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Abstract

In this paper we provide a semantic reconstruction of rational closure. We first con-
sider rational closure as defined by Lehman and Magidor [? ] for propositional logic,
and we provide a semantic characterization based on a minimal models mechanism on
rational models. Then we extend the whole formalism and semantics to Description
Logics, by focusing our attention to the standardALC: we first naturally adapt to De-
scription Logics Lehman and Magidor’s propositional rational closure, starting from an
extension of ALC with a typicality operator T that selects the most typical instances
of a concept C (hence T(C) stands for typical C). Then, for the Description Logics,
we define a minimal model semantics for the logicALC and we show that it provides
a semantic characterization for the rational closure of a Knowledge base. We consider
both the rational closure of the TBox and the rational closure of the ABox.

Keywords: Description Logics, Nonmonotonic Reasoning, Knowledge
Representation, Rational Closure

1. Introduction

In [? ] Kraus Lehmann and Magidor (henceforth KLM) proposed an axiomatic ap-
proach to nonmonotonic reasoning based on the notion of plausible inference. Plausible
inferences are represented by conditionals of the form A |∼ B, to be read as “typically or
normally A entails B”. For instance, the conditional assertion monday |∼ go work can
be used in order to represent that “normally if it is Monday I go to work”. Conditional
entailment is nonmonotonic since from A |∼ B one cannot derive A∧C |∼ B, in our exam-
ple from monday |∼ go work one cannot monotonically derive monday ∧ ill |∼ go work
(“normally if it is Monday, even if I am ill I go to work”).
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KLM presented a hierarchy of axiomatic systems for plausible inference, each sys-
tem specifies a set of postulates characterising plausible inference. The systems are,
from the weakest to the strongest: cumulative logic C, loop-cumulative logic CL, and
most important preferential logic P. In subsequent work [? ] Preferential logic was
strengthened to rational logic R and the latter was proposed as the most adequate sys-
tem to represent (nonmontonic) plausible inference.

Although it is arguable whether, KLM systems, and in particular R, represent ad-
equately all types of nonmonotonic inferences1, we think that KLM systems and the
strongest R in particular, are still a significant proposal for nonmonotonic reasoning for
two reasons: on a theoretical level, they define a set of inferential properties which are
useful (even if not necessarily wanted) to classify and analyze concrete nonmonotonic
inference, (b) they provide a simple and direct language to express plausible inferences
and to reason about them.

In this work we take KLM logic R as the basis of our approach to nonmonotonic
reasoning. Even if R formalizes some properties of nonmonotonic inference it is too
weak in itself to perform useful nonmonotonic inferences.

We have just seen that by the nonmonotonicity of |∼, A |∼ B does not entail A ∧ C |∼

B (monday |∼ go work does not entail monday ∧ ill |∼ go work), and this is a
wanted property of |∼: it is what allows to express sets of conditionals that in classi-
cal logic would lead to contradictory or absurd conclusions (for instance {monday →
go work,monday ∧ ill → ¬go work} gives ¬(monday ∧ ill) in classical logic, that
is that it is impossible to be ill on Monday). However, there are cases in which, in the
absence of information to the contrary, we would like to be able to tentatively infer that
also A∧C |∼ B, with the possibility of withdrawing the inference in case we discovered
that it is inconsistent. For instance, we might want to infer that A ∧ C |∼ B when C
is irrelevant with respect to the property B: in the example, we might want to tenta-
tively infer from monday |∼ go work (“normally if it is Monday, I go to work”) that
monday ∧ shines |∼ go work (“normally if it is Monday, even if the sun shines I go to
work”), with the possibility of withdrawing the conclusion if we discovered that indeed
the sun shining prevents from going to work. R cannot handle irrelevant information
in conditionals, and the inferences just exemplified are not supported.

Partially motivated by this weakness, Lehmann and Magidor have proposed a true
nonmonotonic mechanism on the top of R. Rational closure [? ] on the one hand
preserves the properties of R, on the other hand it allows to perform some truthful
nonmonotonic inferences, like the one just mentioned (monday ∧ shines |∼ go work).
In [? ] the authors give a syntactic procedure to calculate the set of conditionals entailed
by the rational closure as well as a quite complex semantic construction. It is worth
noticing that a strongly related construction has been proposed by Pearl [? ] with his
notion of 1-entailment, originating from a probabilistic interpretation of conditionals
within the well-established System Z.

1It has been shown that existing nonmonotonic systems do not satisfy in general all the properties of KLM
systems: in particular circumscription (for well-founded theories) satisfies all postulates of preferential logic,
but it does not satisfy rational monotony of R, whereas default logic fails to satisfy even the cumulativity
postulate of the weakest logic C. Of course, a nonmonotonic mechanism may give rise to different inference
relations (skeptical, credulous, etc) with different properties.
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In this paper we provide a semantic reconstruction of rational closure for proposi-
tional logic as well as for Description Logics (DLs for short) with a specific attention
to the standard ALC. We first consider rational closure as defined by Lehman and
Magidor [? ] for propositional logic, and we provide a semantic characterization based
on a minimal models mechanism on rational models. Then we extend the whole for-
malism and semantics to Description Logics: we first naturally adapt to DLs Lehman
and Magidor’s propositional rational closure, starting from an extension of ALC with
a typicality operator T that selects the most typical instances of a concept C (the exten-
sion is calledALC+TR). ForALC+TR, we provide both a syntactic and a semantical
notion of rational closure, along the same lines used for the propositional case: we first
define rational closure over the TBox, and subsequently rational closure for the ABox.

The first problem we tackle in this work is that of giving a purely semantical char-
acterization of the syntactic notion of rational closure. Our semantic characterization
has as its main ingredient the modal semantics of logic R, over which we build a mini-
mal models’ mechanism, based on the minimization of the rank of worlds. Intuitively,
we prefer the models that minimize the rank of domain elements: the lower the rank
of a world, the more normal (or less exceptional) is the world and our minimization
corresponds intuitively to the idea of minimizing less-normal or less-plausible worlds
(or maximizing most plausible ones). We show that a semantic reconstruction of ratio-
nal closure can be obtained as a specific instance of a general semantic framework for
nonmonotonic reasoning. Within this general framework we give two characterizations
of rational closure: one based on a fixed interpretations semantics and the other with a
variable interpretations semantics.

The theoretical question we address in this first part of the paper is the following:

A) Given the fact that logic R is characterized by a specific class of Kripke mod-
els, what are the Kripke models that characterize the rational closure of a set of
positive conditionals?

We notice in passim that our semantic characterization of rational closure in terms
of minimal models is different from the one given by Lehmann and Magidor’s in [?
] which is based on a different notion of minimal models. Moreover we consider our
semantic characterization as a specific case of a general minimal models’ mechanism
for nonmonotonic reasoning, and in this paper we show under what conditions we
capture rational closure. The generality of our semantical characterization is well-
suited to study variants of rational closure. Finally, the semantic characterization does
also easily extend to other logics, as Description Logics (ALC), that we discuss next.
In the second part of the paper we consider Description Logics. If propositional
KLM systems deal with propositions (“I go to work”) and relations among proposi-
tions (“usually, if it is Monday, then I go to work”), Description Logics deal with
concepts, relations among concepts, as well as with individuals. In Description Log-
ics one can use concept inclusion in order to express that all the members of a class
have a given property (thus Cats v Mammal expresses the general property that “cats
are mammals”, and Pet v ∃HasOwner.> that “all pets have an owner”). One can
also use assertions in order to represent the fact that an individual has a given prop-
erty, e.g. Cat(tom) (“Tom is a cat”) or ∃HasOwner.>(tom) (“Tom has an owner”) or
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HasOwner(tom, nadeem) (“Nadeem is Tom’s owner”). A distinguishing quality of
Description Logics is their controlled complexity: the trade-off between expressivity
of the languages and good computational complexities is one of the main reasons jus-
tifying the success of DLs.

Many works in the literature have considered how to extend the basic formalism of
Description Logics with nonmonotonic reasoning features [? ? ? ? ? ? ? ? ? ? ?
? ]; the purpose of these extensions is to allow to reason about prototypical properties
of individuals or classes of individuals. In these extensions one can represent, for
instance, knowledge expressing the fact that the heart is usually positioned in the left-
hand side of the chest, with the exception of people with situs inversus, that have the
heart positioned in the right-hand side. Also, one can infer that an individual enjoys
all the typical properties of the classes it belongs to. So, for instance, in the absence
of information that someone has situs inversus, one would assume that it has the heart
positioned in the left-hand side.

In spite of the number of work in this direction, the problem of extending DLs for
reasoning about prototypical properties seems far from being solved. The most well-
known semantics for nonmonotonic reasoning have been used to the purpose, from
default logic [? ], to circumscription [? ], from Lifschitz’s nonmonotonic logic MKNF
[? ? ] to KLM logics. In particular, concerning KLM logics, in [? ] a preferential
extension of ALC (called ALC + T) is defined, based on the KLM logic P, and in [?
] a defeasible description logic based on the KLM logic R is introduced. In [? ] a
minimal model semantics for the logicALC + T is presented.

An approach to the definition of rational closure for DLs has been proposed by
Casini and Straccia in [? ], where a notion of rational closure is defined for ALC
through an algorithmic construction similar to the one introduced by Freund in [? ] for
the propositional calculus. For propositional logic, this construction can be proved to
be equivalent to the notion of rational closure proposed by Lehmann and Magidor in
[? ]. [? ] explores the axiomatic properties of this notion of rational closure forALC,
and shows that the notion of default assumption consequence is a rational consequence
relation validating the knowledge base. On the other hand, [? ] does not consider a
semantics for rational closure.

In this paper, we take our moves from the notion of propositional rational closure
given by Lehmann and Magidor, and we show that it can be naturally extended to
the description logic ALC. Furthermore, we investigate its semantics, by extending
to ALC the minimal model semantics introduced at the propositional level in order
to address question A. The questions we address in the second part of the paper are
therefore the following:

B) What is the natural extension of the well-established notion of rational closure in
[? ] to Description Logics?

C) What is the corresponding semantics?

D) How can this mechanism deal with the ABox?

As we will see, for concept inclusions (TBox) the extension of both the syntactic and
the semantical characterization of rational closure from propositional logic to DLs is
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relatively direct, although the presence of typicality assertions in the ABox makes
things not straightforward. Furthermore, the algorithmic construction we propose for
ABox reasoning is novel and it entirely relies on the semantical characterization: only
once we have extended the semantics for rational closure to take into account ABox
individuals, we can provide the corresponding mechanism to compute rational closure
of the ABox.

As matter of fact, we do not consider our adaption of Lehmann and Magidor’s
rational closure to DLs as the conclusive solution to the issue of nonmonotonic exten-
sions of Description Logics. Rational closure has some known weaknesses that come
together with its recognised advantages (among which, its computational lightness,
which is crucial in Description Logics). Both advantages and weaknesses are inher-
ited by its extension to Description Logics. Nevertheless, since rational closure is one
of the most established formalisms for nonmonotonic reasoning and it has good com-
putational properties, we think that its application to Description Logics significantly
contributes to the quest of nonmonotonic extensions of Description Logics. Further-
more, this work can be regarded as a first step towards the exploration of semantics
for more refined versions of rational closure, that overcome some of the known weak-
nesses of this mechanism (see for instance [? ? ] which combines rational closure with
inheritance networks).

To summarize the resulting approach: our starting point is the standard Descrip-
tion Logic ALC, more precisely ALC extended with a typicality operator T. The
operator T, first introduced in [? ], allows to directly express typical properties such
as T(HeartPosition) v Left, T(Bird) v Fly, and T(Penguin) v ¬Fly, whose intuitive
meaning is that, normally, the heart is positioned in the left-hand side of the chest,
that typical birds fly, whereas penguins do not. In this paper, the T operator is in-
tended to enjoy the well-established properties of rational logic R . Even if T is a
nonmonotonic operator (so that for instance T(HeartPosition) v Left does not entail
that T(HeartPosition u SitusInversus) v Left), the logic itself is monotonic. Indeed, in
this logic it is not possible to monotonically infer from T(Bird) v Fly, in the absence
of information to the contrary, that also T(BirduBlack) v Fly. Nor can it be nonmono-
tonically inferred from Bird(tweety), in the absence of information to the contrary, that
T(Bird)(tweety). Nonmonotonicity is achieved first by adapting to ALC with T the
propositional construction of rational closure. This nonmonotonic extension allows to
infer typical subsumptions from the TBox (TBox reasoning). Intuitively and similarly
to the propositional case, the rational closure construction amounts to assigning a rank
(a level of exceptionality) to every concept; this rank is used to evaluate typical inclu-
sions of the form T(C) v D: the inclusion is supported by the rational closure whenever
the rank of C is strictly smaller than the rank of Cu¬D. From a semantic point of view,
nonmonotonicity is achieved by defining, on the top ofALC with typicality, a minimal
model semantics which is similar to the one in [? ]. Differently from [? ], the notion of
minimality used here is based on the minimization of the ranks of the domain elements,
rather than on the minimization of the extension of specific concepts. This semantics
provides a characterization to the rational closure construction forALC.

Last, we tackle the problem of extending rational closure to ABox reasoning: in
order to ascribe typical properties to individuals, we maximize the typicality of an
individual. This is done by minimizing its rank (that is, its level of exceptionality).
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As we will see, because of the interaction between individuals (due to roles) it is not
possible to separately assign a unique minimal rank to each individual and alternative
minimal ranks must be considered. We end up with a kind of skeptical inference with
respect to the ABox.

The rational closure construction we propose for ALC has not just a theoretical
interest and a simple minimal model semantics. We show that it retains the same com-
plexity of the underlying description logic. ForALC, the problem of deciding whether
a typical inclusion belongs to the rational closure of the TBox is in EXPTIME as well
as the problem of deciding whether an assertion C(a) belongs to the rational closure
of the knowledge base over the ABox. In this respect, the proposed approach is less
complex than other approaches to nonmonotonic reasoning in DLs such as [? ? ] and
comparable in complexity with the approaches in [? ? ? ], and thus a good candidate
to define effective nonmonotonic extensions of DLs. The results on the rational closure
inALC (as an extension of Lehmann and Magidor’s rational closure [? ]) extensively
rely on the finite model property, which holds for ALC. However, the construction of
rational closure can be extended to more expressive description logics that do not enjoy
the finite model property. Some preliminary results on the rational closure for SHIQ
[? ] can be found in [? ].

2. Propositional rational closure: a semantic characterization

2.1. KLM rational system R
The language of logic R consists just of conditional assertions A |∼ B. We here

consider a richer language which also allows boolean combinations of assertions. Our
language L is defined from a set of propositional variables ATM, the boolean con-
nectives and the conditional operator |∼. From propositional variables, propositional
formulas are defined as usual in the propositional logic. We use A, B,C, . . . to denote
propositional formulas (that do not contain conditional formulas), whereas F,G, . . . are
used to denote all formulas (including conditionals). The formulas of L are defined as
follows: if A is a propositional formula, A ∈ L; if A and B are propositional formulas,
A |∼ B ∈ L; if F is a boolean combination of formulas of L, then F ∈ L. A knowledge
base K is a set of conditional assertions A |∼ B. In this work, we restrict our attention
to finite knowledge bases.

Before presenting the axiomatization of R, let us clarify one point: in its original
presentation [? ], a conditional A |∼ B is considered as a consequence relation between
a pair of propositional formulas A and B, so that their systems provide a set of “pos-
tulates” (or closure conditions) that the intended consequence relation must satisfy.
Alternatively, these postulates may be seen as rules to derive new conditionals from
given ones. We take a slightly different viewpoint, shared, among others, by Halpern
and Friedman [? ] (see Section 8) and Boutilier [? ], who proposed a modal interpre-
tation of R: in our understanding, this system is an ordinary logical system in which a
conditional A |∼ B is a formula belonging to the object language. Whenever we restrict
our consideration, as done by Lehmann and Magidor in [? ], to the entailment of a
conditional from a set of conditionals, the two viewpoints coincide, and a conditional
is a logical consequence of a set of conditionals in logic R if and only if it belongs
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to all rational consequence relations extending that set of conditionals, or (in semantic
terms), it is valid in all rational models (as defined by [? ]) of that set.

Here is the axiomatization of logic R. In our presentation Lehmann and Magidor’s
postulates/rules are just axioms. We use `PC (resp. |=PC) to denote provability (resp.
validity) in the propositional calculus .

All axioms and rules of propositional logic (PC)
A |∼ A (REF)
if `PC A↔ B then (A |∼ C)→ (B |∼ C) (LLE)
if `PC A→ B then (C |∼ A)→ (C |∼ B) (RW)
((A |∼ B) ∧ (A |∼ C))→ (A ∧ B |∼ C) (CM)
((A |∼ B) ∧ (A |∼ C))→ (A |∼ B ∧C) (AND)
((A |∼ C) ∧ (B |∼ C))→ (A ∨ B |∼ C) (OR)
((A |∼ B) ∧ ¬(A |∼ ¬C))→ (A ∧C |∼ B) (RM)

The axiom (CM) is called cumulative monotony and it is characteristic of all KLM
logics, axiom (RM) is called rational monotony and it characterizes the logic of ra-
tional entailment R (it is what distinguishes rational from the weaker preferential en-
tailment). In [? ], Friedman and Halpern have shown that the axiom system of R
is complete with respect to a wide spectrum of different semantics (e.g. possibilistic
structures and k-rankings), proposed in order to formalize some forms of nonmono-
tonic reasoning. This can be explained by the fact that all these models are examples
of plausibility structures, and the truth in them is captured by the axioms of R.

The logic R enjoys a very simple modal semantics, actually it turns out that it cor-
responds to the flat fragment of the well-known conditional logic VC [? ]. The modal
semantics is defined by considering a set of worldsW equipped by an accessibility (or
preference) relation <. Intuitively the meaning of x < y is that x is more typical/more
normal/less exceptional than y. We say that a conditional A |∼ B is true in a model if B
holds in all most normal worlds where A is true, i.e. in all <-minimal worlds satisfying
A.

Definition 1. A rational model is a triple

M = 〈W, <,V〉

where:

• W is a non-empty set of worlds;

• < is an irreflexive, transitive relation onW satisfying modularity: for all x, y, z,
if x < y then either x < z or z < y. < further satisfies the Smoothness condition
defined below;

• V is a function V : W 7−→ 2ATM , which assigns to every world w the set of
atoms holding in that world. If F is a boolean combination of formulas, its
truth conditions (M, w |= F) are defined as for propositional logic. Let A be a
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propositional formula; we define MinM< (A) = {w ∈ W | M,w |= A and ∀w′,
w′ < w impliesM,w′ 6|= A}. Moreover:

M,w |= A |∼ B

if for all w′, if w′ ∈ MinM< (A) thenM,w′ |= B.

At this point we can define the Smoothness condition: if M,w |= A, then either w ∈
MinM< (A) or there is w′ ∈ MinM< (A) such that w′ < w.

Validity and satisfiability of a formula are defined as usual. We say that a formula F
is satisfiable if there is a rational modelM = 〈W, <,V〉 and a world w ∈ W such that
M,w |= F. We say that a formula F is valid in a rational modelM = 〈W, <,V〉, and
we writeM |= F, if, for all w ∈ W, it holds thatM,w |= F. We say that a formula F is
valid if it is valid in all rational models, i.e. if, for all rational modelsM = 〈W, <,V〉,
it holds thatM |= F.

Given a set of formulas K of L and a model M= 〈W, <,V〉, we say that M is
a model of K, written M |= K, if for every F ∈ K and every w ∈ W, we have that
M,w |= F. K rationally entails a formula F, written K |= F if F is valid in all rational
models of K.

It is easy to see from Definition 1 that the truth condition of A |∼ B is “global” in a
modelM = 〈W, <,V〉: given a world w, we have thatM,w |= A |∼ B if, for all w′, if
w′ ∈ MinM< (A) then M,w′ |= B. It immediately follows that A |∼ B holds in w if and
only if A |∼ B is valid in a model, i.e. it holds thatM,w′ |= A |∼ B for all w′ inW; for
this reason we will often writeM |= A |∼ B. Moreover, when the reference to the model
M is unambiguous, we will simply write Min<(A) instead of MinM< (A).

Theorems 6.8 and 6.9 in [? ] provide a constructive proof of the following finite
model property of R.

Fact 1. Given a set of formulas K, if it is satisfiable, then it is satisfiable in a finite
model. Furthermore, if a given F is satisfiable in a model of K (for K 6|= ¬F), then F
is satisfiable in a finite model of K.

From now on, we will restrict our consideration to rational models with a finite set
of worlds.

Given a rational model M = 〈W, <,V〉, let us now define the rank kM(w) of a
world w and the rank kM(F) of a formula F.

