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Abstract

We studied international migrations of researchers, scientists, and academics, to better
understand the so-called “brain drain” phenomenon, if and how it can be measured, and
how it changes over time. We discuss why some trivial measures can be ineffective, and as a
consequence, we built the global scientific migration network to identify the most important
countries involved in the mobility of scholars, and to study their role at a local and a global
scale.
For such a purpose, we analysed a temporal directed weighted network representing scientists
moving from one country to another, from 2000 to 2016, built on top of 2.8 million ORCID
public profiles. With the support of the well-known HITS algorithm, we found hubs and
authorities to study the interplay between providing and attracting researchers from a global
perspective, and its relationship to other structural features.
Our findings highlight the presence of a set of countries acting both as hubs and authorities,
occupying a privileged position in the Scientific Migration Network, that is network of the
scientific migrations, and having similar local characteristics, i.e., several neighbours with
highly differentiated flows of researchers moving from/to them. However, it is striking that
some of these countries have a predominant role over the others, and that we can easily
observe countries that are extremely more attractive than others, as well as other countries
that perform better as exporters than importers of scientists. It is also interesting that hubs
and authorities scores can change over time, alongside with their relative discrepancy, and
other network measures, suggesting that local and/or global policies can buck the trend.

Keywords: scientific migration, complex networks analysis, hyperlink-induced topic search, science of sci-
ence

1 Introduction

Human migration has always been a phenomenon of crucial importance in history and it has radically evolved
over time, affected by historical and economic events. It is known for shaping local demographics, politics,
and regulations; and, also, for influencing global wealth and world-wide society [1], [2].
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The definitive outcome of human migration is subtle and extremely unpredictable, especially in the long
term, due to the need for addressing different borders: geographical, political, and even cultural [3]. For
these reasons, human migration is perceived in many different manners and, consequently, treated by local
states with opposite aims: it is sometimes encouraged, rather discouraged [4]. In particular, knowledge, ideas,
and information are considered to be among the most relevant assets in today’s economy and are naturally
embedded in researchers, scientists, and academics who, through their permanent or temporary mobility
paths, move such goods from a location to another [5]. On the long term, international scientific mobility
could impact fundamental social and economic aspects of the countries, such as scientific, technological,
and productive assets [6]. Please, observe that hereinafter the terms “mobility” and “migration” will be
used interchangeably to indicate the event of a researcher moving from one country to another, without
differentiating permanent or long stays from short stays such and scholarships or post-doc periods. Albeit,
most of the times, this phenomenon lacks the urgency of survival, it is highly competitive in terms of choice
of the destination countries, as pointed out in [7].
In this paper, we want to explore scientific migration as a global and inherently interdependent phenomenon.
We analyse different frameworks to detect those countries that better attract or repel researchers, to char-
acterise different roles, and to understand how mobility dynamics change over time: the so-called “brain
drain” phenomenon. We rely our analysis on ORCID, a growing platform that collects public profiles of re-
searchers.In particular, we employed 2.8 million public profiles created until 2016 and already used for other
preliminary analysis [8]. Given its nature, the (scientific) migration system can be modelled using a network
that we define to be temporal, weighted, and directed: it turns out that a complex network perspective is
very useful to define relationships between actors involved in this ecosystem, and it also provides a solid
ground to define measures and parameters that can be used to study efficiently the mobility phenomenon.
In this domain, nodes represent world countries and edges account for a migratory flow from a country
to another. Edge weights stand for the size of the migratory flow in terms of migrants, while timestamps
represent years from 2000 to 2016. We name such structure scientific migration network (SMN for short).
In our setting, we aim at identifying those countries that are able to provide or attract a large number of
outgoing or incoming researchers. Apparently, these characteristics are antithetical and they are worth to
account separately. However, in principle, every single node in a directed network can outperform according
to both their in-degree and out-degree (or also by their in-strength and out-strength in weighed networks),
so we need a measure that allows for nodes to play both roles in the mobility ecosystem. Also, and most
importantly, we cannot neglect the global interdependence of the migration phenomenon, and that mobility
cannot be simplified in terms of the number of researchers that move from one country to another, neglecting
that this can be just one step of a longer path involving many different nodes. In fact, to capture these char-
acteristics, we employ the well-know Kleinberg’s weighted hyperlink-induced topic search (HITS) algorithm
on the scientific migration network to identify authorities and hubs [9]. We compare the results obtained by
HITS to other local and global measures, to show that that a dual perspective based on hubs and author-
ities provides more insights to unfold the interplay between exporting and importing researchers on large
scale. Further, we investigate the local patterns and characteristics of successors of hubs and predecessors
of authorities to derive the motivations behind the HITS algorithm.
Our results show a high correlation between hub and authority countries. In particular, we are able to
identify a set of countries that occupies a privileged position in the scientific migration network, being
both important hubs and central authorities, since they are able to receive researchers and, at the same
time, to provide scientists to the most attractive countries. This finding probably contradicts the common
perception that countries attracting researchers are not good providers, and vice versa. Also, we observe that
heterogeneity in the local neighbourhood leads countries with very different social and economic background
to reach similar hub or authority scores over the years. External factors, e.g., regulations, political alliances,
investments in research, development, and education, are expected to play an important role in such results
and to add an additional layer of complexity that deserves to be investigated further.

