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Abstract: Extracellular vesicles (EVs) are promising therapeutic tools in the treatment of cardiovas-

cular disorders. We have recently shown that EVs from patients with Acute Coronary Syndrome 

(ACS) undergoing sham pre-conditioning, before percutaneous coronary intervention (PCI) were 

cardio-protective, while EVs from patients experiencing remote ischemic pre-conditioning (RIPC) 

failed to induce protection against ischemia/reperfusion Injury (IRI). No data on EVs from ACS 

patients recovered after PCI are currently available. Therefore, we herein investigated the cardio-

protective properties of EVs, collected after PCI from the same patients. EVs recovered from 30 

patients randomly assigned (1:1) to RIPC (EV-RIPC) or sham procedures (EV-naive) (NCT02195726) 

were characterized by TEM, FACS and Western blot analysis and evaluated for their mRNA con-

tent. The impact of EVs on hypoxia/reoxygenation damage and IRI, as well as the cardio-protective 

signaling pathways, were investigated in vitro (HMEC-1 + H9c2 co-culture) and ex vivo (isolated 

rat heart). Both EV-naive and EV-RIPC failed to drive cardio-protection both in vitro and ex vivo. 

Consistently, EV treatment failed to activate the canonical cardio-protective pathways. Specifically, 

PCI reduced the EV-naive Dusp6 mRNA content, found to be crucial for their cardio-protective 

action, and upregulated some stress- and cell-cycle-related genes in EV-RIPC. We provide the first 

evidence that in ACS patients, PCI reprograms the EV cargo, impairing EV-naive cardio-protective 

properties without improving EV-RIPC functional capability. 
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1. Introduction 

Acute Coronary Syndrome (ACS) refers to a spectrum of clinical presentations of is-

chemic heart disease (IHD) comprising unstable angina, non-ST-elevated myocardial in-

fraction (NSTEMI) and ST-elevated myocardial infraction and represents one of the major 

causes of death worldwide. The revascularization approach, particularly percutaneous 
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coronary intervention (PCI), is the backbone treatment option for ACS [1]. Indeed, reper-

fusion is vital to avoid the evolution of myocardial damage and to improve patients’ out-

comes. However, reperfusion per se can induce damage through a phenomenon denoted 

as ischemia/reperfusion injury (IRI), which may offset the benefits of percutaneous revas-

cularization [2]. IRI is the result of the activation of several damaging pathways, including 

oxidative stress [3,4], the increase in intracellular calcium [5], the restoration of the physi-

ological pH [6] and the inflammatory process [7]. This may translate into discrete func-

tional entities such as myocardial stunning, the no-reflow phenomenon, reperfusion ar-

rhythmias and lethal reperfusion injury [2]. Among these, the lethal reperfusion injury 

represents an additional inducer of cell death, distinct from the ischemic damage [8]. 

Therefore, the identification of new potential IRI targets is crucial to improve the benefits 

associated with the current treatment options in patients suffering from ACS. 

Cardio-protection refers to all feasible interventions that aim to attenuate myocardial 

injury in the setting of ischemia/reperfusion. The most relevant cardio-protective signal-

ing cascades include the Reperfusion Injury Salvage Kinase (RISK) (involving the activa-

tion of PI3K/AKT/MEK/Erk) [9–11] and the Survivor Activating Factor Enhancement 

(SAFE) (triggering the JAK/STAT-3) pathways [12–14]. Several strategies have been inves-

tigated to reduce IRI and, among them, remote ischemic pre-conditioning (RIPC) is in-

cluded [15]. The RIPC procedure, which consists in a series of brief cycles of ische-

mia/reperfusion (I/R) far from the heart (e.g., the arm), has been described as one of the 

most effective cardio-protective approaches [16–18]. 

Extracellular vesicles (EV) are small anuclear bilayered lipid membrane particles that 

are released by almost all cell types and are enriched in several bioactive molecules in-

cluding lipids, proteins, amino acids, mRNAs and miRNAs [19,20]. EVs can be classified, 

according to the International Society of Extracellular Vesicles (ISEV), as small EVs (less 

than 100 nm in diameter) and medium–large EVs (more than 100 nm in diameter) and can 

be isolated from many biological fluids, including blood and plasma [21]. They have been 

recognized as essential mediators of intercellular communication and their role is being 

increasingly documented in several pathophysiological settings and in cardiovascular dis-

eases [22–24]. In particular, it has been reported that both myocardial damage and reper-

fusion by coronary artery bypass surgery (CABG) drive changes in the mRNA and 

miRNA content of circulating EVs [25]. Ruf et al. [26] and Paganelli et al. [27] have also 

shown that serum-derived EVs, released by patients with cardiovascular disease, are en-

riched in A2A adenosine receptors. Moreover, it has recently been demonstrated that 

RIPC is able to increase the number of circulating EVs and alter their RNA signature in 

patients undergoing CABG [28,29]. We have recently reported that EVs collected before 

PCI are cardio-protective [30]. However, so far, no data on EV content and functional be-

havior have been reported in reperfused ACS patients undergoing RIPC or sham pre-con-

ditioning. 