Definition 2 (Rank kM(w) of a world inM). Given a (finite) rational modelM= 〈W, <
,V〉, the rank kM of a world w ∈ W, written kM(w), is the length of the longest chain
w0 < . . . < w from w to a minimal w0 (i.e. there is no w′ such that w′ < w0).

This definition makes sense even if the relation < is not modular. Observe that, for a
modular relation on a finite set, all maximal chains 2 from an element w to a minimal
w0 have the same length.

2A chain w0 < w1 < . . . < wn is maximal if there is no element w′ such that for some i = 0, . . . , n − 1 it
holds wi < w′ < wi+1.
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The previous definition defines from < a rank function kM : W 7−→ N. The
opposite is also possible and in general in rational models the rank function kM and
< can be defined from each other by letting x < y if and only if kM(x) < kM(y) (this
is similarly stated by [? ] where a rank function k over a possibly infinite set is used,
since there is no restriction to finite models) Hence, modular preferential models are
called ranked models.

Definition 3 (Rank kM(F) of a formula in a model). The rank kM(F) of a formula F
in a modelM is i = min{kM(w) : M, w |= F}. If there is no w such thatM, w |= F,
then we say F has no rank inM.

It is easy to observe that:

Proposition 1. For anyM = 〈W, <,V〉, we haveM |= A |∼ B if and only if kM(A∧B) <
kM(A ∧ ¬B) or A has no rank inM.

2.2. Lehmann and Magidor’s definition of rational closure

Although the operator |∼ is nonmonotonic, the notion of rational entailment (defined in
Definition 1) in itself is monotonic: if K |= F and K ⊆ K∗ then also K∗ |= F.

In order to strengthen R, Lehmann and Magidor in [? ] propose the well-known
mechanism of rational closure. As already mentioned, the main motivation of Lehmann
and Magidor leading to the definition of rational closure was technical: it turns out that
the intersection of all rational consequence relations satisfying a set of conditionals
coincides with the weaker preferential consequence relation satisfying that set (that is
weaker in that it does not satisfy (RM)), so that (i) the axiom/rule (RM) does not add
anything and (ii) such relation in itself fails to satisfy (RM). Lehmann and Magidor’s
notion of rational closure provides a solution to both problems and can be seen as the
“minimal” (in some sense) rational consequence completing a set of conditionals.

Since in rational closure no boolean combination of conditionals is allowed, in the
following, the knowledge base K is just a finite set of positive conditional assertions
of the form A |∼ B. In such a case, rational entailment is equivalent to preferential
entailment.

Definition 4 (Exceptionality of propositional formulas and conditional formulas).
Let K be a knowledge base (i.e. a finite set of positive conditional assertions) and A a
propositional formula. A is said to be exceptional for K if and only if K |= > |∼ ¬A. A
conditional formula A |∼ B is exceptional for K if its antecedent A is exceptional for K.
The set of conditional formulas of K which are exceptional for K will be denoted as
E(K).

It is possible to define a non increasing sequence of subsets of K, C0 ⊇ C1,C1 ⊇ C2, . . .
by letting C0 = K and, for i > 0, Ci the set of conditionals of Ci−1 exceptional for Ci−1,
i.e. Ci = E(Ci−1). Observe that, being K finite, there is an n ≥ 0 such that Cn = ∅ or
for all m > n,Cm = Cn. The sets Ci are used to define the rank of a formula, as in the
next definition. Notice that if there is an m such that Cm = Cm+1, then for all k > m, it
will hold that Cm = Ck (indeed E(Cm) = E(Cm+1) = . . . = E(Ck)).
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Definition 5 (Rank of a formula). A propositional formula A has rank i (for K), writ-
ten rank(A) = i, if and only if i is the least natural number for which A is not exceptional
for Ci. If A is exceptional for all Ci then A has no rank.

As mentioned above, we can restrict our consideration to sequences C0, . . . ,Cn where
Cn is the first set in the sequence such that either Cn = ∅ or Cn = Cn+1: in both cases
for all t > n, Ct = Cn, therefore the formulas exceptional for Ct and Cn coincide. For
this reason, if a formula A has a rank, then rank(A) ≤ n.

The notion of rank of a formula allows to define the rational closure of a knowledge
base K.

Definition 6 (Rational closure K of K). Let K be a conditional knowledge base. The
rational closure K of K is the set of all A |∼ B such that either (1) the rank of A is strictly
less than the rank of A∧¬B (this includes the case A has a rank and A∧¬B has none),
or (2) A has no rank.

This mechanism, which is now well-established, allows to overcome some weaknesses
of R. First of all, it is closed under rational monotonicity (RM): if (A |∼ B) ∈ K and
(A |∼ ¬C) < K then (A ∧ C) |∼ B ∈ K. Furthermore, rational closure supports some
of the wanted inferences that R does not support. For instance rational closure allows
to deal with irrelevance: from monday |∼ go work, it does support the nonmonotonic
conclusion that monday ∧ shines |∼ go work. In order to see that monday ∧ shines |∼
go work belongs to the rational closure of K = {monday |∼ go work}, observe that
K 6|= > |∼ ¬(monday ∧ shines), therefore rank(monday ∧ shines) = 0. On the other
hand, K |= > |∼ ¬(monday ∧ shines ∧¬ go work), therefore rank(monday ∧ shines ∧
¬go work) > 0, from which we derive our nonmonotonic conclusion.

2.3. A semantic characterization of rational closure
Can we capture rational closure semantically?
We aim to provide a semantic reconstruction of rational closure in terms of a mini-

mal models’ mechanism, thus providing an instantiation of the following general recipe
for nonmonotonic reasoning:

(i) fix an underlying modal semantics for conditionals (here we concentrate on R
but another possible choice could have been the weaker P, as done for instance
in [? ? ? ]),

(ii) obtain nonmonotonic inference by restricting semantic consequence to a class
of “minimal” models. These minimal models should be chosen on the basis
of semantic considerations, independent from the language and from the set of
conditionals (knowledge base) whose nonmonotonic consequences we want to
determine.

In some respects, this approach is similar in spirit to “minimal models” approaches
to nonmonotonic reasoning, such as circumscription [? ]. However, as a difference
with circumscription, the models (i) have a modal semantics, and (ii) the preference
relation among models is independent from the language. This second aspect is also
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what differentiates this general recipe from other previous proposals such as [? ], in
which the idea is that preferred models are those ones that minimize the truth of specific
formulas of the form ¬�¬A.

The minimal model mechanism is based on comparing different models in order
to see which one is preferred. As for circumscription, there are mainly two ways of
comparing models with the same domain:

• by keeping the valuation function fixed (only comparingM andM′ if V and V ′

in the two models coincide);

or

• by comparingM andM′ also in case V , V ′.

We consider the two possible semantics resulting from these alternatives.
As already mentioned, in this paper we limit our attention to knowledge bases

K that are finite and that contain only positive conditionals. We begin by proving
a property that links the rank kM of a formula in any rational model M of a given
knowledge base K and the rank of that formula as calculated in the definition of rational
closure (Definition 5). The proof is similar to that of Lemma 5.18 in [? ].

In the next proposition we shall use the notion ofMi defined as follows. LetM =

〈W, <,V〉 be any rational model of K. LetM0 =M and, for all i, letMi = 〈Wi, <i,Vi〉

be the rational model obtained fromM by removing all the worlds w with kM(w) < i,
i.e.,Wi = {w ∈ W | kM(w) ≥ i}. The Ci sets are those ones used to define the rank of
a formula in Definition 5.

Proposition 2. LetM= 〈W, <,V〉 be any rational model of K. For any propositional
formula A, if rank(A) ≥ i, then 1) kM(A) ≥ i, and 2) if A |∼ B is rationally entailed by
Ci, thenMi satisfies A |∼ B.

Proof. By induction on i. For i = 0, statement 1) holds, since it always holds that
kM(A) ≥ 0. Statement 2) also holds trivially.

For i > 0, 1) holds: if rank(A)≥ i, then by Definition 5 for all j < i, C j |= > |∼ ¬A.
By inductive hypothesis on 2), for all j < i we have M j |= > |∼ ¬A. Hence, for all
w with kM(w) < i, M,w |= ¬A, and kM(A) ≥ i. To prove 2), we reason as follows.
Since Ci ⊆ C0, M |= Ci. Furthermore by definition of rank , for all A |∼ B ∈ Ci,
rank(A) ≥ i, hence by 1) just proved kM(A) ≥ i. Hence MinM< (A) ⊆ Wi, and (given
thatM |= A |∼ B) alsoMi |= A |∼ B. ThereforeMi |= Ci.

A consequence of the previous proposition is the following.

Proposition 3. Let M =〈W, <,V〉 be any rational model of K. For all w such that
kM(w) = i, it holds thatM,w |= {A→ B | A |∼ B ∈ Ci}.

Proof. LetM =〈W, <,V〉 be any rational model of K. If i = 0, then for a contradiction
suppose for some w with kM(w) = 0, and for some A → B : A |∼ B ∈ C0, M,w |=
A ∧ ¬B. In this case obviously w ∈ MinM< (A), which contradicts that MinM< (A) ⊆ {w ∈
W | M,w |= B} (beingM a model of K and A |∼ B ∈ K). Therefore the proposition
must hold. If i > 0 we repeat the same reasoning just done by consideringMi instead

11



ofM: by Proposition 2,Mi satisfies Ci. By reasoning as for i = 0 we conclude that for
all w with kMi (w) = 0,Mi,w |= {A → B : A |∼ B ∈ Ci}. By definition ofMi it follows
that, for all w, it holds kM(w) = i, thenM,w |= {A→ B : A |∼ B ∈ Ci}.

Before we conclude the section we introduce one last proposition that we will use
in the following.

Proposition 4. For all K and A, if K |= A |∼⊥, then for all Ci, Ci |= A |∼⊥, and
Ci |= > |∼ ¬A, i.e. A has no rank.

Proof. Suppose for a contradiction that K |= A |∼⊥, but for some i, Ci 6|= A |∼⊥. In
particular, let us consider the least i such that Ci 6|= A |∼⊥. By definition of Ci we
can assume that C0 ⊃ . . . ⊃ Ci−1 ⊃ Ci. Consider a model M = 〈W, <,V〉 of Ci

in which it does not hold that A |∼⊥, i.e. in which {w ∈ W | M |= A} , ∅. By
definition of Ci, for all conditionals A1 |∼ B1 . . . An |∼ Bn in Ci−1 − Ci, it holds that
Ci−1 6|= > |∼ ¬A1, . . . ,Ci−1 6|= > |∼ ¬An, i.e. there are rational modelsM1 = 〈W1, <1
,V1〉, . . . ,Mn = 〈Wn, <n,Vn〉 of Ci−1 in which > |∼ ¬A1, . . . ,> |∼ ¬An does not hold,
respectively, i.e., in which there are worlds x1, . . . , xn (respectively) such that kM1 (x1) =

0, . . . , kMn (xn) = 0, and M1, x1 |= A1, . . . ,Mn, xn |= An. Consider now the model
M′ = 〈W′, <′,V ′〉 obtained fromM by lettingW′ = W ∪ {x1, . . . , xn}, V ′ = V for
all worlds of W, whereas V = V1, . . . ,Vn for the worlds x1, . . . , xn respectively. Let
kM′ (x1) = 0, . . . , kM′ (xn) = 0, whereas for all w ∈ W, let kM′ (w) = kM(w) + 1. Define
<′ accordingly. We can prove thatM′ satisfies Ci−1: for conditionals Ai |∼ Bi in Ci this
follows since for sure the minimal Ai-worlds will be worlds already in the startingM
(since Ci−1 |= > |∼ ¬Ai hence none of the x1, . . . , xn is an Ai-world), and keep satisfying
Ai |∼ Bi as they did it inM. For Ai |∼ Bi ∈ Ci−1−Ci, by construction ofM′, the minimal
Ai-worlds will be one of the x1, . . . , xn just introduced, and they satisfy the conditional
since they did so in the original models. Furthermore inM′ there is an A-world (for the
A of the proposition), which shows that Ci−1 6|= A |∼⊥. This contradicts the assumption
that i is the least natural number such that Ci 6|= A |∼⊥.

2.3.1. Fixed versus Variable Interpretations Minimal Models Semantics
The first semantics we consider is a fixed interpretations minimal semantics, for

short FIMS.

Definition 7 (FIMS). Given models M =〈W, <,V〉 and M′ = 〈W′, <′,V ′〉, we say
thatM is preferred toM′ with respect to the fixed interpretations minimal semantics,
and we writeM <FIMS M

′, if

• W =W′

• V = V ′

• for all x, kM(x) ≤ kM′ (x) whereas there exists x′ such that kM(x′) < kM′ (x′).

Given a knowledge base K, we say that M is a minimal model of K with respect to
<FIMS if M is a model of K and there is no M′ such that M′ is a model of K and
M′ <FIMS M. We say that K minimally entails a formula F with respect to FIMS, and
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we write K |=FIMS F, if F is valid in all models of K that are minimal with respect to
<FIMS (among all the possible models of K).

Proposition 5. Given a finite modelM of K, eitherM is a minimal FIMS model of K
or there is a finite minimal FIMS modelM′ of K such thatM′ <FIMS M.

In our second semantics, we let the interpretations vary. The semantics is called vari-
able interpretations minimal semantics, for short VIMS.

Definition 8 (VIMS). Given models M =〈W, <,V〉 and M′ = 〈W′, <′,V ′〉 we say
thatM is preferred toM′ with respect to the variable interpretations minimal seman-
tics, and writeM <VIMS M

′, if

• W =W′

• for all x, kM(x) ≤ kM′ (x) whereas there exists x′ such that kM(x′) < kM′ (x′).

Given a knowledge base K, we say that M is a minimal model of K with respect to
<VIMS if M is a model of K and there is no M′ such that M′ is a model of K and
M′ <VIMS M. K minimally entails a formula F with respect to VIMS, and we write
K |=VIMS F, if F is valid in all models of K that are minimal with respect to <VIMS

(among all the possible models of K).

It is easy to realize that the two semantics, FIMS and VIMS, define different sets of
minimal models. This is illustrated by the following example.

Example 1. Let K = {penguin |∼ bird, penguin |∼ ¬ f ly, bird |∼ f ly}. We derive
that K 6|=FIMS penguin ∧ black |∼ ¬ f ly. Indeed in FIMS there can be a model M
in which W= {x, y, z}, V(x) = {penguin, bird, f ly, black}, V(y) = {penguin, bird},
V(z) = {bird, f ly}, and z < y < x. M is a model of K, and it is minimal with respect to
FIMS (indeed once fixed V(x),V(y),V(z) as above, it is not possible to lower the rank
of x nor of y nor of z unless we falsify K). Furthermore, in M x is a typical world
in which “it is a penguin” and “it is black” hold (since there is no other world satis-
fying the same propositions which is preferred to it) where “it flies” holds. Therefore,
K 6|=FIMS penguin ∧ black |∼ ¬ f ly.

On the other hand, M is not minimal with respect to VIMS. Indeed, consider the
modelM′ = 〈W, <′,V ′〉 obtained fromM by letting V ′(x) = {penguin, bird, black},
V ′(y) = V(y), V ′(z) = V(z) and by defining <′ as: z <′ y and z <′ x. ClearlyM′|= K,
andM′<VIMS M, since kM′ (x) < kM(x), while kM′ = kM for all other worlds.

The example above shows that FIMS and VIMS lead to different sets of minimal models
for a given K. Notice, however, that the modelM′ we have used to illustrate this fact
is not a minimal model for K in VIMS. A minimal model in VIMS for K that can be
defined on the set of worlds W is given by V(x) = V(y) = V(z) = {bird, f ly}, and
the empty relation <. This is quite a degenerate model of K in which “it is a penguin”
is never true. This illustrates the strength of VIMS: in case of knowledge bases that
only contain positive conditionals, logical entailment in VIMS collapses into classical
logic entailment. This feature corresponds to a similar feature of the nonmonotonic
logic Pmin in [? ] (see Section 2.4), can be proven in the same way, and leads to the
following proposition.
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Proposition 6. Let K be a set of positive conditionals. Let us replace all formulas of
the form A |∼ B in K with A → B, and call K◦ the resulting set of formulas. We have
that K |=VIMS A |∼ B if and only if K◦ |=PC A→ B.

As for Pmin this strong feature of VIMS can be prevented by adding existence assertions
to the knowledge base, in the example we could add, for instance, ¬(penguin |∼⊥)
to force us to consider non-trivial models where the proposition “it is a penguin” is
satisfied. In the next section, we will apply VIMS in a similar way, by restricting
our consideration to knowledge bases that include existence assertions (expressed by
negated conditionals).

2.3.2. A semantic reconstruction of Rational Closure
Can we capture rational closure within one or the other of the semantics above?

A first conjecture might be that the FIMS of Definition 7 could capture rational clo-
sure. However, we are soon forced to recognize that this is not the case. For instance,
Example 1 above illustrates that {penguin |∼ bird, penguin |∼ ¬ f ly, bird |∼ f ly} 6|=FIMS

penguin∧black |∼ ¬ f ly. On the contrary, it can be easily verified that penguin∧black |∼
¬ f ly is in the rational closure of {penguin |∼ bird, penguin |∼ ¬ f ly, bird |∼ f ly}. There-
fore, FIMS as it is does not allow us to define a semantics corresponding to rational
closure. Things change if we consider FIMS applied to models that contain all pos-
sible valuations compatible with a given knowledge base K. We call these models
canonical models.

Example 2. Consider Example 1 above. If we restrict our attention to models that also
contain a world w with V(w) = {penguin, bird, black} which satisfies “it is a penguin”,
“it is black” and “it does not fly” in which w is a typical world satisfying “it is a
penguin”, we are able to conclude that typically it holds that if it is a penguin and it
is black then it does not fly, the same as in rational closure. Indeed, in all minimal
FIMS models of K that also contain w with V(w) = {penguin, bird, black}, it holds that
penguin ∧ black |∼ ¬ f ly (in particular, in Example 1 above, adding w toM would give
z < w and w < x).

We are led to the conjecture that FIMS restricted to canonical models could be the
right semantics for rational closure. Canonical models are defined with respect to the
language L restricted to the propositional variables occurring in the knowledge base
and in the query. Given a knowledge base K and a query Q, let ATMK,Q be the set of
all the propositional variables of ATM occurring in K or in the query Q, and let LK,Q

be the restriction of the language L to the propositional variables in ATMK,Q.
A truth assignment v : ATMK,Q −→ {true, f alse} is compatible with K, if there is

no propositional formula A ∈ LK,Q such that v(A) = true and K |= A |∼ ⊥ (where v is
extended to arbitrary propositional formulas as usual).

Definition 9 (Canonical Model). A model M =〈W, <,V〉 satisfying a knowledge
base K is said to be canonical if it contains (at least) a world associated to each truth
assignment compatible with K, that is to say: if v is compatible with K, then there
exists a world w inW such that, for all propositional formulas B ∈ LK,Q,M,w |= B if
and only if v(B) = true.
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It can be easily shown that, for any knowledge base, a minimal canonical FIMS model
exists: this is any canonical model in which every possible world w has the rank asso-
ciated to the conjunction of all atoms and negated atoms in LK,Q that it satisfies. This
is stated by the following theorem.

Theorem 1. For any satisfiable K there exists a finite minimal canonical FIMS model
M.

Proof. Since K is satisfiable consider a model M = 〈W, <,V〉 of K. Given the fi-
nite model property of R, we can assume, without loss of generality that M has
a finite set of worlds. Let v1, . . . , vr be any enumeration of the truth assignments
vi : ATMK,Q −→ {true, f alse} compatible with K. Observe that, since ATMK,Q is a fi-
nite set of propositional variables, the truth assignments vi as defined above are finitely
many.

We proceed starting fromM and extending it by the addition of new worlds. Let
M0 = M. For each i, from 1 to r, we reason as follows. If there is no world inMi−1
associated to vi, consider a model M′ = 〈W′, <′,V ′〉 of K in which there is at least
a world associated to vi. Such a model M′ exists since vi is compatible with K. By
Fact 1, we can assumeM′ to be finite as well. We add toMi−1 all the worlds inM′,
to getMi = 〈Wi, <i,Vi〉, where: (1)Wi = Wi−1 ∪W

′; (2) <i is defined as <i−1 on
the worlds inWi−1; it is defined as <′ on the worlds inW′ and, for all x ∈ Wi−1 and
y ∈ W′, x <i y; (3) Vi is defined as Vi−1 on the worlds inWi−1 and it is defined as V ′

on the worlds inW′.
Observe, that the resulting modelMi is the juxtaposition of the two modelsMi−1

andM′, where the rank of each world inMi−1 is lower than the rank of each world in
M′. It is finite, as bothMi−1 andM′ are finite.