2 Related work

In this section we give an overview of existing related literature, also to better introduce the main contribu-
tions of this paper.
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2.1 ORCID data

To our knowledge, the first attempt to utilise ORCID data in order to extract meaningful information about
the migration of the scientific population has been carried out in [8]. The authors first claim that, despite
having biases, ORCID data can be used to survey scientific migration given the high adoption rate by the
academic population. Then, they provide a collection of basic statistics about the dataset without deepening
the temporal evolution of the phenomenon nor adopting a network approach.

2.2 Network analysis of human migration

Human migration is modelled in terms of complex networks is [10]. Similarly to our case, they define the
international migration network as a temporal weighted directed network having countries as nodes and
volumes of migrants as edges. Differently from our work, the study by Fagiolo et. al. mostly focuses on
the identification of community structures and disassortativity; moreover, it considers the general human
migration that has fundamentally different characteristics than the scientific one. Following up this seminal
work, many other approaches are proposed with similar purposes, studying for example human migration
from a multi-layer perspective using data gathered from social media platforms [11]. A complementary
work [12] correlates per-capita income and labour productivity with human migration and network centrality.
It has been explored also how to build complex networks from worldwide migration flows to identify a
socioeconomic indicator that explains the reasons behind the phenomenon [13]. Robinson et. al. [14] propose
a machine learning approach to predict long-term human mobility. Finally, other works, as [15], employ the
network structure to unfold information about human mobility from GPS and GSM data.

2.3 Scientific migration

The mobility of scientists is a topic of broad interest that has been investigated in a series of works. The
mobility of scientists within and across countries is studied in [16] adopting an economic point of view mixed
with the traditional sociology of science. Saxenian [17] and Agrawal et. al. [18] discuss the concept of brain
drain and argue that connections between migrant scientists and their home countries are persistent in time
and might ease knowledge transfer backward. For these reasons, they call this phenomenon brain circulation
or brain bank.
Since reliable data sources about the topic are often problematic, a survey has been devised in [19] with the
intent of providing consistent data about cross-country researches. The study documented in [5] explores
how Scopus1 can be exploited as data source to understand international scientific mobility for countries
with high adoption of the platform. In the study, the authors show quantitative metrics and general trends
about the observed countries and researchers.
A recent study by Verginer et. al. [20] describes a method to extract mobility networks from a collection
of four bibliographic data sources, not including ORCID, to characterise the mobility of scientists at city
granularity, finding evidence that global cities attract highly productive scientist early in their careers.

2.4 Applications of the HITS algorithm beyond the Web

Although HITS was initially proposed to better identify the most important Web pages related to a given
topic [9], it has been proved to be applicable in many different domains. For instance, the authors of [21]
investigated the economic hubs and authorities of the world trade network in time using the HITS algorithm.
On the other hand, the HITS algorithm is applied in [22] to a career network for studying careers path of
Ph.D.s in Computer Science and for understanding the flow of expertise and talent across organisations.
HITS can be extended also to a multi-layer framework, as shown in [23], that investigated how the centrality
of a country correlates to the GDP per capita.