It has been suggested that reperfusion boosts the ischemia damage in patients expe-

riencing PCI [2]. The aim of this study was to investigate whether and how EVs recovered 

after PCI from ACS patients affect reperfusion injury. For this purpose, in vitro (HMEC-1 

+ H9c2 co-culture) and ex vivo (isolated rat heart) approaches were performed using EVs 

recovered after PCI from ACS patients, randomized to receive RIPC or sham procedures. 

Moreover, EV cargo was also evaluated. Particular attention was devoted to the analysis 

of cardio-protective, stress-related and anti-apoptotic EV gene profiling. 

2. Results 

2.1. Clinical Features of Patients 

Of the 72 patients screened, 42 were excluded from the study, while 30 unstable an-

gina (UA; n = 12) and non-ST elevation myocardial infarction (NSTEMI; n = 18) patients 

were randomly allocated (1:1) to receive the sham or RIPC procedure (Figure 1). Since 
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patients included in this study were the same as described in D’Ascenzo et al. [30], pa-

tients’ clinical and procedural characteristics reported in Table 1 are unchanged (Table 1 

modified by D’Ascenzo et al. [30]). 

 

Figure 1. Clinical study protocol. Patients included in the trial were randomly assigned to the RIPC 

or sham procedure. EVs were isolated from serum samples after the PCI procedure. 
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Table 1. Patients’ clinical features at baseline. 

  Sham RIPC p Value 

GENDER Male 12 (80%) 10 (67%) 0.68 

 Female 3 (20%) 5 (33%)  

 Age 64  68 0.56 

 BMI 26.6 25.4 0.23 

COMORBIDITIES Hypertension 11 (73%)  11 (73%) 1.00 

 Smoking habit 10 (67%) 8 (53%) 0.74 

 Dyslipidemia 10 (67%) 7 (47%) 0.46 

 Previous AMI 7 (47%) 5 (33%) 0.71 

 CKD (eGFR < 30mL/min/m2) 4 (27%) 1 (7%) 0.33 

 Chronic heart failure 3 (20%) 1 (7%) 0.30 

 
Cerebral vascular  

disease 
2 (13%)  1 (7%) 0.50 

 
Previous cancer 0 3 (20%) 0.11 

COPD 0 1 (7%) 0.50 

ACS CLASSIFICATION NSTEMI 9 (60%)  9 (60%) 1.00 

 UA 6 (40%) 6 (40%)  

MEDICATION BEFORE  ASA 8 (53%) 5 (33%) 0.52 

ADMISSION ACE-I/ARBs 7 (47%)  9 (60%) 0.69 

 Beta blockers 6 (40%) 6 (40%) 1.00 

 Statins 5 (33%) 4 (27%) 0.56 

 Ca2+ channel blockers 5 (33%) 1 (7%) 0.09 

 Nitrates 2 (13%) 3 (20%) 0.55 

 Clopidogrel 0 2 (13%) 0.26 

CLINICAL FEATURES AT 

ADMISSION 
Mean eGFR (ml/min/m2) 75.9 80.7 0.58 

 
Left ventricular  

ejection fraction 
57%  54% 0.45 

 
Time from onset 

to admission (h) 
42 44 0.78 

 Hemoglobin (g/dl) 14.1 13.6 0.36 

CLINICAL FEATURES DURING 
Mean number of implanted 

stents 
2 2 1 

HOSPITALIZATION 
Mean contrast agent volume 

(ml) 
237 228 0.77 

NUMBER OF VESSELS 1 2 (13%) 5 (33%) 0.36 

AFFECTED BY  2 7 (47%) 5 (33%)  

SIGNIFICANT DISEASE 3 6 (40%) 5 (33%)  

COMPLICATIONS  

DURING 

New AMI during 

hospitalization 
0 1 (7%) 0.5 

HOSPITALIZATION 
Intra stent  

thrombosis 
0 0  

 Additional PCI 3 (20%) 2 (13%) 0.5 

 
Mortality during 

hospitalization 
0 0  

BARC bleeding 0 15 (100%) 12 (80%) 0.09 

 1 0 1 (7%)  

 2 0 2 (13%)  

2.2. EV Characterization 

EVs have been characterized using different approaches. First, we analyzed serum-

derived EV-RIPC and EV-naive by transmission electron microscopy (TEM). As shown in 
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Figure 2A, vesicles in the nano-size range were observed by TEM and no differences be-

tween EV-RIPC and EV-naive were found. In Figure 2B, NanoSight analysis is reported. 