It is easy to see that, if Mi−1 satisfies K, then Mi satisfies K as well. Consider
any conditional C |∼ B ∈ K, and any world w ∈ MinMi

<i
(C). Then either w ∈ Wi−1 or

w ∈ W′. If w ∈ Wi−1, then w ∈ MinMi−1
<i

(C), by the definition of <i. SinceMi−1 is a
model of K, Mi−1 |= C |∼ B and Mi−1,w |= B. By construction, Vi(w) = Vi−1(w), so
thatMi,w |= B, andMi |= C |∼ B. If w ∈ W′, then w ∈ MinM

′

<i
(C), by the definition

of <i. Since M′ is a model of K, M′ |= C |∼ B and M′,w |= B. By construction,
Vi(w) = V ′(w), so thatMi,w |= B, andMi |= C |∼ B.

Given that M0 = M is a model of K, we conclude that all the M1,M2, . . . ,Mr

are models of K. After all the valuations v1, . . . , vr have been considered, we obtain a
model Mr of K which is canonical and is finite as well, as we have only considered
finite models in the construction ofMr. FromMr, by Proposition 5, we can obtain a
minimal canonical FIMS model.

In the following, we show that the canonical models that are minimal with respect to
FIMS are an adequate semantic counterpart of rational closure.

Proposition 7. LetM =〈W, <,V〉 be a canonical model of K, minimal with respect
to <FIMS. Given i ∈ N, for all w ∈ W it holds that: ifM,w |= A → B for all A |∼ B in
Ci, then kM(w) ≤ i.

Proof. The proof is by induction on i. If i = 0, suppose for a contradiction that there
is a w such that M,w |= A → B for all A |∼ B in C0, but kM(w) > 0. Then it can be
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easily seen that the canonical model obtained fromM by simply changing kM(w) into
0 is still a model of C0 = K and it is preferred toM, thus contradicting the minimality
ofM.

For i > 0, we reason in a similar way: let us consider w ∈ W such that for all
A |∼ B in Ci, M,w |= A → B but kM(w) > i. Let M′ be a model obtained from M
by changing < in order to have kM′ (w) = i. M′ is preferred toM and it is a model of
K, as it satisfies all the conditionals in K. Let A |∼ B ∈ K. It is clear that, for all the
worlds w′ ∈ W with w′ , w, w′ satisfies A |∼ B inM′, as it satisfies it inM. To show
that w satisfies A |∼ B, let w ∈ MinM

′

< (A). If A |∼ B in Ci, we know from the hypothesis
that w satisfies A → B, and hence, w satisfies B. If A |∼ B in K − Ci, there is a j < i
such that A |∼ B ∈ C j, C j 6|= > |∼ ¬A while C j−1 |= > |∼ ¬A. From C j 6|= > |∼ ¬A, it
follows that there is a modelM j of C j with a w◦ such that kM j (w

◦) = 0 and w◦ satisfies
A. By Proposition 3, we have that M j,w◦ satisfies {A → B : A |∼ B ∈ C j} ∪ {A},
hence C j 6|= A1 → B1 ∧ . . . ∧ Am → Bm ∧ A |∼⊥ and, by Proposition 4, we have that
K 6|= A1 → B1 ∧ . . . ∧ Am → Bm ∧ A |∼⊥. SinceM′ (asM) is canonical, it follows that
there is a world w∗ ∈ W such that w∗ satisfies all the implications A′ → B′ s.t. A′ |∼ B′

in C j and w∗ satisfies A. By inductive hypothesis, kM(w∗) < i, and therefore kM(A) < i.
By construction of M′, kM′ (w∗) < i, and therefore kM′ (A) < i which contradicts the
hypothesis that w ∈ MinM

′

< (A). Hence,M′ satisfies all the conditionals in K. The fact
that kM(w) > i and kM′ (w) = i contradicts the minimality of M. Hence, it must be
kM(w) ≤ i, and the proof is over.

Proposition 8. LetM be a canonical model of K minimal with respect to <FIMS. Then,
given i ∈ N, rank(A) = i if and only if kM(A) = i.

Proof. (Only if part) Let us assume that rank(A) = i. By definition of rank, we know
that Ci 6|= > |∼ ¬A. Then there is a rational model M′ of Ci that does not satisfy
> |∼ ¬A. In M′ there must be a world w′, with kM′ (w′) = 0 such that M′,w′ |= A.
For all propositional formulas B ∈ L, such that M′,w′ |= B, it must be the case that
Ci that does not satisfy > |∼ ¬B inM′. Hence, for all propositional formulas B ∈ L,
such thatM′,w′ |= B, Ci 6|= > |∼ ¬B. Let B′ be the conjunction of all these Bs. Clearly,
A is one of the conjuncts of B′. Furthermore, Ci 6|= > |∼ ¬B′. By Proposition 4, from
Ci 6|= > |∼ ¬B′, it follows that K 6|= B′ |∼ ⊥. Let v be the truth assignment associated
with the world w′ ofM′. Then v is compatible with K. SinceM is a canonical model,
there must be a world w ∈ W of M such that for all propositional formulas B ∈ L,
M,w |= B if and only if v(B) = true. In particular, we have thatM,w |= A. We show
that, for all D |∼ B ∈ Ci, M,w |= D → B. Observe that D and B are propositional
formulas and that their valuation is the same in w and in w′. Hence it is sufficient to
show that M′,w′ |= D → B, for all D |∼ B ∈ Ci. This follows from the fact that
M′,w′ |= D |∼ B holds for all D |∼ B ∈ Ci. Indeed, ifM′,w′ 6|= D, it trivially holds that
M′,w′ |= D→ B. IfM′,w′ |= D, then (since kM′ (w′) = 0), w′ ∈ MinM

′

<′ (D), and hence
M′,w′ |= B. Thus,M′,w′ |= D→ B.

Now, there is a world w ∈ W such that, for all D |∼ B ∈ Ci, w satisfies D → B .
By Proposition 7, kM(w) ≤ i. Since w satisfies A, kM(A) ≤ i. As by Proposition 2 we
know that kM(A) ≥ i, we can conclude that kM(A) = i.

(If part) This direction is obvious, given the only if part: if kM(A) = i, then
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rank(A) = i. Indeed, by absurd, if rank(A) = j , i, then kM(A) = j , i, against
the hypothesis.

A direct consequence of Proposition 8 together with the observation that if a formula
has a rank then its maximal value is n where n is the last element of C0 ⊃ . . . ⊃ Cn such
that Cn = ∅ or such that for all m > n, Cm = Cn is stated in the following proposition.

Proposition 9. Let n be the last element of C0 ⊃ . . . ⊃ Cn such that Cn = ∅ or such
that for all m > n Cm = Cn, then in all minimal canonical modelsM, for all worlds w,
kM(w) ≤ n.

We can now prove the following theorem:

Theorem 2. Let K be a knowledge base and M be a canonical model of K minimal
with respect to <FIMS. We show that, for all conditionals A |∼ B ∈ L:

M |= A |∼ B if and only if A |∼ B ∈ K,

where K is the rational closure of K.

Proof. (Only if part) Let us assume thatM = 〈W, <,V〉 satisfies A |∼ B. Then, for each
world w ∈ Min<(A), w satisfies B. If Min<(A) = ∅, then there is no w s.t. M,w |= A,
hence A has no rank in M and, by Proposition 8, A has no rank. In this case, by
Definition 6, A |∼ B ∈ K. Let us assume that kM(A) = i. As kM(A ∧ B) < kM(A ∧ ¬B),
then kM(A ∧ ¬B) > i. By Proposition 8, rank(A) = i and rank(A ∧ ¬B) > i. Hence, by
Definition 6, A |∼ B ∈ K.

(If part) If A |∼ B belongs to K, then, by Definition 6, either (a) rank(A) < rank(A∧
¬B) (or A has a rank and A ∧ ¬B has not), or (b) A has no rank. In the first case (a), by
Proposition 8 we have that kM(A) < kM(A∧¬B), which entails kM(A∧B) < kM(A∧¬B).
HenceM satisfies A |∼ B. In case, A has a rank and A∧¬B has not, suppose rank(A) = i.
By Proposition 8, kM(A) = i. It is easy to show that kM(A ∧ ¬B) > i. If, by absurdum,
kM(A ∧ ¬B) ≤ i, by Proposition 8, we would have rank(A ∧ ¬B) ≤ i, against the
hypothesis that A ∧ ¬B has no rank.

In case (b), by Proposition 8, A has no rank inM, henceM satisfies A |∼ B.

In Theorem 2 we have shown a correspondence between rational closure and minimal
models with fixed interpretations, on the proviso that we restrict our attention to mini-
mal canonical models. We can obtain the same effect by extending K into K′ by adding
negated conditionals:

Definition 10. Let K be a knowledge base. We define

K′ = K ∪ {¬(C |∼⊥) | C = (¬)A1 ∧ (¬)A2 ∧ . . . ∧ (¬)An,
such that Ai ∈ ATMK,Q, with i = 1, 2, . . . , n, and K 6|= (C |∼⊥)}

(that is C is a conjunction of literals whose propositional variables occur in the knowl-
edge base or in the query).

Indeed it can be easily verified that all models of K′ are canonical, hence restricting
FIMS to canonical models on the one hand and considering the extension of K as K′ on
the other hand amounts to the same effect. We can therefore restate Theorem 2 above
as follows:
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Theorem 3. Let K be a knowledge base and let K′ be defined as in Definition 10. It
holds that

K′ |=FIMS A |∼ B if and only if A |∼ B ∈ K,

where K is the rational closure of K.

Notice that the size of K′ is exponential in that of K.
Before we go any further, let us point out that this characterization of rational clo-

sure, in terms of minimal canonical FIMS models, is related to Lehmann and Magidor’s
semantical characterization in [? ]: we use canonical models, as they do, and we show
a correspondence between the rank of a formula (syntactically defined in terms of ex-
ceptionality) and the rank of the formula in minimal canonical FIMS models. However
the definition of minimal canonical FIMS models that we use here, based on a specific
preference relation between different canonical models, is different from the definition
provided in [? ] (see Section 5.3, Definition 20) where the involved preference relation
is defined in terms of conditionals satisfied in the compared models.

We may wonder whether the restriction to canonical models can be lifted by adopt-
ing a semantics based on variable valuations. In general the answer is negative. We
have already mentioned that, if we consider knowledge bases containing only positive
conditionals, logical entailment in VIMS collapses into classical logic entailment. To
avoid this collapse, we can require that, when we are checking for entailment of a con-
ditional A |∼ B from a K, at least an A ∧ B-world and an A ∧ ¬B-world be present in
the models of K. This can be obtained by adding to K the conditionals ¬(A ∧ B |∼ ⊥)
and ¬(A ∧ ¬B |∼ ⊥). Also in this case, however, we cannot give a positive answer to
the above question. Indeed, it is possible to build a model of K, minimal with respect
to VIMS, which falsifies a conditional A |∼ B which, on the contrary, is satisfied in all
the canonical minimal models of K under FIMS. This is shown by the following:

Example 3. Let K be as follows:

{> |∼ S ,
S |∼ ¬D,
L |∼ P,
R |∼ Q,
E |∼ F,
H |∼ G,
D |∼ ¬P ∧ ¬Q ∧ ¬F ∧ ¬G,
S |∼ ¬(L ∧ R),
S |∼ ¬(L ∧ E),
S |∼ ¬(L ∧ H),
S |∼ ¬(R ∧ E),
S |∼ ¬(R ∧ H),
S |∼ ¬(E ∧ H)}.

Let

A = D ∧ S ∧ R ∧ L ∧ E ∧ H,
B = ¬Q ∧ ¬P ∧ ¬F ∧ ¬G
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and let
K′ = K ∪ {¬(A ∧ B |∼ ⊥), ¬(A ∧ ¬B |∼ ⊥)}.

We define a modelM = (W, <,V) of K′, which is minimal with respect to VIMS, as
follows: W = {x,w, y1.y2, y3}, where:

V(y1) = {S ,¬D,¬R,¬L,¬E,¬H, P,Q, F,G}
V(y2) = {¬S ,¬D,R, L, E,H, P,Q, F,G}
V(y3) = {¬S ,D,¬P,¬Q,¬F,¬G,¬R,¬L,¬E,¬H}
V(x) = {D, S ,R, L, E,H,¬Q,¬P,¬F,¬G}
V(w) = {D, S ,R, L, E,H,Q,¬P,¬F,¬G}

with kM(y1) = 0, kM(y2) = 1, kM(y3) = 1, kM(x) = 2 and kM(w) = 2. Observe
that: x is an A ∧ B-minimal world; w is an A ∧ ¬B-minimal world; y1 is an S -minimal
world; y2 is a minimal world for R, L, E and H; and y3 is a D-minimal world.
M is a model of K which is minimal with respect to VIMS. Also, A |∼ B is falsified

in M, while, on the contrary, A |∼ B holds in all the canonical models minimal with
respect to FIMS. Indeed, in all such models the rank of k(A ∧ B) = 1 while k(A ∧
¬B) = 2. However, it is not possible to construct a model M′ with 5 worlds so that
M′ <VIMS M. In particular, lowering the rank of w is never possible, since w is a non-
typical D-world, and typical D−worlds are non typical >-worlds, hence w will always
have rank at least 2. For x we reason in a different way: although in principle it could
have rank 1, assigning to x rank 1 entails that there are at least 4 distinct R, L, E and
H-worlds with rank 0. But this is impossible given that we have only 5 worlds in the
model. In order to satisfy all these formulas by a single world, we have to introduce a
world at level 1 (which can be a non S and therefore satisfy pairs of these formulas).
This is world y2, whose rank cannot therefore be lowered. y2 cannot be a D−world, we
therefore need y3 which is a minimal D−world that can have rank at least 1 and whose
rank cannot therefore be lowered.

As suggested by this example, in order to characterize rational closure in terms of
VIMS, we should restrict our consideration to models which contain “enough” worlds.
In the following, as in Theorem 3, we enrich K with negated conditionals but, as a
difference with K′ of Theorem 3, we only need to add to K a polynomial number of
negated conditionals (instead of an exponential number). The purpose of the addition
is that of restricting our attention to models that are minimal with respect to <VIMS and
that have a set of worlds “large” enough to have, in principle, a distinct most-preferred
world for each antecedent of conditionals in K. Intuitively, this condition discards the
models, as the one illustrated by the example above, in which a formula (e.g. A ∧ B)
has a rank higher than the rank it could have just because there are not enough worlds
(and lowering the rank of a formula would lead to the falsification of some conditionals
in K).

For this reason, we expand K into K′′ by adding, for each antecedent C of a con-
ditional formulas in K, a new corresponding atom φC , and by requiring that all these
new atoms are mutually disjoint. This will guarantee that all models of K′′ will have
a distinct world satisfying each newly introduced atom φC and its corresponding for-
mula C. Furthermore, if the problem to be addressed is that of knowing whether A |∼ B
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is logically entailed by K, we also introduce φA∧B and φA∧¬B in order to also have a
distinct world associated to A ∧ B and A ∧ ¬B. This is stated in a formal way in the
following definition.

Definition 11. Given a knowledge base K, we define:

• AK,A|∼B = {C | either, for some D, C |∼ D ∈ K or C = A ∧ B or C = A ∧ ¬B, and
K 6|= C |∼⊥};

• K′′ = K ∪ {¬(C ∧ φC |∼⊥) : C ∈ AK,A|∼B} ∪ {(φCi ∧ φC j |∼⊥) : Ci,C j ∈ AK,A|∼B}.

We can now establish a correspondence between FIMS and VIMS. By virtue of Theo-
rem 2, this allows us to establish a correspondence between rational closure and VIMS,
as stated by Theorem 1.

Theorem 4. LetM be a canonical model of K, minimal with respect to FIMS, and let
K′′ be the extension of K defined as in Definition 11. We have that:

M |= A |∼ B if and only if K′′ |=VIMS A |∼ B.

Proof. We show the contrapositive of the two directions.
First, suppose K′′ 6|=VIMS A |∼ B. LetM′ = 〈W′, <′,V ′〉 be a model of K′′ minimal

with respect to <VIMS that does not satisfy A |∼ B, i.e., such that kM′ (A∧¬B) ≤ kM′ (A∧
B). We want to show that also M6|= A |∼ B, i.e., kM(A ∧ ¬B) ≤ kM(A ∧ B). For a
contradiction, suppose in the canonical M, kM(A ∧ ¬B) = j > kM(A ∧ B) = i. By
Propositions 2 and 8, kM′ (A ∧ ¬B) ≥ j and kM′ (A ∧ B) ≥ i, and since by hypothesis
kM′ (A ∧ ¬B) ≤ kM′ (A ∧ B), it follows that kM′ (A ∧ B) ≥ j > i. We show that this goes
against the minimality ofM′.

From M and M′ we build a model M∗ = 〈W∗, <∗,V∗〉 such that M∗ is a model
of K′′ and M∗ <VIMS M

′. In particular, for each formula in AK,A|∼B, we include in
W∗ a minimal world from M satisfying that formula. More precisely, we introduce
inW∗ the following worlds fromM: x ∈ MinM< (A ∧ B), x′ ∈ MinM< (A ∧ ¬B) and a
world y ∈ MinM< (C), for each C antecedent of a conditional in K s.t. K 6|= C |∼⊥. For
these worlds, we define V∗ = V and kM∗ = kM. If the same element y is associated
to two different formulas it must be duplicated into y and y′ (and V∗(y′) = V∗(y) and
kM∗ (y′) = kM∗ (y)). Furthermore, for each world y introduced as a representative of
MinM< (C), V∗(y) is extended in order to include φC . <∗ is straightly defined from kM∗
in the obvious way. The construction is almost finished. Notice that up to this point
we have introduced inW∗ no more elements than those inW′. To conclude we have
to rename the elements ofW∗ with the names as the elements ofW′ that satisfy the
same φC , and we have to add to W∗ the elements of W′ that are eventually missing
(we let for these cases V∗ = V ′ and kM∗ = kM′ ).

It can be shown that M∗ is a model of K′′, and M∗ <VIMS M
′, against the mini-

mality ofM′. First of all, we show thatM∗ is a model of K′′. Indeed, by construction
we have introduced a new element y of M for each C antecedent of a conditional in
K or equal to A ∧ B or A ∧ ¬B, and this element is still in MinM

∗

< (C) (otherwise,
kM∗ (C) < kM∗ (y) = kM(y) = kM(C), against Propositions 2 and 8). Furthermore,
V∗(y) includes φC . Hence, M∗ satisfies all conditionals introduced in K′′ with form
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¬(C ∧ φC) |∼⊥. Consider now the positive conditionals C |∼ D in K′′, that were already
in K. Hence, consider any y inserted in M∗ from M. Let y ∈ MinM

∗

< (C). Then also
y ∈ MinM< (C) (otherwise there would be another y′ ∈ MinM< (C) with M,y′ |= C and
kM(y′) < kM(y) that would have been taken in the construction; and by construction
in M∗ it would hold that M∗, y′ |= C and kM∗ (y′) < kM∗ (y), against y ∈ MinM

∗

< (C)).
Since M is a model of K, and C |∼ D ∈ K, M,y |= D, hence also M∗, y |= D. Con-
sider now y introduced inM∗ fromM′. If y ∈ MinM

∗

< (C), then we reason as follows
to show that y ∈ MinM

′

< (C). First of all, we know that kM∗ (y) = kM(C). Indeed in
M∗ we have inserted a y′ that was in MinM< (C). As shown above, y′ ∈ MinM

∗

< (C).
Hence kM∗ (y) = kM∗ (y′) and kM∗ (y) = kM(C). But by construction kM∗ (y) = kM′ (y)
and if y < MinM

′

< (C), there would be a y′ s.t. M′,y′ |= C and kM′ (y′) < kM′ (y), hence
kM′ (C) < kM(C), against Propositions 2 and 8. Hence, since C |∼ D holds in M′,
M′,y |= D and by construction alsoM,y |= D.

For the conditionals with form φCi∧φC j |∼⊥: they hold inM∗ since we have suitably
extended V∗ in order to include at most one φC at a time.

Last, it obviously holds that M∗ <VIMS M
′. Indeed the set of worlds of the two

models coincide, and for all y taken fromM′, kM∗ (y) = kM′ (y), and for all y taken from
M, they were introduced as representatives of a given C antecedent of a conditional or
equal to A ∧ B, A ∧ ¬B. For all these formulas by Proposition 2 and 8, it holds that
kM∗ (C) = kM(C) ≤ kM′ (C), hence kM∗ (y) ≤ kM′ (C). Furthermore, for A ∧ B we have
shown above that kM∗ (A ∧ B) = kM(A ∧ B) = i < kM′ (A ∧ B), henceM∗ <VIMS M

′,
which contradicts the minimality of M′. We conclude that if K′′ 6|=VIMS A |∼ B, then
also K 6|=FIMS A |∼ B.