3 Dataset and network model

3.1 Dataset

The dataset employed in this work has been assembled by Bohannon and Doran [24] through the gathering of
2.8 millions ORCID public profiles. ORCID is a nonprofit organisation that collects contributions, affiliations,

1https://www.scopus.com
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and personal information of the subscribed researchers. Given the affiliation history of each member, we are
able to identify the location, in terms of country, of their workplace over time and infer scholars’ migration
across different states. In the following paragraphs, we introduce the dataset on annual basis to ease of
interpretation and due to data limitations, i.e., the temporal information inserted by the users often lacks of
month granularity.
Figure 1 shows the distribution of the number of estimated migrations, i.e., the number of ORCID members
that edited their profile to change the country they worked in, per year, from 1950 to 2020. Most of the data
is concentrated in the 21st century, with a peak in 2014. The decay of recorded migrations after 2014 might
be due to temporal bias given by the time when the dataset was gathered, i.e., in 2017. Even if ORCID
was founded in 2012, members are allowed to insert information about their previous occupations and their
planned ones; as a consequence, we have data about migrations that happened before 2012 and to occur
after 2017.

[Figure 1 about here.]

In their work, Bohannon and Doran [8] highlight that ORCID was not designed with the specific aim of
tracking researchers’ mobility. Therefore, the data we consider has structural limitations as well as biases.
First of all, as already observed, much of the information created by the members is retroactive since it
refers to periods preceding ORCID ’s launch in 2012. Therefore, some of the countries that nowadays have
changed their political-geographical characteristics, are present in the dataset, making the set of considered
countries highly variable year after year. Secondly, since its appearance, ORCID has always focused mainly
to younger researchers. In fact, new subscriptions are often referred to researcher that pursued their Ph.D.
recently, creating an over representation of this category in the dataset, and reflecting the fact that younger
researchers sign-up to ORCID more frequently than elder ones. Finally, countries are not equally represented,
namely, the distribution of the number of researchers per country does not follow the distribution of the
overall population. Bohannon and Doran compare ORCID data in 2013 about scientific migrations to the
UNESCO Science Report2 to discover which countries are misrepresented; e.g., China, Russia, and Japan
result to be under represented while, e.g, Spain, and Portugal are over represented. For these reasons, we
cannot regard the dataset as a definitive picture of the scientific migrations. Nevertheless, we can exploit it
to detect regularities and patterns by the construction of a network model, useful in the understanding of the
global perspective of the phenomenon, suggesting that experiments and estimations should be re-executed
periodically to better monitor the phenomenon, tune previously introduced errors due to misrepresentation,
and update information with fresh new data inserted/modified by researchers.

3.2 Data processing

[Figure 2 about here.]

The raw dataset of ORCID database is a collection of files, one for each user that has decided to utilise the
platform. As shown in Figure 2, we scan every user file and collect all the affiliation’s changes at a yearly
level, gathering both education and employment movements. A scientific migration happens if the country
of one of these two affiliations changes. “Ringgold” labels account for the specific institute of the affiliation.
The label “Type” retains the information about the nature of the migration. It combines two domains, “xy”,
where both can assume the values education (“ed”) or employment(“em”). The set-up of the string allows us
to interpret the reason for the researcher’s migration, for example from education to employment: “edem”.
In the current work, we have not employed the different reasons behind migration, but we plan to investigate
the matter further in future works 3.

3.3 Network model

We consider a weighted directed temporal network G = (V, T,$), where V is a set of nodes, T =
[t0, t1, . . . , tmax] ⊆ N is a discrete time domain, and $ : V × V × T → N is a function defining for each pair
of nodes i, j ∈ V and each timestamp t ∈ T the weight of edge (i, j) at time t. In the following, we refer to
the weight of edge (i, j) at time t as wij,t, and we consider it missing if wij,t = 0. Let sin

i,t =
∑

j∈V wji,t and
sout

i,t =
∑

j∈V wij,t represent the in-strength and the out-strength of node i ∈ V at time t ∈ T , respectively.

2https://en.unesco.org/node/252273
3For questions regarding data processing write directly to the corresponding author.
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We also denote by Et = {(i, j) | $(i, j, t) > 0} the set of edges existing at time t ∈ T . Finally, let Wt be the
weighted adjacency matrix of G at time t ∈ T .
In our application domain, we identify the nodes of the network as the countries involved in the scientific
migration process (231 in total); an edge between two countries represents a migration route. Each edge
between two nodes i, j ∈ V is attributed with a time t ∈ T and a weight w: a quartet (i, j, t, w) represents the
migration of w researchers from country i to country j at time t. The time domain of the scientific migration
network is T = [2000, 2001, . . . , 2016], composed of 17 years, since most of the data is concentrated between
2000 and 2016, and the geopolitical configuration of the countries is quite stable after 2000. 2014 is the year
for which the dataset records the largest amount of information, so we consider it pivotal in the following
analysis.