Again, EV size distribution and number did not show any significant difference. The 

Western blot analysis, reported in Figure 2C, demonstrated the presence of the exosome 

markers CD63, CD29 and CD81 in EV-RIPC and EV-naive. Accordingly, the GM130 pro-

tein was only detected in a human cell lysate (Ctrl-) (Figure 2C). Serum EVs from healthy 

subjects served as positive controls (Ctrl+). As shown by the results of GUAVA FACS 

analysis, EVs from patients of the two arms of the study expressed typical leukocyte, mac-

rophage, platelet and endothelial markers (CD11b, CD14, CD62p and CD144), but not 

Caveolin (Figure 2D). Again, patient-derived EVs were found enriched in Troponin (TnT) 

(Figure 2D) [30]. Moreover, the expression of exosome markers was further evaluated us-

ing the MACSPlex kit (Figure 2E). 

 

Figure 2. EV characterization. (A) Representative images of TEM performed on EV-naive and EV-RIPC (n = 3/each group). 

Original magnification 140 K, scale bar: 100 nm. (B) Histograms representing EV size and number. (C) Representative 

Western blot of exosome markers (CD29, CD63 and CD81) detected in serum-derived EVs (Ctrl+), EV-naive and EV-RIPC, 

and negative marker of EVs (GM130). (D) Flow cytometry with GUAVA FACS on EV-naive and EV-RIPC; the insert shows 

the EV TnT content (%) in all thirty patients. (E) FACS with MacsPlex kit on EV-naive and EV-RIPC. 

2.3. EV-RIPC and EV-Naive Fail to Protect Cardio-Myocytes from I/R Damage 

The biological action of EVs from the two different patient groups was first evaluated 

in rat-derived cardio-myoblasts (H9c2) exposed to an in vitro model of hypoxia/reoxygen-

ation (H/R) (Figure 3A). As shown in Figure 3B, only EV-RIPC collected from patients 

after PCI were able to protect H9c2 from H/R-induced injury. To simulate the in vivo be-

havior of circulating EVs, co-culture experiments were performed using human micro-

vascular endothelial (HMEC-1) and H9c2 cells. To this end, co-cultures of HMEC-1 and 

H9c2 cells (trans-well assay) were pre-treated with EV-RIPC or EV-naive in H/R condi-

tions. Unexpectedly, both EV-RIPC and EV-naive failed to induce protection in vitro (Fig-

ure 3C). 

Since different results were obtained in vitro, the effect of EVs was also evaluated ex 

vivo by using a standard ischemia/reperfusion (I/R) protocol according to the Langendorff 
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method [31]. For this purpose, isolated rat hearts were infused with 1 × 109 EVs before the 

I/R protocol (Figure 3D). Consistent with the co-culture results, the infarct size was similar 

in the EV-RIPC, EV-naive and I/R groups (Figure 3E). 

 

Figure 3. Impact of EVs in vitro and ex vivo. (A) Timeline of in vitro H/R protocol. H9c2 or co-culture of H9c2 and HMEC-

1 were subjected to 2 h of hypoxia, followed by 1 h of reoxygenation. EVs were infused for 2 h before hypoxia and during 

hypoxia. (B) Cell viability on H9c2 cells subjected to H/R protocol, after treatment with EV-naive or EV-RIPC; data were 

normalized to the mean value of normoxic control. (**** p < 0.0001 CTRL N vs. CTRL H/R; **** p < 0.0001 CTRL H/R vs. 

EV-RIPC; **** p < 0.0001 EV-naive vs. EV-RIPC). (C) Cell viability on H9c2 co-cultured with HMEC-1 in trans-well assay; 

data were normalized to the mean value of normoxic control. (D) Timeline of ex vivo I/R protocol. The hearts were sub-

jected to 30 min of global, normothermic ischemia, followed by 60 min of reperfusion. EVs were infused for 10 min before 

ischemia. (E) Infarct size in isolated rat hearts treated as indicated. The necrotic mass was measured at the end of reperfu-

sion and reported as percentage of the left ventricle mass (LV; % IS/LV). 