For the other direction, supposeM 6|= A |∼ B, i.e., kM(A ∧ ¬B) ≤ kM(A ∧ B). Let
kM(A ∧ ¬B) = i and kM(A ∧ B) = j. Consider the modelM∗ built as in the first part
of the construction used above. More preciselyM∗ = 〈W∗, <∗,V∗〉 is built fromM by
cutting out its portion containing: x in MinM< (A∧B), x′ ∈ MinM< (A∧¬B) and an element
y ∈ MinM< (C) for each antecedent C of a conditional in K. V∗ = V and kM∗ = kM. If the
same element y is associated to two different formulas, it must be duplicated into y and
y′ (and V∗(y′) = V∗(y) and kM∗ (y′) = kM∗ (y)). Furthermore, for each world y associated
to a formula C, V∗(y) is extended in order to include φC . Last, <∗ is defined from kM∗
in the obvious way. By reasoning similarly to what we have done above, we can show
thatM∗ is a model of K′′. Furthermore, there cannot be aM∗

′

<VIMS M
∗. Indeed, any

model of K′′ must have a distinct element x satisfying C ∧ φC for each C in AK,A|∼B.
Now suppose there was a modelM∗

′

of K′′ withM∗
′

<VIMS M
∗. IfM∗

′

<VIMS M
∗,

then for some x, kM∗′ (x) < kM∗ (x). Suppose in M∗, x |= C ∧ φC (and hence also
M∗

′

, x |= C ∧ φC). By construction of M∗, kM∗ (x) = kM(C). If kM∗′ (x) < kM∗ (x),
then kM∗′ (C) < kM∗ (C), against Propositions 2 and 8. We conclude that it cannot
hold M∗

′

<VIMS M
∗, hence M∗ is a minimal VIMS model of K′′. Furthermore by

construction kM∗ (A ∧ ¬B) ≤ kM∗ (A ∧ B). We conclude that K′′ 6|=VIMS A |∼ B.

From Theorem 2 and Theorem 4 just shown, it follows that:

Corollary 1. Let K be a knowledge base. Given K′′ defined as in Definition 11, it
holds that

A |∼ B ∈ K if and only if K′′ |=VIMS A |∼ B,
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where K is the rational closure of K.

We conclude the section with a comparison with the related works on rational closure.

2.4. Relation with Pmin and Pearl’s System Z

In [? ] an alternative nonmonotonic extension of preferential logic P called Pmin

is proposed. Similarly to the semantics presented in this work, Pmin is based on a
minimal modal semantics. However the preference relation among models is defined
in a different way. Intuitively, in Pmin the fact that a world x is a minimal A-world is
expressed by the fact that x satisfies A ∧ �¬A, where � is defined with respect to the
inverse of the preference relation (i.e. with respect to the accessibility relation given
by Ruv if and only if v < u). The idea is that preferred models are those that minimize
the set of worlds where ¬�¬A holds, that is A-worlds which are not minimal. As a
difference from the approach presented in this work, the semantics of Pmin is defined
starting from preferential models, in which the relation < is irreflexive and transitive
(thus, no longer modular).

Pmin is a nonmonotonic logic considering only P models that, intuitively, minimize
the non-typical worlds. More precisely, given a set of formulas K, a modelM =〈WM,
<M,VM〉 of K and a model N = 〈WN , <N ,VN 〉 of K, we say thatM is preferred to
N ifWM = WN , and the set of pairs (w,¬�¬A) such thatM,w |= ¬�¬A is strictly
included in the corresponding set for N . A modelM is a minimal model for K if it is
a model of K and there is not a modelM′ of K which is preferred toM. Entailment
in Pmin is restricted to minimal models of a given set of formulas K. In Section 3 of
[? ] it is observed that the logic Pmin turns out to be quite strong. In general, if we
only consider knowledge bases containing only positive conditionals, we get the same
trivialization result (part of Proposition 1 in [? ]) as the one contained in Proposition
6 for VIMS. This does not hold for rational closure. This is the reason why we have
introduced the additional assumptions in order to obtain an equivalence with rational
closure. Similarly, in order to tackle this trivialization in Pmin, Section 3 in [? ] is
focused on the so called well − behaved knowledge bases, that explicitly include that
A is possible (¬(A |∼ ⊥)) for all conditional assertions A |∼ B in the knowledge base.

We may now wonder whether Pmin is equivalent to VIMS, which is seemingly the
closer semantics.

Or whether VIMS is equivalent to a stronger version of Pmin obtained by replacing
P with R as the underlying logic. We call Rmin this stronger version of Pmin.

Example 4. Let K = {PhD |∼ ¬worker,PhD |∼ adult, adult |∼ worker, italian |∼ house owner,
PhD |∼ ¬house owner}. What do we derive in Pmin and Rmin, and what in VIMS? By
what said above, since K only contains positive conditionals, both in Pmin and Rmin,
on the one side, and in VIMS, on the other side, we derive that italian ∧ PhD |∼⊥. So
let us add to K the constraint that people who are italian and have a PhD do exist by
introducing in K a conditional ¬(italian ∧ PhD |∼⊥), thus obtaining: K′ = {PhD |∼

¬worker,PhD |∼ adult, adult |∼ worker,italian |∼ house owner,PhD |∼ ¬house owner,
¬(italian ∧ PhD |∼⊥)}.

Notice that, since ¬(italian ∧ PhD |∼⊥) entails both that ¬(italian |∼⊥) and that
¬(PhD |∼⊥), and that this in turn entails ¬(adult |∼⊥), K′ is also well-behaved.
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It can be easily verified that the logical consequences of K′ in Pmin, Rmin and VIMS
differ. In both Pmin and Rmin, for instance, we derive neither that italian ∧ PhD |∼

house owner nor that italian ∧ PhD |∼ ¬house owner: the two alternatives are equiva-
lent. On the other hand, in VIMS we derive that italian ∧ PhD |∼ ¬house owner.

The previous example shows that in some cases VIMS is stronger than both Pmin and
Rmin. The following one shows that the two approaches are incomparable, since there
are also logical consequences that hold for both Pmin and Rmin but not for VIMS.

Example 5. Let K = {PhD |∼ adult, adult |∼ work,PhD |∼ ¬work, italian |∼ house owner}.
What do we derive about typical italian ∧ PhD ∧ work, for instance? Do they inherit
the property of typical Italians of being house owner?

Again, in order to prevent the entailment of italian ∧ PhD ∧ work |∼⊥ from K both
in VIMS and in Pmin and Rmin, we add to K the constraint that italians with a PhD who
work exist, henceforth they also have typical instances. Therefore we expand K into:

K′ = {PhD |∼ adult, adult |∼ work,PhD |∼ ¬work,
italian |∼ house owner,¬(italian ∧ PhD ∧ work |∼⊥)}.

By reasoning as in Example 4 we can show that K′ is a well-behaved knowledge base.
Now it can be easily shown that the conditional assertion

italian ∧ PhD ∧ work |∼ house owner

is entailed in Pmin and Rmin, whereas nothing is entailed in VIMS. This difference can
be explained intuitively as follows. The set of properties for which an individual is
atypical matters in Pmin and Rmin, where one has to minimize the set of distinct ¬�¬C:
even if an italian ∧ PhD ∧ work is an atypical PhD, Pmin and Rmin still maximize
its typicality as an italian, and therefore entail that it is a house owner, as all typical
italians. As a difference, in VIMS, what matters is the set of individuals which are more
typical than a given x, rather than the set of properties by which they are more typical.
As a consequence, since an x which is italian ∧ PhD ∧ work is an atypical PhD, there
is no need to maximize its typicality as an italian, as long as this does not increase the
set of individuals more typical than x.

In [? ] Pearl has introduced two notions of 0-entailment and 1-entailment to perform
nonmonotonic reasoning. We recall here the semantic definition of both and then we
remark upon their relation with our semantics and rational closure. A modelM for a fi-
nite knowledge base K has the formM= ({true, f alse}ATM , kM) where {true, f alse}ATM

is the set of propositional interpretations for, say, a fixed finite propositional language,
and kM is our height function mapping propositional interpretations to N, the definition
of height kM(A) of a formula is the same as in our semantic. A conditional A |∼ B is
true in a modelM if kM(A ∧ B) < kM(A ∧ ¬B). Then the two entailment relations are
defined as follows:

K |=0−ent A |∼ B if A |∼ B is true in all models of K
K |=1−ent A |∼ B if A |∼ B is true in the (unique) model M of K which is
minimal with respect to kM,
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where minimal with respect to kM means that no other modelM′ assigns a lower value
kM′ to any propositional interpretation. First, observe that Pearl’s semantics (both 0
and 1 entailment) cannot cope with conditionals having an inconsistent antecedent.
This limitation is deliberate and is motivated by a probabilistic interpretation of con-
ditionals: in asserting A |∼ B, A must not be impossible, no matter how it is unlikely.
For this reason, a knowledge base such as K = {A |∼ P, A |∼ ¬P, B |∼ Q} is out of the
scope of Pearl’s semantics, and nothing can be said about its consequences. As a dif-
ference with respect to Pearl’s approach we are able to consider such K, we just derive
that A is impossible, without concluding that K is inconsistent or trivial, in the sense
that everything follows from it. Moreover both 0-entailment and 1-entailment fail to
validate:

∅ |=0−ent/1−ent A |∼⊥ whenever `PC ¬A

which is valid in any KLM logic, whence in rational closure (as well as in our seman-
tics). However, two definitions should make apparent the relations with our semantics
and rational closure. If we consider a K such that ∀A |∼ B ∈ K,K 6|=R A |∼ ⊥, we get
an obvious correspondence between our canonical models (which will contain worlds
for very possible propositional interpretation) and models of Pearl’s semantics. The
correspondence preserves FIMS minimality, so that we immediately get:

Proposition 10. K |=1−ent A |∼ B if and only ifM |= A |∼ B for all canonical modelsM
of K that are minimal with respect to FIMS.

By Theorem 2, we therefore obtain K |=1−ent A |∼ B if and only if A |∼ B ∈ K̄. This
is not a surprise, the correspondence between 1-entailment and rational closure was
already observed by Pearl in [? ? ]. However, it only works for knowledge bases with
the strong consistency assumption as above.

3. Rational closure in Description Logics

As recalled in the Introduction, nonmonotonic reasoning in Description Logic has
attracted an increasing interest in the last years [? ? ? ? ? ? ? ? ? ? ? ]. Our
purpose is to investigate whether rational closure can be extended in order to support
nonmonotonic reasoning to Description Logics.

In this section, we extend to ALC the notion of rational closure proposed by
Lehmann and Magidor [? ], recalled in Section 2.2, and we define a semantic char-
acterization of this notion of rational closure by introducing a minimal model seman-
tics for ALC with typical inclusions. This semantics is a direct generalization of the
minimal (canonical) model semantics introduced in Section 2.3

To express typical inclusions, ALC is extended with a typicality operator T, fol-
lowing the approach in [? ? ]. Differently from [? ], here we consider special kinds of
preferential models, namely, rational models, to define the semantics of the T opera-
tor, and we use a different notion of preference between models, namely, the preference
relation <FIMS, introduced in Section 2.3. Given the typicality operator, the typical as-
sertion T(C) v D (all the typical C’s are D’s) plays the role of the conditional assertion
C |∼ D in R. We show that the correspondence result established by Theorem 2 can be
lifted from the propositional calculus toALC.
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3.1. The logicALC + TR

In order to apply rational closure to DLs we proceed in two steps. First, similarly
to [? ], we extend the standardALC by a typicality operator T that allows to single out
the typical instances of a concept. Since we are dealing here with rational closure (that
builds over R), we attribute to T properties related to R. The resulting logic is called
ALC + TR. As a second step, we build overALC + TR a rational closure mechanism.

Our starting point is therefore the extension of logicALCwith a typicality operator
T: we allow concepts of the form T(C), whose intuitive meaning is that T(C) selects the
typical instances of a concept C. We can therefore distinguish between the properties
that hold for all instances of concept C (C v D), and those that only hold for the typical
such instances (T(C) v D).

Definition 12. We consider an alphabet of concept names C, of role names R, and of
individual constants O. Given A ∈ C and R ∈ R, we define:

CR := A | > | ⊥ | ¬CR | CR uCR | CR tCR | ∀R.CR | ∃R.CR

CL := CR | T(CR)

A knowledge base is a pair (TBox, ABox). TBox contains a finite set of concept
inclusions CL v CR. ABox contains assertions of the form CL(a) and R(a, b), where
a, b ∈ O.

The semantics of ALC + TR can be formulated in terms of rational models: ordi-
nary models ofALC are equipped with a preference relation < on the domain, whose
intuitive meaning is to compare the “typicality” of domain elements, that is to say x < y
means that x is more typical than y. Typical members of a concept C, that is members of
T(C), are the members x of C that are minimal with respect to this preference relation
(s.t. there is no other member of C more typical than x).

Definition 13 (Semantics ofALC + TR). A modelM of ALC + TR is any structure
〈∆, <, I〉 where:

• ∆ is the domain;

• < is an irreflexive, transitive and modular (if x < y then either x < z or z < y)
relation over ∆;

• I is the extension function that maps each concept C to CI ⊆ ∆, and each role R
to RI ⊆ ∆ × ∆. For concepts of ALC, CI is defined in the usual way. For the T
operator, we have

(T(C))I = Min<(CI),

where Min<(S ) = {u : u ∈ S and @z ∈ S s.t. z < u}.

Furthermore, < satisfies the Well − Foundedness Condition, i.e., for all S ⊆ ∆, for all
x ∈ S , either x ∈ Min<(S ) or ∃y ∈ Min<(S ) such that y < x. 3

3Observe that, although in [? ? ] we have called the above condition Smoothness condition, this condition
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The semantics with one single preference relation < is the one that, as we will show,
corresponds to rational closure. One may think of considering a sharper semantics with
several preference relations, we briefly discuss this variant in the last section.

An alternative equivalent semantics of the T operator by means of a set of postu-
lates that are essentially a reformulation of axioms and rules of nonmonotonic entail-
ment in rational logic R can be found in the Appendix, together with the proof of the
equivalence.

Definition 14 (Model satisfying a knowledge base). Given anALC+TR modelM=

〈∆, <, I〉, we assume that I is extended to assign a domain element aI of ∆ to each
individual constant a of O. We say that:

• a modelM satisfies an inclusion C v D (writtenM |=ALC+TR C v D) if it holds
CI ⊆ DI ;

• M satisfies an assertion C(a) (written M |=ALC+TR C(a)) if aI ∈ CI and M
satisfies an assertion R(a, b) (writtenM |=ALC+TR R(a, b)) if (aI , bI) ∈ RI .

Given a knowledge base K=(TBox,ABox), we say that:

• M satisfies TBox if M satisfies all inclusions in TBox (written M |=ALC+TR

TBox);

• M satisfies ABox if M satisfies all assertions in ABox (written M |=ALC+TR

ABox);

• M satisfies K if it satisfies both its TBox and its ABox (writtenM |=ALC+TR K);

• a concept C is satisfiable with respect to K, if there is a model M = 〈∆, <, I〉
satisfying K and such that CI , ∅.

It is worth noticing that, as a difference with our previous approach in [? ], here we
do not assume the unique name assumption, that is to say we do not assume that, in a
modelM, I is extended to assign a distinct element aI of ∆ to each individual constant
a of O. In [? ], UNA is needed since the properties of the preference relation < are built
from preferential logic P: in that case, the unique name assumption avoids that models
in which two names are mapped into the same individual of the domain are preferred to
those in which they are mapped into distinct ones. This is needed in order to perform
useful reasoning about two different individuals named in the ABox. As we will see
in Definition 23 below, we restrict our concern to the only case of an FIMS semantics
based on the minimization of ranks, therefore the unique name assumption is no longer
needed.

is stronger than the smoothness condition introduced in the propositional case (Definition 1). Indeed, the
condition above considers all subsets S of ∆ and does not only apply to the interpretations CI of the concepts
C of the language. It is easy to prove that such a condition is equivalent to require that (∆, <) is well-founded,
i.e. there is no infinite descending chain of individuals. In the following, we keep the same condition as in
previous work, but we call it well-foundedness condition.
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By a construction similar to that used in Theorem 2.3 of [? ] for the weaker logic
ALC + T, we can prove the following theorem. The proofs and further details are
provided in the technical report [? ].

Theorem 5 (Complexity ofALC+TR). Given anALC+TR knowledge base K=(TBox,
ABox), the problem of deciding satisfiability of K is EXPTIME-complete.

The finite model property of ALC + TR follows as an easy consequence of the
terminating tableau construction in Section 4.1 of [? ].

Theorem 6 (Finite model property for ALC + TR). Given a knowledge base K, if it
is satisfiable inALC + TR then there exists a finiteALC + TR model satisfying K, i.e.
ALC + TR has the finite model property.

Let us define the derivability of an inclusion and of an assertion inALC + TR:

Definition 15. Given a knowledge base K, an inclusion CL v CR and an assertion
CL(a), with a ∈ O, we say that:

• the inclusion CL v CR is entailed from K, written K |=ALC+TR CL v CR, if
CL

I ⊆ CR
I holds in all modelsM =〈∆, <, I〉 satisfying K;

• the assertion CL(a) is entailed from K, written K |=ALC+TR CL(a), if aI ∈ CL
I

holds in all modelsM =〈∆, <, I〉 satisfying K.

As usual, when, for a given knowledge base K and a concept C, it holds that K 6|=ALC+TR

C v ⊥ we say that C is satisfiable with respect to K.
As an easy consequence of Theorem 6, we prove the following corollary:

Corollary 2. Given a knowledge base K and a concept C satisfiable with respect to K,
then there exists a finiteALC+TR modelM = 〈∆, <, I〉 satisfying K, such that CI , ∅.

Proof. Let K=(TBox,ABox) and let us assume that C is satisfiable with respect to K.
Then there is a modelM = 〈∆, <, I〉 satisfying K such that CI , ∅. Let x ∈ CI , let d be
a new individual name not occurring in K and let K′ =(TBox,ABox’), where ABox’=
ABox ∪ {C(d)}. Clearly, K′ is satisfiable, as the model obtained from M by letting
dI = x satisfies K′. By the finite model property (Theorem 6) there exists a finite
model satisfying K′. Let M′ be such a model. M′ is a finite model of K such that
CI′ , ∅.

As for propositional rational models, finiteALC+TR models (to which we can restrict
attention by Theorem 6) can be equivalently defined by postulating the existence of a
function kM : ∆ 7−→ N, where kM assigns a finite rank to each world, and is defined as
follows.

Definition 16 (Rank of a domain element kM(x)). Given a model M =〈∆, <, I〉, the
rank kM of a domain element x ∈ ∆, is the length of the longest chain x0 < . . . < x
from x to a minimal x0 (i.e. such that there is no x′ such that x′ < x0).

As for the propositional case, the rank function kM and < can be defined from each
other by letting x < y if and only if kM(x) < kM(y).
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Definition 17 (Rank of a concept kM(CR) in a model). Given a modelM =〈∆, <, I〉,
the rank kM(CR) of a concept CR in the modelM is defined as

kM(CR) = min{kM(x) | x ∈ CR
I}.

If CR
I = ∅, then CR has no rank and we write kM(CR) = ∞.

It is immediate to verify that:

Proposition 11. For anyM =〈∆, <, I〉, we have thatM satisfies T(C) v D if and only
if kM(C u D) < kM(C u ¬D).

As already mentioned, although the typicality operator T itself is nonmonotonic (i.e.
T(C) v D does not imply T(C u E) v D), the logic ALC + TR is monotonic: what
is inferred from K can still be inferred from any K′ with K ⊆ K′. This is a clear
limitation in DLs. As a consequence of the monotonicity of ALC + TR, one cannot
deal with irrelevance, for instance. So one cannot derive from K = {Penguin v Bird,
T(Bird) v Fly, T(Penguin) v ¬Fly} that K |=ALC+TR T(PenguinuBlack) v ¬Fly, even
if the property of being black is irrelevant with respect to flying. In the same way, if
we add to K the information that Jim is a bird (Bird( jim)), in ALC + TR one cannot
tentatively derive, in the absence of information to the contrary, that it is a typical bird
and therefore it flies (T(Bird)( jim) and Fly( jim)).

In the following section we investigate the possibility of overcoming this weakness
by extending toALC+TR the notion of rational closure. As we will see, this extension
allows to deal with irrelevance and allows to attribute typical properties to individuals.

3.2. Rational Closure of the TBox inALC + TR

In this section, we extend toALC+TR the definition of rational closure introduced
by Lehmann and Magidor for the propositional case.