4 From methods to measures

4.1 A strength-based approach

A strength-based approach can be considered a straightforward attempt to numerically quantify the role of
a country in the scientific migration network.

[Figure 3 about here.]

We can intuitively define the drain index of a country i ∈ V at time t ∈ T as

β(i, t) =
sout

i,t − sin
i,t

sout
i,t + sin

i,t

, (1)

namely the number of outgoing researchers (i.e., out-strength) minus the number of incoming researchers
(i.e., in-strength) normalised by their sum. It ranges from −1 to 1, where 1 indicates maximum brain drain
(the country is a pure provider) while −1 means maximum brain gain (the country is a pure receiver). Values
close to 0 are adopted by those countries having balanced values of out-strength and in-strength.

[Table 1 about here.]

Figure 3 graphically shows the drain index for the year 2014, while Table 1 reports the ranking for specific
countries: the five countries of highest β, the five countries of lowest β, and the five countries of highest
out-strength. The countries standing out in Figure 3 are mainly located in Africa, southern Asia and in the
Caribbean, while Europe and North America have milder colours. Extreme values of β are assigned when
the number of migrations of a country is poor and completely unbalanced. For example, Sint Maarten has
only two outgoing migrations, resulting in β = 1, while Chad has three incoming migrations and no outgoing
researchers, then its β is −1. On the other hand, those countries playing a central role in the migration
network have usually β close to 0 due to the high number of both outgoing and incoming researchers. This
is the case of, e.g., the United Kingdom and the United States.
Of course, we would like to focus on countries whose the number of moving scientists is not neglectable. In
order to let emerge the network backbone, we apply the link filtering strategy that is proposed in [25]. This
operation has the aim to focus on countries that have a leading role in the scientific migration flows, while
preserving the structural characteristics of the network as a whole. Figure 4 shows the fraction of nodes,
links and weights retained by the filters according to different significance levels α.

[Figure 4 about here.]

[Table 2 about here.]

From the rankings displayed in Table 2, and calculated on the network backbones, we intuitively observe
that an high instability emerge in such rankings at varying values of α. The ranking analysis is an open and
very broad subject of interest, but a recent work [26] has shown a pattern throughout its dynamics, and how
for example the top part of multiple rankings shared a certain degree of stability. Also in the β(i, t) ranking
there are certain positions that carry out specific roles inside the migration system, and we would like to
estimate how stable they are over the years. To quantify it we define the Normalised Similarity s between
two different partial rankings r̃t and ˜rt+k as:

s(r̃t, ˜rt+k) = 1− 1
N(N + 1)

∑
i∈Ṽt

|rt(i)− rt+k(i)| (2)
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where t ∈ T , k ∈ [1, T − t], and V is the set of countries that takes part to the migration network at time
t and occupy the chosen portion of the ranking. If at time t + K a country is not the partial ranking
anymore we place it in the last position of the partial ranking. The term 1

N(t)(N(t) + 1) is an upper bound

for the sum of all the possible fluctuations, in particular it would happens when all the countries at time
t would downgrade at position N + 1 while all new countries occupy the N position at time t + k, and
(N + 1)(N + 1− 1)

2 + (N + 1)(N + 1− 1)
2 = N(N + 1). In Figures 5(a-c) the Normalised Similarity has

been computed for the key positions of subsequent rankings based on β, calculated on the network backbone
with level α = 0.2, from the year 2000 to the year 2016. As key positions, we consider the top twenties
(Fig. 5(a)), the bottom twenties (Fig. 5(b)), and the twenties in the middle (Fig. 5(c)) of each ranking, that
should represent respectively the top providers, the top receivers, and the most ’balanced’ countries. We
can easily observe that, even with a fixed value of α = 0.2, rankings differ significantly from one year to
another; in fact, s(ri, ri+1) fluctuates around 0.6, meaning that the ranking calculated at year i changes
dramatically the following year. The lack of stability over a not-so-fast phenomenon may prevent us to spot
any significant patterns or dynamics.

[Figure 5 about here.]