2.4. EV-RIPC and EV-Naive Do Not Trigger Canonical Cardio-Protective Pathways 

Cardio-protection is associated with the activation of well-established signaling cas-

cades, including the RISK, the SAFE and the antiapoptotic pathways [32]. Therefore, West-

ern blot analysis was performed. The activation of the most relevant kinases, belonging to 

the RISK (Erk-1/2) and theSAFE (STAT-3) pathways, were investigated. In addition, the 

expression of the anti-apoptotic protein Bcl-2 was assessed in vitro and ex vivo. Surpris-

ingly, we failed to detect Erk-1/2 phosphorylation in H9c2 cells, not only upon EV-naive 

but also EV-RIPC treatment (Figure 4A). Likewise, the phosphorylation of STAT-3 and 

the expression of Bcl-2 did not significantly change between the two groups of treatments 

(Figure 4A). Erk-1/2 and STAT-3 phosphorylation was also evaluated in the hearts differ-

entially treated. Again, EV-RIPC and EV-naive were unable to induce Erk-1/2 phosphor-

ylation. Of note, similar to the results obtained in our previous study, using EV-naive re-

covered before PCI [30], EV-naive recovered after PCI significantly reduced Erk-1/2 phos-

phorylation (** p = 0.002 I/R vs. EV-naive) (Figure 4B). Finally, both EV-RIPC and EV-naive 

were unable to induce STAT-3 phosphorylation and Bcl-2 expression (Figure 4B). The fail-

ure of both EV-RIPC and EV-naive to trigger STAT-3 phosphorylation may explain the 

lack of cardio-protection. 
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Figure 4. Effects of EVs on canonical cardio-protective pathways. (A) Representative Western blot analysis and histograms 

of cells subjected to H/R protocol, after EV treatment (n = 30). (B) Representative Western blot analysis and histograms of 

myocardial tissues subjected to I/R protocol, after EV treatment (n = 30). p-Erk-1/2, p-STAT-3 and Bcl-2 expression were 

normalized to vinculin. 

2.5. Gene Expression Profiling of EV-Naive and EV-RIPC 

EVs exert their biological effects by releasing their cargo, consisting in genetic and 

non-genetic materials, in the target cell [20]. Among the genetic materials, mRNA is in-

cluded [20]. The transfer and transduction of this genetic material contributes to EVs’ 

mechanism of action. We have previously shown that DUSP6 silencing in EVs was able to 

prevent EV-mediated cardio-protection by blunting STAT-3 activation [30]. Herein, we 

evaluated the expression of the DUSP6 protein in the heart when treated with EV-RIPC 

and EV-naive, and we compared its expression with the phosphorylation of STAT-3 (n = 

35). DUSP6 was significantly higher in the hearts from animals treated with EV-RIPC than 

in the I/R group (* p = 0.02), while no significant differences were found in the isolated 

hearts subjected to EV-naive compared to the I/R or EV-RIPC groups (Figure 5A). We also 

evaluated the activation of STAT-3 in the same hearts. Consistent with the functional re-

sults (infarct size), STAT-3 activation was similar in both groups of treatment. This further 

confirms that STAT-3 is relevant for EV-mediated cardio-protection [30]. 

Gene expression in EVs was therefore evaluated by screening 84 human cardiovas-

cular disease mRNAs. Comparing the gene expression profiling of EV-RIPC and EV-naive 

(Figure 5B), we found that five genes were upregulated in EV-RIPC compared to EV-na-

ive. In particular, alpha-1-adrenergic receptors (ADRA1A), collagen type XI alpha 1 chain 

(COL11A1), CAMP Responsive Element Modulator (CREM), Frizzled Related Protein 

(FRZB) and Metallothionein 1X (MT1X) were significantly upregulated in EV-RIPC com-

pared to EV-naive. Consistent with the expression of DUSP6 in the hearts, an increased 

DUSP6 mRNA (p = 0.0501) was also found in EV-RIPC. This supports the notion that the 

DUSP6 gene can be transferred from EVs to the heart tissue and therein transduced. 
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Figure 5. DUSP6 content in cardiac tissue and EV heatmap. (A) Representative images of Western blot for DUSP6 and p-

STAT-3. The histogram refers to DUSP6 expression in myocardial tissue. DUSP6 and p-STAT-3 expression were normal-
ized to vinculin (n = 30) (* p = 0.02). (B) Hierarchical clustering of the entire dataset of expressed cardiovascular-linked 

genes. Clustergram displaying hierarchical clustering of the entire dataset of expressed genes across two different exper-

imental groups: EV-RIPC and EV-naive (n = 3/each group). RNAs with higher differential expression levels are repre-

sented in red, while RNAs with lower detection levels are shown in green. Genes with similar expression patterns are 

grouped. 

3. Discussion 

In a recent study, we have demonstrated that EVs collected from ACS patients before 

PCI are cardio-protective [30]. In the present study, performed on EVs recovered from the 

same patients after PCI, we provide the first mechanistic evidence that PCI reprograms 

EV cargo, which specifically impairs EV-naive-induced cardio-protection and does not 

improve EV-RIPC’s biological action.  