We first consider the rational closure with respect to TBox, in which essentially we
only consider which concept inclusions belong to the rational closure of K. Next we
will consider rational closure with respect to ABox, in which we consider the individ-
uals explicitly named in the ABox, and derive their properties.

Let us first define the notion of query: a query is either an inclusion relation or an
assertion of the ABox; we want to check whether it is entailed from a given knowledge
base.

Definition 18 (Query). A query F is either an assertion CL(a) or an inclusion relation
CL v CR. Given a modelM =〈∆, <, I〉, a query F holds inM ifM satisfies F, i.e. if
aI ∈ (CL(a))I or CI

L ⊆ CI
R, respectively. 4

4The notion of query we have just defined does not consider the case of querying about role instances,
that is to say of the form R(a, b), where R is a role name and a, b are individual names occurring in the ABox.
The reason is that in ALC + TR, like in the basic ALC, for any knwoledge base K = T Box ∪ ABox, and
any role instance R(a, b) as above, it holds that if K is satisfiable, then K |=ALC+TR R(a, b) if and only if
R(a, b) ∈ ABox (if K is not satisfiable everything follows), thus neither the logicALC + TR, nor the rational
closure construction add any inferential power. This of course would not necessarily be true in extensions of
ALC containing for instance role constructors.
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Definition 19 (Exceptionality of concepts and inclusions). Let K=(TBox,ABox) be
a knowledge base. A concept C is said to be exceptional for K if and only if K |=ALC+TR

T(>) v ¬C. A T-inclusion T(C) v D is exceptional for K if C is exceptional for K.
The set of T-inclusions of K which are exceptional in K will be denoted as E(K).

Note that, differently from Lehmann and Magidor’s notion of exceptionality in Section
2.2, the exceptionality of a concept is defined also taking into account the ABox. This
is needed when the ABox contains typicality assertions of the form T(C)(a). Indeed,
as we will see later with an example, the construction of the rational closure of the
TBox of a knowledge base K is affected by the presence of typicality assertions in the
ABox: if the assertions T(C)(a) and ¬D(a) are in the ABox, it is not the case that all
the typical C’s are D’s, so that the defeasible inclusion T(C) v D does not hold.

Similarly to the propositional case, in the following we introduce a sequence of
knowledge bases, starting from the initial one, K, in order to iteratively use exception-
ality in the construction of the rational closure. At each step, in order to reason about
the following exceptional subset of K, we remove the inclusions T(C) v D of K that
are not exceptional for K. Before we do this, if there is an assertion T(C)(a) in ABox,
we add to a all the typical properties of C that we are removing. Because we want
to reason in the same way for equivalent concepts, this leads us to the slightly more
complicated formulation of ABoxi below.

Definition 20. Given a DL knowledge base K=(TBox,ABox), it is possible to define
a sequence of knowledge bases E0, . . . , Ei, . . . , En by letting E0 = (TBox0, ABox0)
where TBox0 = TBox and ABox0 = ABox and, for i > 0, Ei = (TBoxi, ABoxi) where

• TBoxi = E(Ei−1) ∪ {C v D ∈ TBox | T does not occur in C}

• ABoxi = ABoxi−1 ∪ {(¬C t D)(a) | T(C) v D in (Ei−1 − Ei) and there is a
T(B)(a) ∈ ABox such that Ei−1 6|=ALC+TR T(>) v ¬B and E j |=ALC+TR T(>) v
¬B for all j < i − 1}

(as a consequence of the next Definition 21, these are the Bs such that rank(B) = i−1).

Clearly TBox0 ⊇ TBox1 ⊇ TBox2, . . ., while ABox0 ⊆ ABox1 ⊆ ABox2, . . .
Observe that, being K finite, there is a least n ≥ 0 such that, for all m > n,TBoxm =

TBoxn or TBoxm = ∅. We take (TBoxn,ABoxn) as the last element of the sequence
of knowledge bases starting from K. Observe also that the definition of the TBoxi’s is
the same as the definition of the Ci’s in Lehmann and Magidor’s definition of rational
closure in Section 2.2, except for the fact that here, at each step, we also add all the
“strict” inclusions C v D (where T does not occur in C).

Informally, for the definition of ABoxi, if T(B)(a) ∈ABox (i.e., a is a typical B-
element), and B has rank i − 1, then, for all the inclusions T(C) v D in (Ei−1 − Ei),
since C has also rank i−1 we have that: if a is a C-element, then it is a typical C-element
and the assertion (¬C t D)(a) must hold.

Note that, when the ABox does not contain typicality assertions of the form T(C)(a),
we have that, for all i, ABoxi = ABox. In this case, ABoxi is irrelevant to de-
termine the exceptionality of concepts as Ei |=ALC+TR T(>) v ¬C if and only if
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TBoxi |=ALC+TR T(>) v ¬C, for all concepts C. As in this case the definition of ex-
ceptionality of concepts does not depend on the ABox, the construction above can be
simplified, by taking E0 = TBox and Ei = TBoxi, and evaluating exceptionality only
with respect to the TBox. Hence, we can avoid the computation of the ABoxis and
the construction becomes quite similar to the one of Lehmann and Magidor recalled in
Section 2.2. This simplified construction can be found in [? ].

Definition 21 (Rank of a concept). A concept C has rank i (denoted by rank(C) = i)
for K=(TBox,ABox), if and only if i is the least natural number for which C is not
exceptional for Ei. If C is exceptional for all Ei then rank(C) = ∞, and we say that C
has no rank.

Consider the least n ≥ 0 such that, for all m > n,TBoxm = TBoxn or TBoxm = ∅.
Then from the above definition it follows that if a concept C has a rank, its highest
possible value is n. As for propositional logic, the notion of rank of a formula allows
to define the rational closure of a knowledge base K with respect to TBox .

Definition 22 (Rational closure of TBox). Let K=(TBox,ABox) be a DL knowledge
base. We define TBox, the rational closure of TBox, as

TBox = {T(C) v D | either rank(C) < rank(C u ¬D)
or rank(C) = ∞} ∪ {C v D | K |=ALC+TR C v D}

It can be easily seen that the rational closure of TBox is a nonmonotonic strengthening
ofALC+TR. For instance, it allows to deal with irrelevance, as the following example
shows.

Example 6. Let K = (TBox, ABox) where ABox = ∅ and TBox = {Penguin v Bird,
T(Bird) v Fly, T(Penguin) v ¬Fly}. It can be verified that T(Bird u Black) v Fly ∈
TBox. This is a nonmonotonic inference that does no longer follow if we know that
typical black birds do not fly: given TBox′= TBox ∪ {T(Bird u Black) v ¬Fly}, we
have that T(Bird u Black) v Fly < TBox′. Similarly, as for the propositional case,
rational closure is closed under rational monotonicity: from T(Bird) v Fly ∈ TBox and
T(Bird) v ¬LivesEurope < TBox it follows that T(Bird u LivesEurope) v Fly ∈ TBox.

We can show that the presence of typicality assertions in the ABox has an impact
on the construction of the rational closure.

Example 7. Let K = (TBox, ABox), where TBox is as in Example 6 and ABox=

{T(BirduBlack)(opus),¬Fly(opus)}. As opus is a typical black bird and it does not fly,
it is clear the we are no longer ready to accept that typical black birds fly, otherwise we
get an inconsistency with the ABox. Indeed, using the construction of rational closure
given above, we have that K |=ALC+TR T(>) v ¬(Bird u Black), so that rank(Bird u
Black) , 0. In particular, rank(Bird u Black) = 1 and rank(Bird u Black u ¬Fly) = 1
as well. Hence, T(Bird u Black) v Fly < TBox.

The next example shows that a sequence of ABoxes in the construction of the ra-
tional closure is actually needed.
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Example 8. Let K = (TBox, ABox) where TBox = {Penguin v Bird, T(Bird) v
Fly, T(Penguin) v ¬Fly, T(Bird) v ∀HasFriend.Fly} and ABox= {T(Bird)(opus),
HasFriend(opus, pio),T(Penguin u Violet)(pio)}.

From the construction in Definition 20, we have:

• TBox0 ={Penguin v Bird, T(Bird) v Fly, T(Penguin) v ¬Fly, T(Bird) v
∀HasFriend.Fly},
ABox0 = {T(Bird)(opus),HasFriend(opus, pio),T(Penguin u Violet)(pio)}.

• TBox1 ={Penguin v Bird, T(Penguin) v ¬Fly},
ABox1 = {T(Bird)(opus),HasFriend(opus, pio),T(PenguinuViolet)(pio), (¬Bird
t Fly)(opus), (¬Bird t ∀HasFriend.Fly)(opus)}.

• TBox2 ={Penguin v Bird},
ABox2 = {T(Bird)(opus),HasFriend(opus, pio),T(PenguinuViolet)(pio), (¬Bird
t Fly)(opus), (¬Bird t ∀HasFriend.Fly)(opus)}.

Observe that the last two assertions in ABox1 have been introduced as T(Bird)(opus) ∈
ABox, and Bird is not exceptional in E0. Observe also that E1 |=ALC+TR T(>) v
¬(Penguin u Violet) and the assertion (¬Bird t ∀HasFriend.Fly)(opus) in ABox1 is
needed to infer that pio flies and hence, although it is a typical violet penguin, pio
cannot be a typical penguin.

We get rank(Penguin u Violet) = 2, while rank(Penguin) = 1, and rank(Bird) = 0.
Hence, we can conclude that typical penguins are not violet, T(Penguin) v ¬Violet ∈
TBox, as rank(Penguin) < rank(Penguin u Violet).

So far we have extended to ALC + TR the syntactic notion of rational closure. We
wonder whether we provide a semantic characterization of this notion by extending the
semantic characterization given at the propositional level.

As for the propositional case (in the case of FIMS), in order to semantically char-
acterize the rational closure, we first restrict our attention to minimal rational models
that minimize the rank of domain elements. Informally, given two models of K, one
in which a given domain element x has rank 2 (because for instance z < y < x) , and
another in which it has rank 1 (because only y < x), we prefer the latter, as in this
model the element x is assumed to be “more typical” than in the former.

Definition 23 (Minimal models). Given M =〈∆, <, I〉 and M′ = 〈∆′, <′, I′〉 we say
thatM is preferred toM′ (M <FIMS M

′) if:

• ∆ = ∆′

• CI = CI′ for all concepts C

• for all x ∈ ∆, it holds that kM(x) ≤ kM′ (x) whereas there exists y ∈ ∆ such that
kM(y) < kM′ (y).

Given a knowledge base K, we say that M is a minimal model of K with respect to
<FIMS if it is a model satisfying K and there is no M′ model satisfying K such that
M′ <FIMS M.
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It is worth noticing that roles are not considered in Definition 23, in other words, they
are allowed to vary in the proposed preferential semantics. Subsequently, as for the
propositional case, we restrict our attention to minimal canonical models. We define
S as the set of all the concepts (and subconcepts) occurring in K or in the query F
together with their complements (observe that S is finite).

In order to define canonical models, we consider all the sets of concepts {C1,C2, . . . ,
Cn} ⊆ S that are consistent with K, i.e., s.t. K 6|=ALC+TR C1 uC2 u . . . uCn v ⊥.

Definition 24 (Canonical model with respect to S). Given K=(TBox,ABox) and a query
F, a modelM =〈∆, <, I〉 satisfying K is canonical with respect to S if, for each set of
concepts {C1,C2, . . . ,Cn} ⊆ S consistent with K, there exists (at least) a domain ele-
ment x ∈ ∆ such that x ∈ (C1 uC2 u . . . uCn)I .

The intuition is that a canonical model contains all the individuals that enjoy prop-
erties that are consistent with the knowledge base. This is needed when reasoning
about the (relative) rank of the concepts: it is important to have them all represented.
As we will see in Theorem 7, inALC the existence of a canonical model is guaranteed
for any consistent knowledge base. However, this may be not true for more expressive
logics and, in particular, this is not true for SHOIQ [? ] (see example 4 in [? ]).

Next we define the notion of minimal canonical model.

Definition 25 (Minimal canonical models (with respect to TBox)). M is a minimal
canonical model of K if it satisfies K, it is minimal (with respect to Definition 23) and
it is canonical (according to Definition 24).

We can now prove the following:

Theorem 7. For any consistent knowledge base K, there exists a finite, minimal canon-
ical model of K with respect to TBox.

Proof. Let M = 〈∆, <, I〉 be a finite model of K (which exists by the finite model
property, since K is consistent), and let {C1,C2, . . . ,Cn} ⊆ S be any subset of S con-
sistent with K. We show that we can expandM in order to obtain a finite model of K
that contains an instance of C1 u C2 u . . . u Cn. By repeating the same construction
for all maximal consistent subsets {C1,C2, . . . ,Cn} of S, we eventually obtain a finite
canonical model of K.

Indeed, for each {C1,C2, . . . ,Cn} consistent with K, it holds that K 6|=ALC+TR C1 u

C2 u . . . u Cn v ⊥, i.e. concept C1 u C2 u . . . u Cn is satisfiable with respect to K. By
Corollary 2 there exists a finite ALC + TR modelM′ = 〈∆′, <′, I′〉 satisfying K, such
that (C1 uC2 u . . . uCn)I′ , ∅.

LetM
′∗ be the union ofM andM′, i.e. M

′∗ = 〈∆
′∗, <

′∗, I
′∗〉, where ∆

′∗ = ∆ ∪ ∆
′

.
As far as individuals named in the ABox are concerned, we define I

′∗ as I, that is to
say aI

′∗

= aI for all a ∈ O occurring in ABox. For concepts and roles, I
′∗ is defined as

I for elements in ∆ and as I′ on elements in ∆′, that is to say, for all atomic concepts
C ∈ C and all roles R ∈ R:

• x ∈ CI
′∗

for all x ∈ ∆, if x ∈ CI ;

• x ∈ CI
′∗

for all x ∈ ∆′, if x ∈ CI′ ;
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• (x, y) ∈ RI
′∗

for all x, y ∈ ∆, if (x, y) ∈ RI ;

• (x, y) ∈ RI
′∗

for all x, y ∈ ∆′, if (x, y) ∈ RI′ .

Also, kM′∗ (x) = kM(x) for the elements in x ∈ ∆, and kM′∗ (x) = n + kM′ (x) for all
the elements x ∈ ∆′, where n is the maximum value of kM in M (n is finite, as each
element ofM has a finite rank). <

′∗ is straightforwardly defined from kM′∗ by letting
x <

′∗ y if and only if kM′∗ (x) < kM′∗ (y). It can be verified thatM
′∗ is a finite model of

K which contains an instance of C1 u C2 u . . . u Cn. For the inclusions and assertions
of K that do not contain T this is obviously true. For the inclusions containing T, for
each T(C) v D, if x ∈ Min<′∗(C) inM

′∗, also x ∈ Min<(C) inM or x ∈ Min<′ (C) in
M′. In both cases x is an instance of D (since both M and M′ satisfy K), therefore
x ∈ DI

′∗

, andM
′∗ satisfies K.

By repeating the same construction for all the (finitely many) maximal consistent
subsets {C1,C2, . . . ,Cn} of S, we obtain a finite canonical model of K, call itM+. We
do not know whetherM+ is minimal. Observe that, as the domain ∆+ ofM+ is finite,
the rank of each element in ∆+ is finite. IfM+ is not minimal, then there is a modelM1
(over the same domain ∆+) preferred toM+, such that, for all x ∈ ∆+ kM1 (x) ≤ kM+ (x)
and for some y ∈ ∆+ kM1 (y) < kM+ (y). Again, if M1 is not minimal there must be
another M2 preferred to M1. And so on, lowering the ranks. As the domain ∆+ is
finite, this descending chain of models cannot be infinite and, eventually, we reach a
minimal canonical model of K.

To prove the correspondence between minimal canonical models and the rational
closure of a TBox, we need to introduce some propositions. Given an ALC + TR

modelM =〈∆, <, I〉, we define a sequenceM0,M1,M2, . . . of models as follows: We
let M0 = M and, for all i, we let Mi = 〈∆, <i, I〉 be the ALC + TR model obtained
from M by assigning a rank 0 to all the domain elements x with kM(x) ≤ i, i.e.,
kMi (x) = kM(x) − i if kM(x) > i, and kMi (x) = 0 otherwise.

Proposition 12. Let K = 〈T Box, ABox〉 and letM =〈∆, <, I〉 be a minimal canonical
ALC + TR model satisfying K. For any concept C, if rank(C) ≥ i, then

1) kM(C) ≥ i, and
2)Mi satisfies Ei.

Proof. By induction on i. For i = 0, 1) holds (since it always holds that kM(C) ≥ 0).
2) holds trivially asM0 =M.

For i > 0, 1) holds: if rank(C)≥ i, then, by Definition 21, for all j < i, we have that
E j |=ALC+TR T(>) v ¬C. By inductive hypothesis on 2), for all j < i M j |=ALC+TR

T(>) v ¬C. Hence, for all x with kM(x) < i, x < CI , and kM(C) ≥ i.
To prove 2), we reason as follows. Since TBoxi ⊆ TBox0, M |=ALC+TR TBoxi.

Furthermore by definition of rank, for all T(B) v D ∈ TBoxi, rank(B) ≥ i, hence by 1)
just proved kM(B) ≥ i. Hence, inM, the rank of all elements in Min<(BI) is ≥ i , and
alsoMi |=ALC+TR T(B) v D.

To prove that Mi |=ALC+TR Ei, we also need to show that Mi |=ALC+TR ABoxi.
By construction, for all the assertions C(a) ∈ ABox,M |=ALC+TR C(a) and there is an
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element x ∈ ∆ such that x ∈ CI and aI = x. AsMi only differs fromM for the ranks,
if C , T(B),Mi |=ALC+TR C(a). If C = T(B), as inM it holds that x ∈ (T(B))I , x is a
B-minimal element inM, and it can be proven that it remains a B-minimal element in
Mi. Thus,Mi satisfies T(B)(a).

For each assertion (¬C t D)(a) ∈ ABoxi such that (¬C t D)(a) <ABox, we dis-
tinguish two cases: either (¬C t D)(a) ∈ ABoxi−1 or (¬C t D)(a) < ABoxi−1. In
the first case, by inductive hypothesis,Mi−1 |=ALC+TR Ei−1, and henceMi−1 |=ALC+TR

(¬CtD)(a) and alsoMi |=ALC+TR (¬CtD)(a) (since T does not occur in C). In the sec-
ond case, the assertion (¬C t D)(a) has been added to ABoxi and was not in ABoxi−1.
Hence, there is an inclusion T(C) v D in (Ei−1 − Ei) and there is a T(B)(a) ∈ABox
(and hence in ABoxi) such that Ei−1 6|=ALC+TR T(>) v ¬B. As T(B)(a) ∈ABox,
M |=ALC+TR T(B)(a) and for some x ∈ ∆, x ∈ Min<(BI) and x = aI . We want to show
that x ∈ (¬C t D)I , for all T(C) v D in Ei−1, so that (¬C t D)(a) is satisfied inMi−1
and hence inMi.

By construction, rank(B) = i−1, and by inductive hypothesis, part 1), kM(B) ≥ i−1.
We show that kM(B) = i − 1 and kMi−1 (B) = 0.

From Ei−1 6|=ALC+TR T(>) v ¬B, we know there is a model, M′′ satisfying Ei−1
and such that, for some domain element y, kM′′ (y) = 0 and y ∈ BI′′ . Clearly, for all
T(C) v D ∈ TBoxi−1, y ∈ (¬C t D)I′′ . Let {C1, . . . ,Cr} be the maximal consistent set
of concepts of which y is an instance. We can show that {C1, . . . ,Cr} is consistent with
K. Indeed, we can define a new model of K by adding toM all the domain elements
in M′′, including y, by keeping the interpretation of concepts and relations on such
elements as inM′′ and by letting the rank kM(y) = i − 1 and kM(z) = n + 1 (where n is
the highest rank inM ), for all z ∈ ∆′′ such that z , y. The obtained model is clearly a
model of K satisfying {C1, . . . ,Cr}, which proves the consistency of this set w.r.t. K.

AsM is a canonical model, and {C1, . . . ,Cr} is consistent with K, there must be a
y′ in ∆ such that y′ is an instance of C1 u . . . u Cr. Furthermore, for all T(C) v D ∈
T Boxi−1, y′ ∈ (¬CtD)I , and y′ must have rank kM(y′) = i−1 (asM is a minimal model
of K). Hence, kMi−1 (B) = 0, and, sinceMi−1 satisfies T(B)(a), it must be kMi−1 (x) = 0
for x = aI . Thus, in Mi−1, if x ∈ CI , then x ∈ (T (C))I , and from the fact that Mi−1
satisfies T(C) v D, we can conclude that x ∈ DI . Hence, x ∈ (¬C t D)I for x = aI , so
that (¬C t D)(a) is satisfied inMi−1. It is easy to see that (¬C t D)(a) is satisfied in
Mi as well. ThereforeMi |=ALC+TR Ei.