Additionally, we evaluated other strategies for normalising the drain index by considering external data,
such as the size of the overall population and the number of researchers in a country. Given the biases in
the collected dataset, any normalisation deriving from external sources would be inappropriate because it
would misrepresent the results. Moreover, external data have to be temporal, at least of yearly granularity
from 2000 to 2016, and available for all the countries included in the dataset. This is the case of the general
population, but we cannot discover complete and coherent datasets about the size of the research population
of all the studied states. However, we think that Eq. 1 fails mainly because it does not properly represent the
complexity of the phenomenon itself: the brain index focuses on spotting ’pure receivers’ and ’pure providers’
in the network, whereas each country may behave accordingly a mixed streams made of scientists moving
in and out. As a consequence, such a measure would suffer of a myopic view of the migration ecosystem,
because it is a function of local properties only: we miss the opportunity to assess which is the role of a global
and heterogeneous structure of the migration network. This is the reason why we propose the application
of eigenvector centrality based algorithms to produce rankings more adequate to comparisons [27].

4.2 A global approach

A classic approach to assess the importance of a node in a network taking into account the global link
structure is the well-known PageRank [28].

[Table 3 about here.]

Let Rt be the PageRank matrix of G = (V, T,$) at time t ∈ T , defined as

rij,t = d
wij,t∑

j∈V wij,t
+ (1− d) 1

|V |
, (3)

where d = 0.85 is the dumpling factor. Note that, in this work, we consider the edge weights in the definition
of Rt. The PageRank vector ~rt = (r1,t, . . . , r|V |,t)ᵀ is obtained by repeating the iteration

~rt(x+ 1) = Rᵀ
t ~rt(x) (4)

until convergence, with initial conditions ri,t(0) = 1
|V | . ~rt is computed for each timestamp, i.e., year, t ∈ T .

In the following, we often refer to the PageRank vector as ~r neglecting the subscript.

[Figure 6 about here.]

In Figure 6 we graphically show the PageRank in 2014, while Table 3 reports the rank of the 20 countries
having highest PageRank in 2000, 2014, and 2016. As stated above, the drain index does not privilege
nodes having high both in-strength and out-strength, and does not account for the importance of the ori-
gin/destination of the connections. PageRank is instead able to picture such aspects; in particular, United
States and United Kingdom place at the first and at the second position of the ranking, respectively.
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On the whole, PageRank is confirmed to be a powerful method to rank the nodes of a network, more stable
according to the similarity measure s, as shown in Figure 5(d) and in Table 3. However, it assigns to each
node a unique score that is not desirable in our setting, since we are instead interested in understanding the
interplay between attraction and provision of researchers. Therefore, our analysis is required to rely on more
refined and specific metrics that highlight such duality.

4.3 A dual approach: hubs and authorities

We identify the hyperlink-induced topic search algorithm (also known as HITS or hubs and authorities) [9]
as the main measure to study our network. The HITS hub vector ~ht = (h1,t, . . . , h|V |,t)ᵀ and the HITS
authority vector ~at = (a1,t, . . . , a|V |,t)ᵀ in t ∈ T of G = (V, T,$) are defined by the limit of the following set
of iterations:

~ht(x+ 1) = ct(x)Wt~at(x+ 1) (5)
and

~at(x+ 1) = dt(x)W ᵀ
t
~ht(x), (6)

where ct(x) and dt(x) are normalisation factors to make the sums of all elements become unity, i.e.,∑|V |
i=1 hi,t(x + 1) = 1 and

∑|V |
i=1 ai,t(x + 1) = 1. The initial HITS values of the scores are hi,t(0) = 1

|V |
and ai,t(0) = 1

|V | for all i ∈ V .

Note that, in this work, we employ the weighted version of HITS. The non-weighted HITS hub scores and non-
weighted HITS authority scores are defined in the exactly the same way, replacing Wt with the unweighted
adjacency matrix in Equations 5 and 6. Also in this case, ~ht and ~at are computed for each timestamp, i.e.,
year, t ∈ T . In the following, we often refer to the HITS hub and authority vectors as ~h and ~a neglecting the
subscript.

[Table 4 about here.]

By definitions, a node i ∈ V has large value of hi if it has many largely weighted links towards successor
nodes j ∈ V with high aj ; similarly, node i has large value of ai if it is reached by predecessor nodes j ∈ V
with high hj throughout largely weighted links. In our specific scenario, ~h provides an indication of which are
the countries playing the role of providers, that export many researchers in direction of the most attractive
countries; while ~a indicates which are the attractors, whose institutions hire researchers from highly ranked
providers.

[Table 5 about here.]

Tables 4 and 5 show the first twenty countries ordered by hub score and authority score, respectively, in 2000,
2014, and 2016, and the similarity score s between those years, whose consistency allows us some further
analysis.