Several studies have highlighted the cardio-protective role of serum-derived EVs 

[30,33,34]; however, a controversial role in reducing IRI has been reported [35]. It has been 

demonstrated that serum-derived EVs promote the development of ACS by inducing en-

dothelial injury and inflammation [36,37]. In this regard, it has been shown that patients 

with cardiovascular disease release EVs enriched in A2A adenosine receptors [26,27]. Cur-

rently, preclinical studies using the RIPC procedure to induce cardio-protection have 

demonstrated efficacy, even using EVs from patients without ACS [38]. Conversely, the 

RIPC procedure in humans with cardiovascular diseases fails to induce protection [39,40]. 
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The end-point designation, the failure to estimate long-term complications and the pres-

ence of comorbidities in humans have been proposed to explain differences between pre-

clinical and clinical studies [40,41]. The lack of cardio-protection in patients who under-

went RIPC procedures was further demonstrated by the recent CONDI2/ERIC-PPCI trial 

[42]. Accordingly, it has been recently shown that the RIPC procedure in ACS patients 

before PCI impairs EVs’ cardio-protective properties [30]. However, no data are so far 

available on the healing or harmful properties of EVs released upon PCI. Therefore, to 

assess if and how PCI can restrain EV activity, we herein recovered EVs from the serum 

of the same ACS patients, after revascularization, and evaluated their cardio-protective 

properties. Similar to EVs recovered before PCI [30], we did not find differences in EV 

size, number or cell of origin. Moreover, EVs from ACS patients, collected after PCI, ex-

pressed high levels of macrophage, monocyte, platelet and endothelial markers and, re-

gardless of the diagnosis, were enriched in TnT. 

Therefore, EVs have been used in in vitro and ex vivo IRI models and their underly-

ing mechanism of action has been investigated. In particular, a co-culture of HMEC-1 and 

H9c2 was used for the in vitro experiments and the isolated rat heart for the ex vivo assay. 

Co-culture experiments better recapitulate the in vivo interplay between endothelial cells 

and cardio-myocytes and provide insight into the contribution of EV-treated endothelial 

cells to the functional biological response [31]. The isolated beating heart model (Langen-

dorff model), besides containing all the organ components, provides a simple and effec-

tive method to study IRI, in which several extrinsic and intrinsic factors can be tightly 

controlled [43]. In particular, these models allow the performance of a global ischemia 

approach and a “clean” molecular analysis by removing all the effects derived from cir-

culating cells. Our results revealed that EV-RIPC were able to protect H9c2 against H/R 

injury. However, since, in previous studies, we and others [30,31,44] have provided evi-

dence that the trans-well assay is a more suitable in vitro model to predict the ex vivo EV 

therapeutic efficacy (potency test), EVs from the two arms of the study were also assayed 

in co-culture experiments. We demonstrated that both EV-RIPC and EV-naive failed to 

induce protection against H/R damage. Consistently, no cardio-protection was detected 

when the isolated rat hearts were infused with both EV-RIPC and EV-naive. These obser-

vations sustain the notion that in order to assess the therapeutic effectiveness of “cardio-

protective agents”, the most reliable in vitro model should more closely recapitulate the 

in vivo physiological crosstalk between cardio-myocytes and endothelial cells. 

The most efficient cardio-protective approaches require the activation of the RISK 

and/or the SAFE pathways [45]. However, it has been shown that IRI by itself [46], as the 

RIPC procedure, triggers the activation of Erk-1/2 [47]. Consistently, our ex vivo results 

demonstrated that I/R, similarly to EV-RIPC, was associated with increased Erk-1/2 phos-

phorylation. The possibility that Erk-1/2 activation represents a physiological and intrinsic 

cardio-protective mechanism has been postulated [48,49]. The activation of the SAFE cas-

cade, alone or in combination with the RISK pathway, also contributes to cardio-protec-

tion [45]. We have previously shown that EV-naive, recovered before PCI from the same 

ACS patients, reduced Erk-1/2 activation, while they induced cardio-protection by elicit-

ing STAT-3 phosphorylation [30]. We herein demonstrated that this effect was no longer 

established when EV-naive, collected after PCI from the same ACS patients, were infused 

in the isolated hearts. In fact, although EV-naive challenge significantly decreased Erk-1/2 

phosphorylation compared to I/R, we failed to detect the activation of STAT-3. Similarly, 

EV-RIPC failed to trigger the SAFE cascade. These findings were consistent with the fail-

ure of EVs, RIPC or naive, to induce cardio-protection. Moreover, these data further verify 

that the activation of the SAFE pathway, rather than the RISK pathway, is instrumental 

for EV-mediated cardio-protection. 