The next proposition is still concerned with minimal canonical models, to prove the
correspondence between the rank of a concept (as in Definition 21) and the rank of a
concept in a minimal canonical model (as in Definition 17).

Proposition 13. Given a consistent K and S, for all C ∈ S, if rank(C) = i, then:

(1) there is a {C1,C2, . . . ,Cr} ⊆ S maximal and consistent with K such that C ∈
{C1,C2, . . . ,Cr} and rank(C1 uC2 u . . . uCr) = i

(2) for anyM minimal canonical model of K, it holds that kM(C) = i

Proof. We prove (1). If i = 0, we have that K 6|=ALC+TR T(>) v ¬C. Then there is a
modelM0 of K with a domain element x such that kM0 (x) = 0 and x is an instance of
C. Consider the maximal consistent set of concepts in S of which x is an instance in
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M0. This is a maximal consistent set {C1,C2, . . . ,Cr} ⊆ S containing C. Furthermore,
rank(C1 u C2 u . . . u Cr) = 0 since clearly K 6|=ALC+TR T(>) v ¬(C1 u C2 u . . . u Cr)
(given that kM0 (x) = 0).

For all i > 0 we proceed as follows. We have that Ei 6|=ALC+TR T(>) v ¬C,
then there must be a model Mi = 〈∆i, <i, Ii〉 of Ei, and a domain element x such
that kMi (x) = 0 and x is an instance of C. Consider the maximal consistent set of
concepts {C1, . . . ,Cr} ⊆ S of which x is an instance inMi. Clearly, C ∈ {C1, . . . ,Cr}.
Furthermore, rank(C1 uC2 u . . . uCr) = i. Indeed Ei−1 |=ALC+TR T(>) v ¬(C1 uC2 u

. . . u Cr) (since Ei−1 |=ALC+TR T(>) v ¬C and C ∈ {C1, . . . ,Cr}), whereas clearly by
the existence of x, Ei 6|=ALC+TR T(>) v ¬(C1 uC2 u . . . uCr).

We have to prove that the set {C1, . . . ,Cr} is consistent with K. The proof is the
same for i = 0 and for i > 0. LetMi = 〈∆i, <i, Ii〉 be the model, considered few lines
above in this proof, such that x ∈ ∆i is an instance of C. Starting from a finite model
M = 〈∆, <, I〉 of K (M exists by the finite model property, Theorem 6), we add toM
all the domain elements ofMi.

We define the resulting model M′ = 〈∆′, <′, I′〉 as follows: ∆′ = ∆ ∪ ∆i; I′ is
defined on the elements of ∆ as I inM, and on the elements of ∆i as Ii inMi. For the
interpretation of concepts: for x ∈ ∆, x ∈ CI′ if and only if x ∈ CI ; for x ∈ ∆i, x ∈ CI′

if and only if x ∈ CIi . For the interpretation of roles: for x, y ∈ ∆, (x, y) ∈ RI′ if and
only if (x, y) ∈ RI ; for x, y ∈ ∆i, (x, y) ∈ RI′ if and only if (x, y) ∈ RIi ; and, for any two
elements x ∈ ∆ and y ∈ ∆i, (x, y) < RI′ and (y, x) < RI′ . For all individual constants
a ∈ O, we let aI′ = aI . Finally, for all w ∈ ∆, we let kM′ (w) = kM(w) and, for all y ∈ ∆i,
we let kM′ (y) = n + 1 + kMi (y), where n is the highest value of kM inM (n is finite as
each element inM has a finite rank).

We can show that by construction the resulting model satisfies K. Let C v D be
an inclusion in TBox. We distinguish two cases: C does not contain the typicality
operator and C = T (B) for some B. In the first case, C ⊆ D is a strict inclusion. Let
x ∈ CI′ . There are two cases: either x ∈ ∆ or x ∈ ∆i. In the first case, x ∈ CI in
M. AsM satisfies K, x ∈ DI and, by definition ofM′, x ∈ DI′ . In the second case,
x ∈ CIi . AsMi satisfies all the strict inclusions in K (which belong to Ei), x ∈ DIi and,
by definition ofM′, x ∈ DI′ .

In case C = T (B) for some B, observe that if x ∈ (T(B))I′ , then either x ∈ ∆ or
x ∈ ∆i. In the first case, x is B-minimal inM and x ∈ DI . Hence, by definition ofM′,
x ∈ DI′ . In the second case, x is B-minimal inMi and x ∈ DIi . Hence, by definition of
M′, x ∈ DI′ .

Observe that all the assertions in the ABox are satisfied in M and we have inter-
preted individual constants over the elements of ∆ as inM: aI′ = aI , for all a ∈ O. By
construction, for x ∈ ∆, x ∈ CI′ iff x ∈ CI . Hence, if B(a) ∈ ABox is satisfied inM,
then it is satisfied inM′ as well.

From this, we can conclude thatM′ is a model satisfying K and (C1 u C2 u . . . u
Cr)I′ , ∅. From this, point (1) follows.

Let us prove point (2). By point (1), if rank(C) = i there is a {C1,C2, . . . ,Cr} ⊆ S

maximal and consistent with K containing C and such that rank(C1uC2u . . .uCr) = i.
By Definition 24, we know that in all canonical models there is at least an instance of
(C1uC2u. . .uCr). To prove point (2) we show that in all minimal canonical modelsM
of K, kM(C1 uC2 u . . .uCr) = i, which entails kM(C) = i (since C ∈ {C1,C2, . . . ,Cr}).
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By Proposition 12 we know that kM(C1 uC2 u . . .uCr) ≥ i. We need to show that also
kM(C1 u C2 u . . . u Cr) ≤ i. For a contradiction suppose kM(C1 u C2 u . . . u Cr) > i,
i.e., for all the domain elements x instances of C1 u C2 u . . . u Cr, kM(x) > i. We
show that this contradicts the minimality of M. From M we build another model
M′ = 〈∆′, <′, I′〉 of K by lowering the ranks of some elements in M and leaving
all the rest unchanged. We let ∆′ = ∆ and I′ = I. For each element y ∈ ∆, let
{C1,C2, . . . ,Cr} ⊆ S be the maximal set of concepts consistent with K of which y is an
instance. If rank(C1 u C2 u . . . u Cr) = i < kM(y), we let kM′ (y) = i. Otherwise, we
let kM′ (y) = kM(y). Observe that we can obtainM′ from the modelM by repeatedly
lowering the rank of the elements in ∆ rank by rank, starting from rank i = 0.
M′ would still be a model of T Box: at each step, when the rank of an element y is

lowered to i (together with all the other elements whose rank is lowered to i), the only
thing that changes with respect to M is that y might have become in M′ a minimal
instance of a concept of which it was only a non-typical instance in M. This might
compromise the satisfaction in M′ of a typicality inclusion as T(E) v G. We show
that this cannot happen by reasoning by induction on i to prove that, after lowering the
rank of an element y in ∆, the modified model still satisfies all the inclusions in K. Let
rank(C1 uC2 u . . . uCr) = i < kM(y), consider a step in which we let kM′ (y) = i.

For i = 0, let T(E) v G ∈ K. It can be easily proven that being rank(C1 u C2 u

. . . u Cr) = 0, then if E ∈ {C1,C2, . . . ,Cr} also G ∈ {C1,C2, . . . ,Cr} (indeed if on the
contrary ¬G ∈ {C1,C2, . . . ,Cr}, then clearly K |=ALC+TR T(>) v ¬(C1uC2u . . .uCr),
against the hypothesis that rank(C1 u C2 u . . . u Cr) = 0). Therefore if y ∈ EI′ , also
y ∈ GI′ , and T(E) v G holds inM′.

For i > 0, let T(E) v G ∈ K. We consider two cases: rank(E) ≥ i and rank(E) < i.
If rank(E) ≥ i we reason as above (with Ei instead of K and i instead of 0) to conclude
that if E ∈ {C1,C2, . . . ,Cr} also G ∈ {C1,C2, . . . ,Cr}, hence if y ∈ EI′ , also y ∈ GI′ ,
and T(E) v G holds in M′. If rank(E) < i, then rank(E) ≤ i − 1, and we know
by construction that kM′ (E) < i and y is not a minimal instance of E in M′. Hence
lowering the rank of y does not compromise the satisfaction of T(E) v G ∈ Ei.

The resulting M′ is such that for all maximal set of concepts consistent with K,
{C1, . . . ,Cr}, kM′ (C1 u . . . u Cr) = rank(C1 u . . . u Cr). Furthermore, by the above
reasoning,M′ satisfies TBox. We show thatM′ also satisfies ABox, and in particular
it is not the case that a T(B)(a) ∈ ABox might turn false inM′.

For all assertions T(B)(a) ∈ABox, from the hypothesis we know that M satisfies
T(B)(a). Hence, there is a z ∈ ∆ such that aI = z and z ∈ (T (B))I . We show that it
must be the case that z ∈ (T (B))I′ and, therefore, T(B)(a) is satisfied inM′ as well. Let
{C1, . . . ,Cr} be the maximal consistent set of concepts of which z is an instance inM.
We prove that, rank(C1 u . . . uCr) = rank(B).

Clearly rank(C1 u . . .Cr) ≥ rank(B) (since B ∈ {C1, . . . ,Cr}). Suppose for a contra-
diction that rank(C1u. . .uCr) > rank(B) , i.e. there is an Ei s.t. Ei 6|=ALC+TR T(>) v ¬B
but Ei |=ALC+TR T(>) v ¬(C1 u . . . u Ck). Take the minimal i for which this happens,
we show a contradiction. As T(B)(a) ∈ ABox, for all T(C) v D ∈ Ei, (¬C t D)(a) has
been added to ABoxi. We know by Proposition 12 thatMi satisfies Ei and, in partic-
ular, it satisfies ABoxi. Thus Mi |=ALC+TR (¬C t D)(a), and z ∈ (¬C t D)I , for all
T(C) v D ∈ Ei. AsM is a minimal model, it must be the case that kM(z) = i (otherwise
we can define a canonical modelM′′ such thatM′′<FIMS M). Therefore, kMi (z) = 0
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and, asMi satisfies Ei,Mi is a model of Ei such that kMi (C1 u . . .uCk) = 0, thus con-
tradicting the fact that Ei |=ALC+TR T(>) v ¬(C1u . . .uCk). Hence, rank(C1u . . .uCr)
= rank(B).

As by the construction of M′, it must be that kM′ (aI′ )=rank(C1 u . . . u Cr). To
conclude that z ∈ (T(B))I′ , observe that it is not possible that there is an element y ∈ BI′

such that kM′ (y) < kM′ (aI′ ). In fact, otherwise it would be: kM′ (y) < rank(B), which
contradicts Proposition 12, point (a). This concludes the proof thatM′ satisfies ABox.

It follows thatM′ would be a model of K, andM′<FIMS M, against the minimality
ofM. We are therefore forced to conclude that kM(C1 uC2 u . . . uCr) = i, hence also
kM(C) = i, and 2) holds.

As a consequence of Proposition 13 and by what we know about the highest rank
of a concept (in case it has a rank) we state the following proposition.

Proposition 14. Let us consider the least n ≥ 0 such that, for all m > n,TBoxm =

TBoxn or TBoxm = ∅. Then, in all minimal canonical modelsM, for all domain ele-
ments x, kM(x) ≤ n.

We can now prove the following theorem:

Theorem 8. Let K=(TBox,ABox) be a knowledge base and C v D a query. We have
that C v D ∈ TBox if and only if C v D holds in all minimal canonical models of K
with respect to TBox.

Proof. (If part) Assume that C v D holds in all minimal canonical models of K with
respect to TBox, and let M =〈∆, <, I〉 be a minimal canonical model of K satisfying
C v D. Observe that C and D (and their complements) belong to S. We consider two
cases: (1) the left hand side of the inclusion C does not contain the typicality operator,
and (2) the left hand side of the inclusion is T(C).

In case (1), the minimal canonical modelM of K satisfies C v D. Then, CI ⊆ DI .
For a contradiction, let us assume that C v D < TBox. Then, by definition of TBox,
it must be: K 6|=ALC+TR C v D. Hence, K 6|=ALC+TR C u ¬D v ⊥, and the set of
concepts {C,¬D} is consistent with K. AsM is a canonical model of K, there must be
an element x ∈ ∆ such that x ∈ (C u ¬D)I . This contradicts the fact that CI ⊆ DI .

In case (2), assume M satisfies T(C) v D. Then, T(C)I ⊆ DI , i.e., for each
x ∈ Min<(CI), x ∈ DI . If Min<(CI) = ∅, then there is no x ∈ CI (by the smooth-
ness condition), hence C has no rank kM inM and, by Proposition 13, C has no rank
(rank(C) = ∞). In this case, by Definition 22, T(C) v D ∈ TBox. Otherwise, let us
assume that kM(C) = i. SinceM satisfies T(C) v D, kM(C u D) < kM(C u ¬D), then
kM(C u ¬D) > i. By Proposition 13, rank(C) = i and rank(C u ¬D) > i. Hence, by
Definition 22, T(C) v D ∈ TBox.

(Only if part) If C v D ∈ TBox, then, by definition of TBox, K |=ALC+TR C v D.
Therefore, each minimal canonical modelM of K satisfies C v D.

If T(C) v D ∈ TBox, then by Definition 22, either (a) rank(C) < rank(C u ¬D),
or (b) C has no rank. LetM be any minimal canonical model of K. In the case (a), by
Proposition 13, kM(C) < kM(Cu¬D), which entails kM(CuD) < kM(Cu¬D). Hence
M satisfies T(C) v D. In case (b), by Proposition 13, C has no rank inM, henceM
satisfies T(C) v D.
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For a strict inclusion C v D the problem of deciding whether C v D ∈ TBox
is clearly in EXPTIME as, by definition of TBox (Definition 22), it amounts to check
whether K |=ALC+TR C v D (Theorem 5). The problem of deciding whether T(C) v
D ∈ TBox is in EXPTIME as well.

Theorem 9 (Complexity of rational closure over the TBox). Given a knowledge base
K = (T Box, ABox), the problem of deciding whether T(C) v D ∈ TBox is in EXPTIME.

Proof. Checking if T(C) v D ∈ TBox can be done by computing the finite sequence
TBox0,TBox1, . . . ,TBoxn of non increasing subsets of TBox inclusions and the se-
quence ABox0,ABox1, . . . ,ABoxn of non decreasing supersets of ABox in the con-
struction of the rational closure. Note that the number n of the TBoxi (and ABoxi) is
O(|K|), where |K| is the size of the knowledge base K.

Computing each TBoxi = E(TBoxi−1), requires to check, for all concepts C′ oc-
curring on the left hand side of a T-inclusion in the TBox, whether TBoxi−1 |=ALC+TR

T(>) v ¬C′, which requires an exponential time [? ] in the size of TBoxi−1 (and hence
in the size of K). The number of the concepts C′ to be considered is O(|K|).

Computing each ABoxi requires to to check whether Ei−1 6|=ALC+TR T(>) v ¬B
which requires an exponential time in the size of Ei−1 (and hence in the size of K).

If not already checked, the exceptionality of C and of C u ¬D have to be checked
for each TBoxi, to determine the ranks of C and of C u ¬D (which also requires an
exponential time in the size of K). Hence, verifying if T(C) v D ∈ TBox is in EXP-
TIME.

The above result provides an EXPTIME upper bound for deciding whether T(C) v
D ∈ TBox (the EXPTIME lower bound comes from the fact that subsumption in ALC
is EXPTIME-hard). It requires a quadratic (in the size of K) number of calls to an
EXPTIME algorithm for checking subsumption in ALC + TR. In the case the ABox
does not contain typicality assertions, it is possible to see that subsumption inALC+TR

can be polynomialy reduced to subsumption in ALC so that optimized ALC prover
can be used to this purpose. The encoding is the same as the one introduced in [? ] for
reducing subsumption in SHIQRT to subsumption in SHIQ (see [? ] Proposition
3).

To conclude the session, we want to observe that our definition of exceptionality
(Definition 19), which exploits preferential entailment, cannot be equivalently replaced
with a notion of exceptionality which directly exploits entailment in ALC over the
materialization of the KB, in the spirit of the other proposals of rational closure in [?
? ]. In particular, consider a knowledge base K =(TBox,ABox) and let KS = {A v B |
A v B ∈ TBox} be the set of strict inclusions in K and K̃D =

�
{¬A t B | T(A) v

B ∈ TBox} be the materialization of the defeasible inclusions in K. One can wonder
whether the following notion of exceptionality: “B is exceptional with respect to K if
and only if (KS ,ABox) |=ALC K̃D v ¬B” is equivalent to the notion of exceptionality
introduced in Definition 19 . The next example shows that this is not the case at least
in the context of our rational closure construction (Definition 20).
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Example 9. Let K = (TBox, ABox) where TBox = {Faun v ∃HasFriend.WingedHorse,
T(WingedHorse) v Fly, T(WingedHorse) v ¬Fly} and ABox= ∅.

From the construction in Definition 20, we have that ABoxm = ABox and TBoxm =

TBox, for all m, as WingedHorse is exceptional for K, that is, K |=ALC+TR T(>) v
¬WingedHorse. Furthermore, Faun is exceptional for K (that is, K |=ALC+TR T(>) v
¬Faun) and is exceptional for all the Ei = (ABoxi,TBoxi) in the construction. Hence
rank(Faun) = ∞. Observe that, in ALC + TR, any model M satisfying K contains
neither a WingedHorse nor a Faun-element, i.e., K |=ALC+TR WingedHorse v ⊥,
K |=ALC+TR Faun v ⊥ and, of course, also K |=ALC+TR T(Faun) v ⊥. Therefore,
T(Faun) v ⊥ holds in all the minimal canonical models of K and this is in accordance
with the fact that, being rank(Faun) = ∞, T(Faun) v ⊥ is in the rational closure of
TBox.

If we adopt the definition of exceptionality introduced just above, we get a different
result. We have: KS = {Faun v ∃HasFriend.WingedHorse} and K̃D = ((¬WingedHorse
t Fly) u (¬WingedHorse t ¬Fly)), therefore

KS |=ALC K̃D v ¬WingedHorse but
KS 6|=ALC K̃D v ¬Faun

For the second statement, observe that there is anALCmodel satisfying KS containing
a Faun-element x, which is an instance of K̃D and is not a Winged Horse, but is in the
relation HasFriend with a WingedHorse-element y. Also, y is not required to be an
instance of K̃D. Hence, Faun is not exceptional with respect to K while WingedHorse is
exceptional, and we get rank(Faun) = 0 and rank(WingedHorse) = ∞. Therefore, with
this notion of exceptionality, T(Faun) v ⊥would not be in the rational closure of TBox,
as rank(Faun) ≮ rank(Faun u ¬⊥), since , clearly, rank(Faun u ¬⊥) = rank(Faun).

The same example knowledge base K above can be used to show the difference between
our notion of exceptionality in Definition 19 and the notion of exceptionality in [? ],
which exploits the materialization of both the strict and the defeasible part in the TBox.
For simplicity, let us consider the case when ABox is empty and is not considered in
the construction of the rational closure of TBox. Following [? ], we could define
exceptionality as follows: “B is exceptional with respect to K if and only if |=ALC
K̃S u K̃D v ¬B”, where K̃S = u {¬A t B | A v B ∈ KS } is the materialization of the
strict inclusions in K and K̃D is the materialization of the defeasible inclusions in K (as
defined above). Consider the following example:

Example 10. Let K be the knowledge base in Example 9. We have KS = (¬Faun t
∃HasFriend.WingedHorse) and K̃D = ((¬WingedHorse t Fly) u(¬WingedHorse t
¬Fly)). Therefore, 6|=ALC K̃S u K̃D v ¬Faun, i.e., Faun is not exceptional for K if
we adopt the notion of exceptionality from [? ] and hence rank(Faun) = 0. Again,
with this notion of exceptionality, T(Faun) v ⊥ would not be in the rational closure
of TBox, as rank(Faun) ≮ rank(Faun u ¬⊥)), while, as we have seen in Example
9, with the notion of exceptionality in Definition 19 we get rank(Faun) = ∞ and
T(Faun) v ⊥ ∈ TBox.

An alternative notion of exceptionality can be defined along the lines of [? ]. Consider
a knowledge base K =(TBox,ABox) (again we assume ABox is empty). We can define
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exceptionality as follows: “B is exceptional with respect to K if and only if KS ∪

KD |=ALC > v ¬B”, where KS = {A v B | A v B ∈ TBox} is the set of strict inclusions
in K and KD = {A v B | T(A) v B ∈ TBox} is the set containing a strict inclusion for
each defeasible inclusion in K. This notion of exceptionality is not equivalent to the
one in Definition 19 when used in the context of our rational closure construction, as
shown by the following example.