4.4 Null Model

In the rest of our analysis, we employ the configuration model [29] as a null model to test whether the
correlation is a non-trivial feature of the scientific migration network or if it is expected by the strength
distribution of the nodes. The configuration model rewires the edges preserving the strength distribution
of the nodes in each year, namely, an edge can be shuffled only with other edges with the same timestamp.
Note that by this hypothesis, in the resulting null model, the edge weight distribution and the number of
edges in each year might vary with respect to the original network. In the following results, we consider ten
different configurations of the null model.

5 Discussion

To provide a more in-depth understanding of the scientific migration patterns all over the world, we focus
on which are the major players that rule it, how their positions have changed over time in the ranking and
inside the network structure, with the aim to detect important insight on which are the drivers that control
the migration flows.
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5.1 Relationships between hub and authorities scores

[Figure 7 about here.]

Figure 7 depicts the evolution of hub and authority scores of the nodes of the scientific migration network in
time, by means of scatter plots. In all the years, most of the countries clump in the lower-left corner, where
both scores are close to 0. Most of the countries have comparable hubs and authority scores, meaning that
if a country has a given role in the network as a scientists’ provider, then it is likely that it has a similar role
as scientists’ receiver; in fact, as expected, the Pearson correlation between the two hubs/authority variables
is quite high, with error always < 1.5e−05. However, when we calculate our scores in the null model, we
find that we should have expected a higher correlation between the two variables. As a consequence, we
have some outliers that buck the tends that could not have been expected with the null hypothesis, and that
therefore are useful to characterise this peculiar ecosystem. Details on these comparisons are provided in B.
Focusing on these outliers, we have that United States perform significantly better as authority than as hub,
even if the corresponding hub values are always among the highest. On the other hand, United Kingdom
moves from being equally hub and authority in early ’00 to being more authority by the end of the observed
period. It is also easy to notice how China, which is constantly among the top hubs, slowly increases its
authority score, with a tendency to the balance between the scores that is graphically represented by the
diagonal. Such dynamics are particularly interesting, and they deserve further analysis.

[Figure 8 about here.]

Figure 8 shows the ego-networks of the United States and China in 2016: on top there are the outgoing
connections while on the bottom the incoming ones. Colours and size of the nodes, both normalised according
to each ego-network, refer to hub scores for the providers countries and authority scores for the receiving
ones. Looking at the figures we notice that the United States and China both have many neighbouring
countries spread across all the continents, with the United States predecessors and successors being even
more scattered. However, we are not able yet to formalise either pattern.

5.2 Analysing local patterns with predecessors and successors

To dive deeper into the factors that contribute to establish a country as leading hub or authority in the
scientific migration network, we investigate the homogeneity of the edge weights of the neighbourhood of
the nodes. Specifically, we want to understand how the researchers leaving (reaching) a country with high
hub (authority) score is distributed over the outgoing (incoming) routes. In order to do so, we employ
the Gini coefficient, which measures the degree of inequality of a distribution [30]. Given a population
W = {wo, w1, . . . , wn} of n values, we define the Gini coefficient as

G =
∑

wi,wj∈W |wi − wj |
2n

∑
wi∈W wi

. (7)

G varies between 0 and 1, where 1 expresses maximal inequality among values while 0 indicates the case in
which all the values in W are equal.

[Figure 9 about here.]

[Figure 10 about here.]

By means of Lorenz curves it is possible to identify the population W as the edge weights of outgoing edges
or the edge weights of incoming edges when considering a node as hub or authority, respectively. Therefore,
we aim at investigating how (un)balanced the migration flows from/towards a country are and how such
aspect correlates to ~h and ~a. Figures 9 and 10 compare the mean Lorenz curves, along with 95% confidence
intervals, of three different classes of hubs and authorities, respectively. It is immediate to notice that high
hub/authority score is associated with high Gini coefficient. The Gini coefficient decreases progressively as
we move down with the hub and authority rankings. Then, to obtain an important position in the scientific
migration network, a country is required to have strongly differentiated migratory flows from/towards its
neighbours.

[Figure 11 about here.]
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[Figure 12 about here.]