EVs exert specific functions by transferring their genetic and non-genetic content to 

target cells [22]. EV cargo depends on their cell of origin and on the micro-environmental 

cues of the releasing cells [50]. In particular, in endothelial cells exposed to inflammatory 

stimuli [31], stress signals were found to impair the EV healing properties by modifying 
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their protein and miRNA content [51,52]. ACS per se can be considered a stress condition, 

further boosted by ischemic events induced by the RIPC procedure, and more importantly 

by PCI. This possibility is sustained by the change in gene expression profiling in EVs. 

Indeed, not only are EV-naive no more enriched in DUSP6 [30], but EV-RIPC rearrange 

their gene content and become enriched in some stress- and cell-cycle-related genes [53–

57]. We can speculate that DUSP6 enrichment in the hearts treated with EV-RIPC may 

represent a challenge to counteract the increase in Erk-1/2 activation. However, DUSP6 

expression is not suitable to elicit STAT-3 phosphorylation and cardio-protection. This 

raises the possibility that PCI, besides rearranging the mRNA profiling in EVs, impacts 

the vast array of protein, lipid and miRNA content in EV-naive as well, affecting their 

cardio-protective properties. 

The most relevant limitations of this study are associated with the sample size and 

EV characterization. It has been extensively documented that EVs’ biological effects de-

pend on their entire cargo, including proteins, lipids and miRNAs. In this study, only a 

subset of cardio-protective genes has been profiled. Therefore, further studies should be 

directed toward a more in-depth EV characterization in order to identify potential harm-

ful, targetable molecules that are exploitable as therapeutics in ACS patients undergoing 

PCI. 

4. Materials and Methods 

4.1. Study Design 

We extended a double-blind, randomized, placebo-controlled study (Clinical Trial 

number: NCT02195726). Briefly, 30 UA and NSTEMI patients were recruited from the 

Cardiology Department of the University of Turin from January 2019 through September 

2019. 

UA/NSTEMI, age >40 and <85 were the inclusion criteria, while Glomerular Filtration 

Rate (eGFR) <30 mL/min, previous or active cancer, body mass index (BMI) >29 kg/m2, 

diabetes mellitus, critical stenosis of the lower limbs and carotids and STEMI were the 

exclusion criteria. All procedures were in accordance with the principles of the Helsinki 

Declaration. The study protocol was approved by the local ethics committee and all par-

ticipants provided written informed consent. 

The RIPC protocol consisted of four 5 min cycles of manual blood pressure cuff in-

flation to 200 mmHg (or 50 mmHg over the baseline if systolic blood pressure was >150 

mmHg) around the non-dominant arm, and this was alternated with 5 min deflations. 

Sham procedure was performed by inflating the cuff to 20 mmHg alternated with 5 min 

deflation. Based on other studies [58], EVs were collected from either radial or femoral 

artery blood samples after PCI (Figure 1). All data are reported as median and interquar-

tile ranges (IQRs) ±SEM. 

Patients included in the study were randomized to a different protocol, sham or RIPC 

(n = 15/group). After PCI procedure, three (7 mL) arterial blood samples from each patient 

were collected (Figure 1). 

4.2. EV Isolation from Human Serum 

After blood collection, the serum samples underwent the precipitation procedure for 

EV isolation. The protamine (P) (Sigma, St. Louis, MO, USA)/Polyethylene glycol (PEG 

35,000; Merck KGaA, Darmstadt, Germany) precipitation solution (P/PEG; Sigma, St. 

Louis, MO, USA) (0.2 g PEG 35,000 and 1 mg protamine chloride/mL; 1:4) was added to 

the samples [30,59]. 

After overnight incubation at 4 °C, the mixture was centrifuged at 1500× g for 30 min 

at 22 °C and the pellet was re-suspended in sterile saline solution (NaCl 0.9%) and sub-

jected to microfiltration with 0.22 μm filters (MF-Millipore) to remove larger vesicles [59].  

4.3. EV Characterization 
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After isolation, different approaches were exploited for EV characterization. Firstly, 

EVs were counted and analyzed using a NanoSight NS300 equipped with Nanosight 

Tracking Analyses Analytical Software (Malvern Panalytical Ltd., Malvern, UK). For each 

sample, the number and size of EVs were evaluated. EV flow cytometry analysis was per-

formed, 10126, Turin, Italy using the MACSPlex Exosome Kit (human, Miltenyi Biotec, 

Bergisch Gladbach, Germany), following the manufacturer’s protocol [60]. Therefore, each 

sample was analyzed using a CytoFLEX® Flow Cytometer (Beckman Coulter, Indianapo-

lis, IN, USA). CytExpert Software 1.0 (Beckman Coulter, Indianapolis, IN, USA) was used 

to analyze flow cytometric data. Moreover, EV FACS analyses were performed using 

GUAVA (Guava easyCyte Flow Cytometer, Millipore, Germany) [61]. EVs were detected 

using flow cytometry beads (Aldehyde/Sulfate latex 4% w/v 4 μm, Invitrogen, Carlsbad, 

CA, USA) and PE- and FITC-conjugated antibodies directed to CD11b, CD14, CD62p, 

CD144, Caveolin and Troponin (Dako Denmark A/S, Copenhagen, Denmark). FITC and 

PE mouse non-immune Isotypic IgG (Beckton Dickinson, Franklin Lakes, NJ, USA) served 

as controls. EVs were incubated with each antibody or isotype control antibody at 4 °C in 

100 μL PBS containing 0.1% bovine serum albumin and then analyzed [30]. 

