-172.
Núñez, R. E. (2000). Mathematical idea analysis: What embodied cognitive science can say about human nature of mathematics. In T. Nakahara \& M. Koyama (Eds.), Proceedings of the 24th annual conference of the international group for the psychology of mathematics education (Vol. 1, pp. 3-22). Hiroshima: Programme Committee.
Núñez, R. E. (2004). Do real numbers really move? Language, thought, and gesture: The embodied cognitive foundations of mathematics. In F. Iida, R. Pfeifer, L. Steels, \& Y. Kunyoshi (Eds.), Embodied artificial intelligence (pp. 54-73). Berlin: Springer.
Núñez, R. E., Edwards, L. D., \& Matos, J. F. (1999). Embodied cognition as grounding for situatedness and context in mathematics education. Educational Studies in Mathematics, 39, 45-65.
Parrill, F., \& Sweetser, E. (2004). What we mean by meaning. Conceptual integration in gesture analysis and transcription. Gesture, 4(2), 197-219.
Pozzer-Ardenghi, L., \& Roth, W.-M. (2008). Catchments, growth points and the iterability of signs in classroom communication. Semiotica, 172(1/4), 389-409.
Quek, F. (2004). The catchment feature model: A device for multimodal fusion and a bridge between signal and sense. Journal on Applied Signal Processing, 11, 1619-1636.
Radford, L. (2003). Gestures, speech, and the sprouting of signs. Mathematical Thinking and Learning, 5(1), 3770.

Radford, L. (2009). Why do gestures matter? Sensuous cognition and the palpability of mathematical meanings. Educational Studies in Mathematics, 70(3), 111-126.
Radford, L., Demers, S., Guzmán, J., \& Cerulli, M. (2003). Calculators, graphs, gestures and the production of meaning. In N. Pateman, B. Dougherty, \& J. Zilliox (Eds.), Proceedings of the 27th conference of the international group for the psychology of mathematics education (Vol. 4, pp. 55-62). Honolulu: University of Hawai'i.
Radford, L., Cerulli, M., Demers, S., \& Guzmán, J. (2004). The sensual and the conceptual: Artefact-mediated kinesthetic actions and semiotic activity. In M. J. Høines \& A. B. Fuglestad (Eds.), Proceedings of the 28

609
610

611

612
613
614

615

616
617
618
619
620
621
622
623
conference of the international group for the psychology of mathematics education (Vol. 4, pp. 73-80). 669 Norway: Bergen University College. 670
Robutti, O. (2006). Motion, technology, gesture in interpreting graphs. The International Journal for Technology 671 in Mathematics Education, 13(3), 117-126. 672
Robutti, O. (2009). Teacher's semiotic games in mathematics laboratory. Jornal Internacional de Estudos em 673 Educação Matemática, 1, 1-25.
Saussure, F. de. (2002). Écrits de linguistique général (compiled and edited by S. Bouquet and R. Engler). Paris: 675 Gallimard.
Tall, D. O. (2008). The transition to formal thinking in mathematics. Mathematics Education Research Journal, 677 20(2), 5-24.

Vygotsky, L. S. (1934/86). Thought and language. Cambridge, MA: MIT Press. (Revised edition, translated and edited by A. Kozulin).
Wundt, W. (1970). The psychology of the sentence. In A. Blumenthal (Ed.), Language and psychology: 681 Historical aspects of psycholinguistics (pp. 20-33). New York: John Wiley. 682
Yoon, C., Thomas, M. O. J., \& Dreyfus, T. (2009). Gestures and virtual space. In M. Tzekaki, M. Kaldrimidou, \& 683 C. Sakonidis (Eds.), Proceedings of the 33rd conference of the international group for the psychology of 684 mathematics education (Vol. 5, pp. 409-416). Thessaloniki: PME.
Yoon, C., Thomas, M. O. J., \& Dreyfus, T. (2011). Grounded blends and mathematical gesture spaces: 686 Developing mathematical understandings via gestures. Educational Studies in Mathematics, 78, 371-393. 687
Yoon, C., Thomas, M. O. J., \& Dreyfus, T. (2014). The role of conscious gesture mimicry in mathematical 688 learning. In L. Edwards, F. Ferrara, \& D. Moore-Russo (Eds.), Emerging perspectives on gesture and 689 embodiment in mathematics (pp. 175-195). Charlotte: Information Age Publishing.

AUTHOR QUERIES

AUTHOR PLEASE ANSWER ALL QUERIES.

Q1. Please check the suggested running page title if appropriate. Otherwise, please provide short running title with maximum of 65 characters including spaces.
Q2. City has been provided to affiliation 1, please check if it is correct.
Q3. "Ernest, 2006" is cited in text but not given in the reference list. Please provide details in the list or delete the citation from the text.
Q4. Figure citations in the text as well as their corresponding figure captions were renumbered. Please check if appropriate.
Q5. Please check Fig. 6 and Fig. 8 figure captions if presented correctly.
Q6. Please check the sentence "Thus, we maintain the data which..." if presented correctly.

[^0]: Mike Thomas
 moj.thomas@auckland.ac.nz
 ${ }^{1}$ Università di Torino, Torino, Italy
 2 Mathematics Department, The University of Auckland, PB92019 Auckland, New Zealand

[^1]: ${ }^{1}$ We do not consider gestures of this kind here because they are not related to our focus.

[^2]: ${ }^{2}$ Within different frameworks, in the field of psycholinguistics, there are well-sustained theories claiming gesture-speech integration: see the Information Packaging Hypothesis sustained by Kita (Alibali, Kita, \& Young, 2000; Kita, 2000). In contrast to some earlier theories, such as the Lexical Retrieval Hypothesis (Krauss, 1998), both McNeill's and Kita's views assign a prominent role to gestures in thinking processes.

[^3]: ${ }^{3}$ In chapter 3 of his book, McNeill (2005) discusses Vygotsky's ideas of psychological predicate, inner speech (Vygotsky, 1934/86) and relates them to the GP theory, arguing that they contain the seeds for its main ideas.