Example 11. Let K = (TBox, ABox) where TBox = {Penguin v Bird, Bird v ∃HasEnemy.
Penguin, T(Bird) v Fly, T(Penguin) v ¬Fly} and ABox= ∅.

We have KS = {Penguin v Bird, Bird v ∃HasEnemy.Penguin} and KD = {Bird v
Fly, Penguin v ¬Fly}.

It holds that: KS ∪ KD |=ALC > v ¬Penguin and KS ∪ KD |=ALC > v ¬Bird. For
the first entailment, ifM were an ALC model satisfying the inclusions KS ∪ KD and
x an instance of Penguin in M, then x would also be an instance of Bird and, by the
inclusions Bird v Fly, Penguin v ¬Fly in KD, x would be an instance of both Fly and
¬Fly. For the second entailment, as there is no model satisfying KS ∪ KD that contains
an instance of Penguin, then, there is no model containing an instance of Bird, since
any instance of Bird must be in the relation HasEnemy with an instance of Penguin.

Therefore, Penguin and Bird are both exceptional for K, so that rank(Bird) = ∞

and rank(Penguin) = ∞. Hence, with this notion of exceptionality, T(Bird) v ⊥ and
T(Bird) v ¬Fly would be in the rational closure of TBox. Conversly, with our notion
of exceptionality in Definition 19, we get that Bird is not exceptional for K, and that
rank(Bird) = 0. Thus, T(Bird) v ⊥ and T(Bird) v ¬Fly are not in the rational closure
of TBox (in agreement with the fact that these inclusions do not hold in all the minimal
models of K).

In conclusion, if we replace, in our definition of rational closure (Definition 20), the
notion of exceptionality in Definition 19 (based on the entailment in ALC + TR) with
a different notion of exceptionality which exploits the materialization of the KB and
entailment inALC, inspired to the notions of exceptionality used in [? ? ], the rational
closure we obtain is different from the rational closure obtained based on exceptionality
in Definition 19.

3.3. Rational Closure Over the ABox: Maximizing the Typicality of Named Individuals

In this section we extend the notion of rational closure defined in the previous one
in order to take into account the individual constants in the ABox. Consider, for in-
stance, a K with TBox={T(Bird) v Fly} and ABox={Bird(tweety)}. We would like to
be able to conclude that Tweety flies although the ABox does not contain the informa-
tion that Tweety is a typical bird. The rational closure of the TBox, in the previous
section, does not say anything about the individual constants in the ABox, although its
construction exploits the information in the ABox for consistency. We therefore ad-
dress the question: what does the rational closure of a knowledge base K allow to infer
about a specific individual constant a occurring in the ABox of K?

The definition of rational closure of a knowledge base K considered so far only ex-
ploits the ABox (and, in particular, the typicality assertions T(C)(a) in the ABox) to de-
termine the exceptionality of concepts and hence to build the sequence TBox0,TBox1,
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. . . ,TBoxn of subsets of TBox required to define T Box, and to reason about concept
inclusions. We address the question of the ABox by first considering the semantic as-
pect, in order to treat individuals explicitly mentioned in the ABox in a uniform way
with respect to the other domain elements: as for all the domain elements we would
like to attribute to each individual constant named in the ABox the lowest possible
rank. So we further refine Definition 25 by taking into account the interpretation of
individual constants of the ABox: given two minimal canonical models M and M′,
we will prefer M to M′ if there is an individual constant b occurring in ABox such
that kM(bI) < kM(bI′ ) (whereas kM(aI) ≤ kM(aI′ ) for all other individual constants
occurring in ABox).

Definition 26 (Minimal canonical model of K minimally satisfying ABox). Given
K=(TBox,ABox), letM =〈∆, <, I〉 andM′ = 〈∆′, <′, I′〉 be two canonical models of
K which are minimal with respect to Definition 25. We say thatM is preferred toM′

with respect to ABox, and we write M <ABox M
′, if, for all individual constants a

occurring in ABox, it holds that kM(aI) ≤ kM′ (aI′ ) and there is at least one individual
constant b occurring in ABox such that kM(bI) < kM′ (bI′ ).

As a consequence of Theorem 7 we prove the following:

Theorem 10. For any K = (T Box, ABox) there exists a finite minimal canonical model
of K minimally satisfying ABox.

Proof. Observe that, as a consequence of Theorem 7, a finite minimal canonical model
M of K (with respect to TBox) exists. In this model the rank of each element is finite
(hence for each individual constant a, kM(aI) is finite). IfM is not minimally satisfying
ABox, then there must be a canonical model M1 such that M1 <ABox M, i.e., such
that: kM1 (aI1 ) ≤ kM(aI) for all individual constants a of ABox, and for some individual
constant b1 occurring in ABox kM1 (bI1

1 ) < kM(bI
1). In turn, if M1 is not minimally

satisfying ABox, there must be a canonical modelM2, such thatM2 <ABox M1, i.e.,
such that: kM2 (aI2 ) ≤ kM1 (aI1 ) for all individual constants a of ABox, and for some
individual constant b2 occurring in ABox kM2 (bI2

2 ) < kM1 (bI1
2 ). And so on. Observe

that the number of individual constants of ABox is finite, as well as the rank associated
to each constant in each model in the chain. Hence, any descending chain of models in
the relation <ABox must be finite, and a minimal canonical model minimally satisfying
ABox exists.

In order to see the power of the above semantic notion, consider the standard birds and
penguins example.

Example 12. Suppose we have a knowledge base K where TBox = {T(Bird) v Fly,
T(Penguin) v ¬Fly, Penguin v Bird}, and ABox = {Penguin(pio), Bird(tweety)}.
Knowing that tweety is a bird and pio is a penguin, we would like to be able to as-
sume, in the absence of other information, that tweety is a typical bird, whereas pio is a
typical penguin, and therefore tweety flies whereas pio does not. Consider any minimal
canonical modelM of K. Being canonical,M will contain, among other elements, the
following:
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• x ∈ (Bird)I , x ∈ (Fly)I , x ∈ (¬Penguin)I , kM(x) = 0;

• y ∈ (Bird)I , y ∈ (¬Fly)I , y ∈ (¬Penguin)I , kM(y) = 1;

• z ∈ (Penguin)I , z ∈ (Bird)I , z ∈ (¬Fly)I , kM(z) = 1;

• w ∈ (Penguin)I , w ∈ (Bird)I , w ∈ (Fly)I , kM(w) = 2;

Notice that, in the definition of minimal canonical model, there is no constraint on
the interpretation of the ABox constants tweety and pio. As far as Definition 25 is
concerned, for instance, tweety can be mapped onto x, that is to say tweetyI = x,
or onto y, i.e. tweetyI = y: the minimality of M with respect to Definition 25 is
not affected by this choice. However in the first case it would hold that tweety is a
typical bird, in the second tweety is not a typical bird. We want to prefer the first
case, and this is what derives from Definition 26: if inM tweetyI = x whereas inM1
(which for the rest is identical to M) it holds that tweetyI = y, then M is preferred
to M1. Similarly for pio. As a result, in all models of K, minimal with respect to
both TBox and ABox (Definition 26), it holds what we wanted: that tweety is a typical
bird, i.e. T(Bird)(tweety), and therefore it flies, whereas pio is a typical penguin, i.e.
T(Penguin)(pio), and therefore it does not fly.

Our purpose is to give an algorithmic construction that we call rational closure of
the ABox, which captures entailment determined by minimal canonical models of the
ABox. The idea is that of considering all the possible minimal consistent assignments
of ranks to the individuals explicitly named in the ABox. Each assignment adds some
properties to named individuals which can be used to infer new conclusions. We adopt
a skeptical view of considering only those conclusions which hold for all assignments.
The equivalence with the semantics shows that the minimal entailment captures a skep-
tical approach when reasoning about the ABox.

More formally, in order to calculate the rational closure of ABox, written ABox,
for all individual constants of the ABox we find which is the lowest possible rank they
can have in minimal canonical models with respect to Definition 25: the idea is that an
individual constant ai can have a given rank k j(ai) just in case it is compatible with all
the inclusions of the TBox that do not contain the T operator or that have a T(C) on the
left side with C’s rank ≥ k j(ai) ( the inclusions whose antecedent C’s rank is < k j(ai)
do not matter since, in the minimal canonical model, there will be an instance of C with
rank < k j(ai) and therefore ai will not be a typical instance of C). The minimal possible
rank assignment k j for all ai is computed in the algorithm below: µ j

i computes all the
concepts that ai would need to satisfy in case it had the rank k j(ai). The algorithm
verifies whether µ j

i is compatible with (TBox, ABox) and whether it is minimal. Notice
that, in this phase, all constants are considered simultaneously (indeed, the possible
ranks of different individual constants depend on each other, as Example 14 below
shows). For this reason, µ j (which is the union of all µ j

i for all ai) takes into account
the ranks attributed to all individual constants. Examples 13 and 14 below illustrate the
use of the algorithm.

Definition 27 (ABox: rational closure of ABox). Let a1, . . . , am be the individuals ex-
plicitly named in the ABox. Let k1, k2, . . . , kh be all the possible rank assignments
(ranging from 1 to n, for n in Proposition 14) to the individuals occurring in ABox.
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• Given a rank assignment k j we define:

– for each ai: µ
j
i = {(¬C t D)(ai) s.t. C,D ∈ S, T(C) v D in TBox, and

k j(ai) = rank(C)} ∪ {(¬C t D)(ai) s.t. C v D in TBox};

– let µ j = µ
j
1 ∪ . . . ∪ µ

j
m for all µ j

1 . . . µ
j
m just calculated for all a1, . . . , am in

the ABox

• We say that k j is consistent with (TBox, ABox) if:

– if T(C)(ai) ∈ ABox, then k j(ai) = rank(C);

– TBox ∪ ABox ∪ µ j is consistent inALC + TR;

• We say that k j is minimal and consistent with (TBox, ABox) if k j is consistent
with (TBox, ABox) and there is no ki consistent with (TBox, ABox) s.t. for all
ai, ki(ai) ≤ k j(ai) and for some b, ki(b) < k j(b).

• The rational closure of ABox (ABox) is the set of all assertions derivable in
ALC+ TR from TBox ∪ ABox ∪ µ j for all minimal consistent rank assignments
k j, i.e:

ABox =
⋂

k jminimal consistent{C(a) : TBox ∪ ABox ∪ µ j |=ALC+TR C(a)}

Before we provide soundness and completeness of the algorithm, let us illustrate its
use by the two following examples. The first example is the syntactic counterpart of
the semantic Example 12 above.

Example 13. Consider the standard penguin example. Let K = (TBox, ABox), where
TBox = {T(Bird) v Fly,T(Penguin) v ¬Fly,Penguin v Bird}, and ABox = {Penguin(pio),
Bird(tweety)}.

Computing the ranking of concepts we get that rank(Bird) = 0, rank(Penguin) = 1,
rank(Birdu¬Fly) = 1, rank(PenguinuFly) = 2. It is easy to see that a rank assignment
k0 with k0(pio) = 0 is inconsistent with K as µ0 would contain (¬Penguint Bird)(pio),
(¬Bird t Fly)(pio), (¬Penguin t ¬Fly)(pio) and Penguin(pio). Thus we are left with
only two ranks k1 and k2 with respectively k1(pio) = 1, k1(tweety) = 0 and k2(pio) =

k2(tweety) = 1.
The set µ1 contains, among the others, (¬Penguin t ¬Fly)(pio) , (¬Bird t

Fly)(tweety). It is tedious but easy to check that K ∪ µ1 is consistent and that k1 is
the only minimal consistent assignment (being k1 preferred to k2), thus both ¬Fly(pio)
and Fly(tweety) belong to ABox.

Example 14. This example shows the need of considering multiple ranks of individual
constants: normally computer science courses (CS ) are taught only by academic mem-
bers (A), whereas business courses (B) are taught only by consultants (C), consultants
and academics are disjoint, this gives the following TBox: T(CS ) v ∀taught.A, T(B) v
∀taught.C, C v ¬A. Suppose the ABox contains: CS (c1), B(c2), taught(c1, joe),
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taught(c2, joe) and let K= (TBox, ABox). Computing the rational closure of TBox, we
get that all atomic concepts have rank 0. Any rank assignment ki, with ki(c1) = ki(c2) =

0, is inconsistent with K since the respective µi will contain both (¬CSt∀taught.A)(c1)
and (¬B t ∀taught.C)(c2), from which both C( joe) and A( joe) follow, which gives an
inconsistency.

There are two minimal consistent ranks: k1, such that k1( joe) = 0, k1(c1) = 0, k1(c2) =

1, and k2, such that k2( joe) = 0, k2(c1) = 1, k2(c2) = 0. We have that ABox ∪ µ1 |=
A( joe) and ABox ∪ µ2 |= C( joe). According to the skeptical definition of ABox, nei-
ther A( joe), nor C( joe) belongs to ABox, however (A tC)( joe) belongs to ABox.

We are now ready to show the completeness and soundness of the algorithm with re-
spect to the semantic definition of rational closure of ABox.

Theorem 11 (Completeness of ABox). Given K=(TBox, ABox), for all individual con-
stants a in ABox, we have that if C(a) holds in all minimal canonical models of K
minimally satisfying ABox, then C(a) ∈ ABox.

Proof. We show the contrapositive. Suppose C(a) < ABox, i.e. there is a minimal k j

consistent with (TBox, ABox) s.t. TBox ∪ ABox ∪ µ j 6|=ALC+TR C(a). This means that
there is anM′ = 〈∆′, <′, I′〉 such that for all ai ∈ ABox, kM′ (ai) = k j(ai),M′|=ALC+TR

TBox ∪ ABox ∪ µ j and M′ 6|=ALC+TR C(a). We build a minimal canonical model
M =〈∆, <, I〉 of K, minimally satisfying ABox and such that C(a) does not hold in
M as follows. Since we do not know whether M′ is minimal or canonical, we can-
not use it directly; rather, we only use it as a support to the construction of M. In
particular we use it for the following ∆1 component of M concerning the individu-
als explicitly named in ABox. Let ∆ = ∆1 ∪ ∆2 where ∆1 = {ai : ai in ABox } and
∆2 = {{C1, . . . ,Ck} ⊆ S: {C1, . . . ,Ck} is maximal consistent with K and T does not
occur in {C1, . . . ,Ck}}. Notice that ∆2 is necessary to make the model canonical. We
define the rank kM of each domain element as follows: for ∆1, kM(ai) = k j(ai), and
for ∆2, kM({C1, . . . ,Ck}) = rank(C1 u . . . u Ck). We then define < in the obvious way:
x < y if and only if kM(x) < kM(y).

We then define I as follows. First, for all ai in ABox we let aI
i = ai. For the

interpretation of concepts we reason in two different ways for ∆1 and ∆2. For ∆1, we
useM′: for all atomic concepts C′, we let ai ∈ C′I inM if (ai)I′ ∈ C′I

′

inM′. For ∆2,
for all atomic concepts C′, we let {C1, . . . ,Ck} ∈ C′I if and only if C′ ∈ {C1, . . . ,Ck}. I
then extends to boolean combinations of concepts in the usual way.

In order to conclude the model’s construction, for each role R, we define RI as
follows. For ai, a j ∈ ∆1, (ai, a j) ∈ RI if and only if ((ai)I′ , (a j)I′ ) ∈ RI′ in M′. For
X,Y ∈ ∆2, (X,Y) ∈ RI if and only if {C′: ∀R.C′ ∈ X} ⊆ Y .

For ai ∈ ∆1, X ∈ ∆2, (ai, X) ∈ RI if and only if there is an x ∈ ∆′ ofM′ such that
(aI′

i , x) ∈ RI′ inM′ and, for all concepts C′, we have x ∈ C′I
′

if and only if X ∈ C′I .
I is extended to quantified concepts in the usual way.
By definition of RI and of I, it follows that for all X ∈ ∆2, X ∈ ∀R.CI iff ∀R.C ∈ X.

Also, by maximality and consistency of X, for all X ∈ ∆2, X ∈ ∃R.CI iff ∃R.C ∈ X,
as can be easily verified. If X ∈ ∃R.CI , then by what just stated, ∀R.¬C < X, and by
maximality of X, ∃R.C ∈ X. For the other direction, if ∃R.C ∈ X then by consistency
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of X ∀R.¬C < X, hence by what just stated, X < ∀R.¬CI , and therefore X ∈ ∃R.CI . For
ai ∈ ∆1, it obviously holds that ai ∈ ∀R.CI iff ai ∈ ∀R.CI′ inM′.

We first consider the TBox. M satisfies TBox: for elements ai ∈ ∆1, for the
inclusion Cl v C j ∈ TBox, if T does not occur in Cl this obviously follows from
definition of I since it holds in M′. For T(Cl) v C j, for all ai we reason as follows.
First of all, if k j(ai) > rank(Cl) then ai < Min<(Cl

I) and the inclusion trivially holds. On
the other side, if k j(ai) = rank(Cl), (¬CltC j)(ai) ∈ µ j, and therefore (ai)I′ ∈ (¬CltC j)I′

in M′, hence (ai)I ∈ (¬Cl t C j)I in M. Last, if k j(ai) < rank(Cl), by Proposition 12
(forM′) then ai < (Cl)I , and we are done.

For the elements X ∈ ∆2: let Cl v C j ∈ TBox. If X < (Cl)I the property trivially
holds. Let X ∈ (Cl)I , i.e. Cl ∈ X. We show that X ∈ (C j)I . We consider two
cases: either Cl is different from T(C′) or Cl is T(C′). Let us consider the first case.
Suppose, for a contradiction, that X < (C j)I and, hence, C j < X. As X = {C1, . . . ,Ck} is
consistent with K, K 6|=ALC+TR C1 u . . .uCn v ⊥. As C j < X and X is maximal among
the consistent sets of concepts in S, K |=ALC+TR C1 u . . . u Cn u C j v ⊥. Therefore,
K |=ALC+TR C1 u . . . u Cn v ¬C j. But, from the fact that Cl v C j ∈ TBox and Cl ∈ X,
we get K |=ALC+TR C1 u . . . u Cn v C j. A contradiction. Let us consider the case
that Cl is T(C′). Since X ∈ (T(C′))I also X ∈ C′I and by inductive hypothesis C′ ∈ X.
We reason by contradiction: suppose C j < X, hence ¬C j ∈ X. Since T(C′) v C j ∈

TBox, it can be easily verified that rank(C′ u¬C j) > rank(C′). Consider an Y ∈ ∆2 s.t.
C′ ∈ Y and rank(Y) = rank(C′) (by Proposition 13 this Y exists). Hence by definition
of kM, kM(X) > kM(Y) = kM(C), which contradicts the possibility that X ∈ Min(C′)I ,
and hence that X ∈ (T(C′))I . Also in this case we can conclude that C j ∈ X. Notice
that by what said above about quantified concepts, this also holds in case Ci or C j are
quantified.

Furthermore,M is a minimal canonical model: it is canonical by construction. It is
minimal with respect to Definition 23: for all X ∈ ∆2, we have that kM(X) is the lowest
possible rank it can have in any model (by Proposition 13).

We now consider the ABox. M satisfies ABox by definition of I and since M′

satisfies it. This is obvious for ABox assertions that do not contain the T operator. If
T(C)(ai) ∈ ABox, then by the algorithm k j(ai) = kM(ai) = rank(C). By Proposition
13, and sinceM is minimal and canonical, we know that rank (C)= kM(C), therefore
(ai)I ∈ Min<(CI) andM satisfies T(C)(ai).

Last,M minimally satisfies ABox. This follows by minimality of k j. Suppose for
a contradiction that there is another canonical modelM′ = 〈∆′, <′, I′〉 of K such that
M′ <ABox M, for all ai kM′ (ai) ≤ kM(ai), and for at least one b, kM′ (b) < kM(b).
Consider k j′ , the rank assignment corresponding toM′ (s.t. for all ai ∈ ABox, k j′ (ai) =

kM′ (ai)I′ ). Clearly k j′ threatens the minimality of k j. FurthermoreM′ |=ALC+TR TBox
∪ ABox ∪ µ j′ : it satisfies TBox ∪ ABox because it is a model of K. It satisfies µ j′ :
for the inclusions without the T operator this is obvious. Let ai ∈ ABox, and let
T(C) v D with rank C ≥ k j′ (ai). It clearly holds that (ai)I′ ∈ (¬C t D)I′ in M′:
indeed if rank(C) > k j′ (ai), then by Proposition 13 (ai)I′ ∈ (¬C)I′ . On the other hand,
if rank(C) = k j′ (ai) always by Proposition 13, ai ∈ min(C)I′ , and since by hypothesis
M′ satisfies TBox, also ai ∈ (D)I′ . However, if all this holds, this contradicts the
hypothesis that k j is a minimal consistent assignment. Therefore, TBox ∪ ABox ∪ µ j′

is consistent inALC+ TR, which contradicts the minimality of k j. It follows that such
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M′ cannot exist, and thereforeM minimally satisfies ABox.
Last, C(a) does not hold inM, since it does not hold inM′.
We have then built a minimal canonical model of K minimally satisfying ABox in

which C(a) does not hold. The theorem follows by contraposition.