4.4. Transmission Electron Microscopy (TEM) 

TEM was performed on EVs, which were resuspended in PBS, placed on 200-mesh 

nickel formvar carbon-coated grids (Electron Microscopy Science, Hatfield, PA, USA) and 

left to adhere for 20 min. The grids were incubated with 2.5% glutaraldehyde containing 

2% sucrose, and, after washing in distilled water, EVs were processed as previously de-

scribed [59] and observed with a Jeol JEM 1010 electron microscope (Jeol, Tokyo, Japan). 

4.5. In Vitro Model 

H9c2 and HMEC-1 cells were obtained from the American Type Culture Collection 

(ATCC; Manassas, VA, USA). HMEC-1 cells were grown in MCDB131 (supplemented 

with 10% fetal bovine serum (FBS), 10 ng/mL of epidermal growth factor, 1 μg/mL of hy-

drocortisone, 2 mM glutamine and 1% (v/v) streptomycin/penicillin) at 37 °C and 5% CO2 

[62]. H9c2 were grown at 37 °C and 5% CO2 in Dulbecco’s modified Eagle’s medium nu-

trient mixture DMEM-F12 (supplemented with 10% FBS and 1% (v/v) streptomycin/peni-

cillin) [63].  

In order to verify the EVs’ effect on cardiomyocytes (H9c2) subjected to H/R, cells 

were serum-starved (in FBS 2% depleted of EVs) for 24 h. H9c2 were pre-treated with EVs 

(1 × 104 EV/cell) for 2 h and then subjected to 2 h of hypoxia (1% O2, 5% CO2) in the pres-

ence of EVs. Subsequently, reoxygenation was performed (21% O2 and 5% CO2) for 1 h. 

The same protocol was applied for the co-culture experiments [31]. 

At the end of the H/R protocol, cell viability was assessed using the 3-(4,5-Dimethyl-

thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) kit as indicated by the manufactur-

ers. In brief, after 2 h incubation at 37 °C, dimethyl sulfoxide (DMSO) was added. The 

plates were read at 570 nm to obtain the optical density values [31]. 

4.6. Ex Vivo Model 

Male Wistar rats (4 months old, body weight 350–400 g, Envigo Laboratories Udine, 

Italy) were used for the ex vivo experiments. Rats received humane care in compliance 

with the European Directive 2010/63/EU on the protection of animals used for scientific 

purposes. The local “Animal Use and Care Committee” approved the animal protocol 

(protocol no: E669.N.OVL). Animals were housed under controlled conditions with free 

access to tap water and to standard rat diet. 

Rats were anesthetized (Zoletil 100 mg/Kg and Xylazine 15 mg/Kg) and heparinized 

(800 U/100 g b.w., i.m.) and hearts were rapidly excised, placed in an ice-cold buffer solu-

tion and weighed. Isolated rat hearts were retrograde perfused with oxygenated Krebs–

Henseleit buffer solution (KHS; mM, 127 NaCl, 5.1 KCl, 17.7 NaHCO3, 1.26 MgCl4, 1.5 

Commentato [M38]: Please provide manufacture, 

city, state (for USA and Canada), country. The 

same situation are highlighted in yellow. Please 

revise. 

Commentato [MFB39R38]: Required details have 

been included 

Commentato [M40]: Please add version 

Commentato [MFB41R40]: The software version 

has been included 

Commentato [EE42]: Please check if this should be 

“CO2“. 

Commentato [MFB43R42]: Yes it is correct as you 

did 



Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 12 of 17 
 

 

CaCl2, 11 D-glucose, pH 7.4) through a cannula inserted into the ascending aorta. Hearts 

kept in a temperature-controlled chamber (37 °C) were perfused in constant-flow mode.  

The protocols carried out on the isolated hearts were as follows: 

(1) SHAM group (n = 3) served as non-ischemic hearts (2 h); 

(2) I/R group (n = 5): hearts were subjected to I/R protocol [31]; 

(3) EV-naive (n = 15): hearts were pre-treated with EV-naive (1 × 109/mL) for 10 min be-

fore I/R protocol [30]; 

(4) EV-RIPC (n = 15): hearts were pre-treated with EV-RIPC (1 × 109/mL) for 10 min be-

fore I/R protocol [30]. 

4.7. Infarct Size Analysis 

For the infarct size analysis, the hearts were allocated on the Langendorff apparatus. 

The hearts underwent I/R protocol and were contextually treated or untreated as above 

indicated. The infarct size assessment was performed using ImageJ software on heart 

slices dyed with 2,3,5-Triphenyltetrazolium chloride (TTC) [43]. At the end of each exper-

iment, the hearts were detached from the Langendorff apparatus and the left ventricles 

were frozen for 2 h. After freezing, the hearts were dissected into 4–5 slices of 2–3 mm that 

were incubated in pre-warmed TTC stain (10 mg/mL in phosphate buffer) at 37 °C for 5 

min. The ImageJ analysis program was used to calculate, slice by slice, the infarct size for 

each heart. 

4.8. Microarrays and Ingenuity Analysis 

Based on our previous study [30], to investigate the EV mechanism of action, EV 

mRNA content was analyzed by using a specific Cardiovascular Disease PCR Array. To 

this end, six samples (3/group), were retro-transcribed with the RT2First Strand Kit, and 

gene expression was analyzed using the PAHS 174Z RT2 ProfilerTM Human Cardiovas-

cular Disease PCR Array (QIAGEN, Hilden, Germany) according to the manufacturer’s 

protocol. The analysis was performed using GeneGlobe QIAGEN online software. Fold 

regulation EV-naive sample expressions with respect to the EV-RIPC group were calcu-

lated for all samples using the ∆∆Ct method. The p values were obtained based on a Stu-

dent’s t-test of the replicate 2(-Delta CT) values for each gene in the control group and 

treatment groups, and p values less than 0.05 are indicated. Parametric, unpaired, two-

sample equal variance and two-tailed distributions were used to calculate the p values. 

Predicted functional interaction network was analyzed using STRING software. Network 

analysis provided information on the molecular and cellular interactions of genes/pro-

teins within the network. 

4.9. Western Blot Analysis 

The canonical cardio-protective pathways were evaluated by analyzing the expres-

sion level of the phosphorylated STAT-3 for the SAFE pathway and the phosphorylated 

Erk-1/2 for the RISK cascade. To this end, the hearts (LV apexes) were lysed in RIPA buffer 

with proteinase inhibitors. Samples were quantified by the Bradford method (50 μg pro-

tein per sample was loaded) and equal amounts of total protein extracts were separated 

by SDS-PAGE and electro-transferred to nitrocellulose membrane. Anti-p-tyr705 STAT-3, 

anti-p-Erk-1/2 (#9131 and #9102, Cell Signaling, Danvers, Massachusetts, USA), anti-Bcl-

2, anti-Vinculin (05-386 Merck/Millipore, St Louis, MO, USA) and anti-DUSP6 (ab76310 

Abcam, Cambridge, UK) antibodies were used as primary antibodies, followed by incu-

bation with appropriate HRP-conjugated secondary antibodies (BioRad, Hercules, CA, 

USA). Proteins were detected with Clarity Western ECL substrate (BioRad, Hercules, CA, 

USA) and quantified by densitometry using analytic software (BioRad, Hercules, CA, 

USA) [31]. Results were normalized with respect to densitometric value of anti-vinculin 

antibody. EVs were lysed in RIPA buffer, and 30 μg protein per sample was loaded for 

Western blot. Anti-CD63, anti-CD81 (ab134045, ab109201, Abcam, Cambridge, UK), anti-
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CD29 (Ma5-17103, Thermo Fisher, Waltham, Massachusetts, USA) and anti-GM130 

(ab52649, Abcam, Cambridge, UK) antibodies served as exosomal markers and negative 

markers of EV, respectively. 

4.10. Statistical Analysis 

All data from the in vitro and ex vivo experiments are reported as means ± SEM. 

Comparisons between two groups were carried out using the Mann–Whitney test or the 

paired t-test, while comparisons between ≥3 groups were performed using one-way 

ANOVA followed by Tukey’s multiple comparison test. Our data passed normality and 

equal variance tests. The cut-off for statistical significance was set at p < 0.05. In vitro and 

ex vivo results are representative of at least 3 independent experiments. All statistical 

analyses were performed using Graph Pad Prism version 8.2.1 (Graph Pad Software, San 

Diego, CA, USA). 
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5. Conclusions 

This study first investigated the functional properties of EVs released after PCI in 

ACS patients. We demonstrated that PCI reprograms EV cargo, impairing, in EV-naive, 

their cardio-protective properties. Moreover, we provide the first evidence that the RIPC 

procedure rearranges the mRNA EV cargo after PCI, increasing the expression of some 

genes involved in stress responses and in the inhibition of cell cycle progression. 
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