Theorem 12 (Soundness of ABox). Given K=(TBox, ABox), for each individual con-
stant a in ABox, we have that if C(a) ∈ ABox then C(a) holds in all minimal canonical
models of K minimally satisfying ABox.

Proof. Let C(a) ∈ ABox, and suppose for a contradiction that there is a minimal canon-
ical model M of K minimally satisfying ABox s.t. C(a) does not hold in M. Con-
sider now the rank assignment k j corresponding to M (such that k j(ai) = kM(ai)). if
T(C)(ai) ∈ ABox, then k j(ai) = kM(C) = rank(C) (by Proposition 13). k j is clearly
minimal. Suppose it was not so, and there was a k j′ such that for all ai k j′ (ai) ≤ k j(ai),
and for some al, k j′ (al) < k j(al). By repeating the same construction in the proof of
Theorem 11, there is a minimal canonical modelM′ of K minimally satisfying ABox
such that k j′ (ai) = kM′ (ai), therefore M′ <ABox M, against the hypothesis of mini-
mality of M. Clearly M |=ALC+TR µ j. Indeed, for all ai let (¬C t D)(ai) ∈ µ

j
i . We

distinguish two cases. If (¬C t D)(ai) has been introduced in µ j
i because of a C v D

in TBox, clearly ai
I ∈ (¬C t D)I . If (¬C t D)(ai) has been introduced in µ j

i because
of a T(C) v D in TBox: if ai

I ∈ (¬C)I clearly (¬C t D)(ai) holds inM. On the other
hand, if ai

I ∈ (C)I : by hypothesis rank(C) = k j(ai) hence by the correspondence be-
tween rank of a formula in the rational closure and in minimal canonical models (see
Proposition 13) also kM(C) = kM(ai

I), but since ai
I ∈ (C)I , kM(C) = kM(ai

I), therefore
ai

I ∈ (T(C))I . By definition of µi, and since by Theorem 8,M |=ALC+TR TBox, D(ai)
holds inM and therefore also ai

I ∈ (¬CtD)I . Furthermore by hypothesisM |=ALC+TR

ABox.
Since by hypothesisM 6|=ALC+TR C(a), it follows that TBox ∪ABox ∪ µ j 6|=ALC+TR

C(a), and by definition of ABox, C(a) < ABox, against the hypothesis.
The theorem follows by contraposition.

Let us conclude this section by estimating the complexity of computing the rational
closure of the ABox:

Theorem 13 (Complexity of rational closure over the ABox). Given a knowledge base
K =(TBox,ABox), an individual constant a and a concept C, the problem of deciding
whether C(a) ∈ ABox is EXPTIME-complete.

Proof. Let |K| be the size of the knowledge base K and let the size of the query be
O(|K|). As the number of inclusions in the knowledge base is O(|K|), then the number
n of non-increasing subsets Ei in the construction of the rational closure is O(|K|).
Moreover, the number k of named individuals in the knowledge base is O(|K|). Hence,
the number kn of different rank assignments to individuals is such that both k and n are
O(|K|). Observe that kn = 2Log kn

= 2nLog k. Hence, kn is O(2nk), with n and k linear in
|K|, i.e., the number of different rank assignments is exponential in |K|.

To evaluate the complexity of the algorithm for computing the rational closure of
the ABox, observe that:
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(i) For each j, the number of sets µ j
i is k (which is linear in |K|). The number of inclu-

sions in each µ j
i is O(|K|2), as the size of S is O(|K|) and the number of T-inclusions

T(C) v D ∈ TBox, with C,D ∈ S is O(|K|2), while the number of T-inclusions
C v D ∈ TBox is O(|K|). Hence, the size of set µ j is O(|K|3).
(ii) For each k j, the consistency with (TBox, ABox) can be verified by checking the
consistency of TBox ∪ABox ∪ µ j inALC+TR, which requires exponential time in the
size of the set of formulas TBox ∪ ABox ∪ µ j (which, as we have seen, is polynomial
in the size of K). Hence, the consistency of each k j can be verified in exponential time
in the size of K.
(iii) The identification of the minimal assignments k j among the consistent ones re-
quires the comparison of each consistent assignment with each other (i.e. k2n com-
parisons), where each comparison between k j and k j′ requires k steps. Hence, the
identification of the minimal assignments requires k × k2n steps, i.e. a number of steps
exponential in |K|.
(iv) To define the rational closure ABox of ABox, for each concept C occurring in
K or in the query (there are O(|K|) many concepts), and for each named individual
ai, we have to check if C(ai) is derivable in ALC + TR from TBox ∪ ABox ∪ µ j

for all minimal consistent rank assignments k j. As the number of different minimal
consistent assignments k j is exponential in |K|, this requires an exponential number of
checks, each one requiring exponential time in the size of the knowledge base |K|. The
cost of the overall algorithm is therefore exponential in the size of the knowledge base.
Completeness comes from the complexity of the underlying ALC + TR, as stated in
Theorem 5.

4. Conclusions and Related works

In the first part of the paper we have provided a semantic reconstruction of the well
known notion of propositional rational closure. We have provided two minimal model
semantics, based on the idea that preferred rational models are those in which the rank
of the worlds is minimized. We have then shown that when adding suitable possibility
assumptions to a knowledge base, these two minimal model semantics correspond to
rational closure.

The correspondence between the proposed minimal model semantics and rational
closure suggests the possibility of defining variants of rational closure by varying the
three ingredients underlying our approach, namely: (i) the properties of the prefer-
ence relation <: for instance just preorder, or multi-linear or weakly-connected; (ii) the
comparison relation on models: based for instance on the rank of the worlds or on the
inclusion between the relations <, or on a special kind of formulas satisfied by a world,
as in the logic Pmin [? ]; (iii) the choice between fixed or variable interpretations. The
systems obtained by various combinations of the three ingredients are largely unex-
plored and may give rise to useful nonmonotonic logics.

In the second part of the paper we have defined a rational closure construction
for the Description Logic ALC extended with a typicality operator and provided a
minimal model semantics for it based on the idea of minimizing the rank of objects in
the domain, that is their level of “untypicality”. This semantics corresponds to a natural
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extension to DLs of Lehmann and Magidor’s notion of rational closure. We have also
extended the notion of rational closure to the ABox, by providing an algorithm for
computing it that is sound and complete with respect to the minimal model semantics.
Last, we have shown an EXPTIME upper bound for the algorithm. The work presented
in this paper is an extension of the work in [? ] and in [? ].

In another direction, we aim to develop a generalization of the notion of rational
closure introduced in this paper and of its minimal model semantics to deal with more
expressive DLs and, in particular, with DLs which do not enjoy the finite model prop-
erty, such as ALCOIQ and SHOIQ, for which the notion of canonical model as
introduced in this paper appears to be too strong.

As far as rational closure is concerned, it is worth noticing that rational closure for
Description Logics inherits both the virtues and the weakness of propositional rational
closure. We have already said about the strengths, among which there are the good
computational properties. For what concerns the weaknesses, rational closure does not
allow to separately reason about the inheritance of different properties. For instance,
in the classical birds and penguins example, rational closure does not allow to reason
in this way: penguins inherit all typical properties of birds, except those for which we
know they are an exception (as the property of flying). On the contrary, once penguins
are recognized as non typical birds, no inheritance of typical properties is possible. In
order to solve this problem, a strengthening of a rational closure-like algorithm with
defeasible inheritance networks has been studied by [? ].

In future work, we aim to explore possible strengthening of the notion of rational
closure at the semantic level, to overcome the weaknesses mentioned above. One pos-
sible direction we briefly discuss here, could be to “relativize” the notion of typicality
enforced by the semantics. In order to achieve this, we aim to refine the semantics by
considering models equipped with multiple preference relations, whence with multi-
ple “typicality” operators. In this variant, it should be possible to distinguish different
aspects of typicality/exceptionality and consequently to avoid the “all or nothing” be-
havior of rational closure with respect to property inheritance. For the time being, we
just notice that in order to make this variant interesting and meaningful, one should
deal with issues like: what does differentiate one preference relation from another?
What are the dependencies between different preference relations? Can different pref-
erence relations or (syntactically) different typicality operators be combined? All these
issues require a suitable analysis/understanding which is preliminary to the technical
development. Furthermore, one should also study an algorithmic counterpart of this
semantics, that is to say, a suitable reformulation of the rational closure mechanism,
with the hope of keeping a reasonable complexity.

In [? ? ] nonmonotonic extensions of DLs based on the T operator have been pro-
posed. In these extensions, the semantics of T is based on preferential logic P. Non-
monotonic inference is obtained by restricting entailment to minimal models, where
minimal models are those that minimize the truth of formulas of a special kind. In this
work, we have presented an alternative approach. First, the semantics underlying the
T is R. Moreover and more importantly, we have adopted a minimal model seman-
tics, where, as a difference with the previous approach, the notion of minimal model
is completely independent from the language and is determined only by the relational
structure of models.
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Casini and Straccia in [? ] develop a notion of rational closure for DLs. They pro-
pose a construction to compute the rational closure of anALC knowledge base, which
is not directly based on Lehmann and Magidor definition of rational closure [? ], but
is similar to the construction of rational closure proposed by Freund in [? ] for the
propositional calculus. [? ] keeps the ABox into account, and defines closure opera-
tions over individuals. It introduces a consequence relation  among a knowledge base
K and assertions, under the requirement that the TBox is unfoldable and the ABox is
closed under completion rules, such as, for instance, that if a : ∃R.C ∈ABox, then both
aRb and b : C (for some individual constant b) must belong to the ABox, too. Under
such restrictions, a procedure is defined to compute the rational closure of the ABox,
assuming that the individuals explicitly named are linearly ordered, and different orders
determine different sets of consequences. The authors show that, for each order s, the
consequence relation s is rational and can be computed in PSPACE. In a subsequent
work [? ? ], the authors introduce an approach based on the combination of rational
closure and Defeasible Inheritance Networks (INs). The authors first develop their ap-
proach at a propositional level, then they extend it to DLs, addressing both TBox and
ABox reasoning. The resulting construction is a nonmonotonic mechanism enjoying
the logical properties of rational entailment, but not suffering from the “all-or- noth-
ing” behavior with respect to inheritance of defeasible properties. The nonmonotonic
mechanism proposed by the authors corresponds to an algorithm to compute infer-
ences, however, as a difference with our proposal, no declarative characterization of
those inferences is provided. To overcome the limitations of rational closure, in [? ]
Casini and Straccia also define a notion of lexicographic closure forALC.

In [? ] a semantic characterization of a variant of the notion of rational closure
introduced in [? ] has been presented, which is based on a generalization to ALC of
our semantics in [? ]. In [? ], defeasible subsumption statements have the form C @˜ D
and typicality assertions are not allowed in the ABox, which is defined as a standard
ALC ABox. As we have seen, in this paper the presence of typicality assertions in
the ABox may force some typicality inclusion not to hold, which is similar to allowing
negated conditionals in KLM logics. While the minimal model semantics naturally
deals with the presence of typicality assertions, the presence of typicality assertions in
the ABox has to be taken into account, as we have done, in the definition of rational
closure of the TBox and of the ABox.

A further difference of our construction with those in [? ? ] is in the notion of
exceptionality: our definition of exceptionality exploits preferential entailment, while
[? ? ] directly use entailment in ALC over a materialization of the knowledge base.
We have seen in Section 3.2 that we cannot replace entailment inALC + TR by entail-
ment inALC over a materialization of the knowledge base. However, when typicality
assertions are not allowed in the ABox, our notion of rational closure for TBox can be
computed in ALC by defining a linear encoding of ALC + TR entailment into ALC
(the encoding is exactly the same as the one provided in [? ] for encoding ofSHIQRT
entailment into SHIQ).

A related approach can be found in [? ]. The basic idea of their semantics for the
propositional case is similar to ours: to consider models of the K where the rank of
each world is as small as possible. This idea has its roots in the work by Pearl [? ]
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and by Lehmann and Magidor [? ]. The construction of [? ] differs from ours as the
very notion of model is different (although equivalent): a model is a sequence of sets
of “atoms” (conjunctions of literals for every propositional variable). Each set of the
sequence represents a set of worlds with the same ranking. A unique model of the ra-
tional closure is then defined by considering all models of the K and by taking for each
level, starting from the bottom one, the union of the worlds (not already considered) at
that level. This construction corresponds to building a model where each world has a
minimal rank. In contrast, we proceed in a different way: our semantics is defined in
terms of standard Kripke models where the rank is given by the preference (or accessi-
bility) relation, and models of the rational closure are defined as the minimal ones with
respect to a comparison relation on models. Our presentation is then more abstract and
declarative than the one proposed in [? ], whilst theirs is more “operational”, as it relies
on a specific representation of models and it provides a recipe to build a model of the
rational closure, rather than a characterization of its properties.

The logicALC+TR we consider as our base language is equivalent to the logic for
defeasible subsumptions in DLs proposed by [? ]. At a syntactic level the two logics
differ, so that in [? ] one finds the defeasible inclusions C @˜ D instead of T(C) v D of
ALC + TR, however it has be shown in [? ] that the logic of defeasible subsumption
can be translated intoALC + TR by replacing C @˜ D with T(C) v D.

In [? ] the semantics of the logic of defeasible subsumptions is strengthened by a
preferential semantics. Intuitively, given a TBox, the authors first introduce a prefer-
ence ordering� on the class of all subsumption relations @˜ including TBox, then they
define the rational closure of TBox as the most preferred relation @˜ with respect to�,
i.e. such that there is no other relation @˜′ such that TBox ⊆ @˜′ and @˜′ � @˜. Fur-
thermore, the authors describe an EXPTIME algorithm in order to compute the rational
closure of a given TBox. [? ] does not address the problem of dealing with the ABox.
In [? ] a plug-in for the Protégé ontology editor implementing the mentioned algorithm
for computing the rational closure for a TBox for OWL ontologies is described.

Recent works discuss the combination of open and closed world reasoning in DLs.
In particular, formalisms have been defined for combining DLs with logic program-
ming rules (see, for instance, [? ] and [? ]). A grounded circumscription approach for
DLs with local closed world capabilities has been defined in [? ].
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Appendix: an alternative semantics forALC + TR

An alternative semantic characterization of T can be given by means of a set of postu-
lates that are essentially a reformulation of axioms and rules of nonmonotonic entail-
ment in rational logic R: in this respect, the T-assertion T(C) v D is equivalent to the
conditional assertion C |∼ D in R5. Given a domain ∆ and a valuation function I, one
can define the function fT(S ) for S ⊆ ∆ that selects the typical instances of S , and in
case S = CI for a concept C, it selects the typical instances of C. In this semantics,
we define (T(C))I = fT(CI), and fT has the intuitive properties for all subsets S of ∆ of
Definition 28 below:

Definition 28 (Semantics of T with selection function). A model is any structure

〈∆, fT, I〉

where:

• ∆ is the domain;

• fT : Pow(∆) 7−→ Pow(∆) is a function satisfying the following properties (given
S ⊆ ∆):

( fT − 1) fT(S ) ⊆ S
( fT − 2) if S , ∅, then also fT(S ) , ∅
( fT − 3) if fT(S ) ⊆ R, then fT(S ) = fT(S ∩ R)
( fT − 4) fT(

⋃
S i) ⊆

⋃
fT(S i)

( fT − 5)
⋂

fT(S i) ⊆ fT(
⋃

S i)
( fT − R) if fT(S ) ∩ R , ∅, then fT(S ∩ R) ⊆ fT(S )

• I is the extension function that maps each extended concept C to CI ⊆ ∆, and
each role R to RI ⊆ ∆ × ∆ as follows:

– I maps each role R ∈ R to its extension RI ;

– I maps each atomic concept A ∈ C to its extension AI ;

– I is extended to complex concepts in the usual way for constructors in
ALC, whereas for (T(C)) is as follows:

∗ (T(C))I = fT(CI)

( fT − 1) enforces that typical elements of S belong to S . ( fT − 2) enforces that if there
are elements in S , then there are also typical such elements. ( fT − 3) expresses a weak
form of monotonicity, namely cautious monotonicity. The next properties constraint
the behavior of fT with respect to ∩ and ∪ in such a way that they do not entail mono-
tonicity. Last, ( fT − R) corresponds to rational monotonicity, and forces again a form

5This can be easily proven given Proposition 5.1 of [? ] that shows the equivalence between the weaker
logic ALC + T in which fT satisfies ( fT − 1) − ( fT − 5) above but does not satisfy ( fT − R) and the KLM
logic P which is weaker than R.
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of monotonicity: if there is a typical S having the property R, then all typical S -and-Rs
inherit the properties of typical S s.

The following representation theorem shows that the above semantics forALC+TR

in Definition 28 is equivalent to the one in Definition 13.
First of all, we need to recall Lemma 2.1 in [? ]:

Lemma 1 (Lemma 2.1 in [? ], page 5). If fT satisfies ( fT − 1) − ( fT − 5), then fT(S ∪
R) ∩ S ⊆ fT(S ).

Now we are able to prove the representation theorem:

Theorem 14. A knowledge base is satisfiable in an ALC + TR model described in
Definition 13 if and only if it is satisfiable in a modelM = 〈∆, fT, I〉 where fT satisfies
( fT − 1) − ( fT − 5) and ( fT − R), and (T(C))I = fT(CI).

Proof. Here we only consider the property ( fT −R). For the other properties, we refer
to the proof of the Representation Theorem forALC+T, as presented in [? ], Theorem
2.1, page 5. The only if direction is trivial and left to the reader. For the if direction, as
in [? ], we define the < relation as follows:

• for all x, y ∈ ∆, we let x < y if ∀S ⊆ ∆, if y ∈ fT(S ), then (a) x < S and (b)
∃R ⊆ ∆ such that S ⊂ R and x ∈ fT(R).

Notice that given ( fT − R), this condition is equivalent to the simplified condition that
only contains (a). Indeed, if (a) holds, it follows that also (b) holds. To be convinced,
take any S such that y ∈ fT(S ), and x < S . We show that x ∈ fT(S ∪ {x}), hence (b)
holds. For a contradiction, suppose x < fT(S ∪ {x}), then by ( fT − 1) and ( fT − 2),
fT(S ∪ {x}) ∩ S , ∅, and by ( fT −R), fT(S ) = fT((S ∪ {x}) ∩ S ) ⊆ fT(S ∪ {x}). Hence,
y ∈ fT(S ∪ {x}), which contradicts (a), given that x ∈ S ∪ {x}. Therefore, we will
consider the simplified definition of <:

• for all x, y ∈ ∆, we let x < y if ∀S ⊆ ∆, if y ∈ fT(S ), then x < S .

We then show that if fT satisfies ( fT − R), then < is modular. Let x < y. Consider
z and suppose z ≮ y. This means that there is R such that y ∈ fT(R), and z ∈ R We
reason as follows. First, notice that by Lemma 1, y ∈ fT({y, z}) (given that y, z ∈ R,
y ∈ fT(R ∪ {y, z}) ∩ {y, z}, hence y ∈ fT({y, z})). In order to show that < is modular, we
want to show that x < z. For a contradiction, suppose that x ≮ z. Then there is Z such
that z ∈ fT(Z) and x ∈ Z. Consider Z∪{y, z}, by ( fT−1), fT(Z∪{y, z}) ⊆ Z∪{y, z}, and by
( fT −2), fT(Z∪{y, z}) , ∅. Hence, either fT(Z∪{y, z})∩Z , ∅ or fT(Z∪{y, z})∩Z = ∅,
and fT(Z ∪ {y, z}) ∩ {y, z} , ∅. In the last case, y ∈ fT(Z ∪ {y, z}). In the first case,
by ( fT − R), fT(Z) = fT((Z ∪ {y, z}) ∩ Z) ⊆ fT(Z ∪ {y, z}), hence z ∈ fT(Z ∪ {y, z}).
From this, we derive that fT(Z ∪ {y, z}) ∩ {y, z} , ∅, hence, by ( fT − R), fT({y, z}) =

fT((Z ∪ {y, z}) ∩ {y, z}) ⊆ fT(Z ∪ {y, z}), and y ∈ fT(Z ∪ {y, z}). In both cases, we have
that y ∈ fT(Z ∪ {y, z}), however this is impossible, given that x ∈ Z ∪ {y, z} and x < y.
We therefore conclude that if z ≮ y, then x < z, hence modularity holds.
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