The behaviour of the missing classes is consistent as shown in Figures 11 and 12 which report the average
(over the time domain T ) of the Gini coefficient (and the 95% confidence interval) as a function of the
hub/authority ranking. Such curves are compared with the null model considering the average of the ten
different configurations we generated. The Gini coefficient decreases as h and a drop, both in the scientific
migration network and in the null model, and the curves have very similar functional shapes. The confidence
intervals are quite limited in all cases, however they become larger for the lowest positions of the ranking in
the scientific migration network where data become more sparse and less significant. The Gini coefficient of
the scientific migration network is slightly but significantly higher than the null model; this means that a
node occupying the first positions in the hub/authority ranking also shows high disparity in the weights of
the connections from/to its predecessors/successors by the intrinsic characteristics of the network.

[Figure 13 about here.]

[Figure 14 about here.]

5.3 Spotting the impact of heterogeneity with case studies

To give more concreteness to our discussion, we extrapolate some case studies from the network. Focusing on
the nodes that constantly appear in the network backbones created in different years with α equal to 0.2, we
plot in Fig. 13 to show the countries that change distinctly their positions in the hub and authority rankings
from 2000 to 2016. Among those, we keep also United States and Italy, that are among the countries with
less variation in their position, for the sake of comparison.
In the authority rank, for example, Peru and Greece’s patterns emerge significantly: Greece loses 21 positions
while Peru gains 27. Fig. 14(a) shows how the Gini coefficient of the edges’ weight distributions back up
both trends: it decreases among the Greece’s predecessor edges, and it increases for the Peru’s. For example,
in 2000 Greece received a lot more of incoming researcher from the United Kingdom (GB) with respect to
2016: see Figures 14(c) and 14(d). This could be dependent on a change of ’homecoming’ habits: maybe
more researchers were able to return to Greece after a period abroad in 2000 rather then 2016. At the same
time, it is clear (see Fig. 14(a)) how Peru’s predecessors increasingly contributed to incoming streams of
uneven strengths over the years, as shown in Fig. 14(g) and 14(h).
W.r.t. the hubs ranking and its variations from 2000 to 2016, we focus on Denmark, that gains an upper
position, and to South Korea, that loses some positions (see Fig. 13(b)). Once again, the correlation with
the heterogeneity dynamics can be easily spotted in Fig. 14(b). Focusing on ego-networks again, Denmark’s
successor edges show an increasing unbalance in their weight distributions (see Figures 14(i) and 14(j)).
On the contrary, South Korea shows a small but significant decreasing heterogeneity among its successors’
edges (see Figures 14(e) and 14(f)). Here the effect is less pronounced than in the other case studies, and at
first glance the difference between Fig. 14(e) and 14(f) can be misleading: in 2016, South Korea exhibits a
much wider range of successor countries in its ego network, and this may be incorrectly interpreted as the
emergence of a larger heterogeneity. However, we recall that we are referring to edges weights distributions;
in fact, in 2000, an out-of-scale outgoing flow to United States is observed, causing an higher Gini coefficient.
Conversely, in 2016, a more homogeneous pattern characterises South Korea’s ego network, despite a growing
number of successor countries.
Finally, we wish to stress that Fig. 14 remarks the presence of different heterogeneity’s layers: one layer
is characterised by different hub and authority scores, and another layer shows not homogeneous in and
out strength distributions. If heterogeneity is a signal of complexity, we can observe once again that the
interplay between local and global patterns cannot be neglected to identify constantly changing dynamics
and to define future scientific mobility strategies.

6 Conclusions and Future Works

In this work, we study international migrations of researchers, scientists, and academics using a complex
network based approach. This is a data driven study which due to the dataset bias cannot be considered
definitive. We mainly focus on proposing a methodology to be applied to data extracted from the ORCID
platform to find a measure to quantify the phenomenon of the brain drain.
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First of all, we discarded the adoption of simplistic measures that take into account only local measurements
of scientists moving in or out, because they lead to rankings that change dramatically from one year to
another. As a consequence, we propose to preserve the complexity of the migration ecosystem with adequate
measures, that also maintain the dual nature of a country as both an importer and an exported of researchers.
Therefore, we model the scientific migration by means of a temporal weighted directed network and employ
the HITS algorithm with the intent of catching the interplay between streams of incoming and outgoing
researchers from a global prospective. We also investigate the local characteristics of successors of hubs and
predecessors of authorities to dive deeper into the motivations that establish hubs and authorities.
Our findings identify different positions occupied by the main player in the scientific migration network, as
shown in Tables 5, Tables 4, and in C for the complete 2016 rankings. China, United States, and United
Kingdom are identified as the leading provider countries during the whole time domain: they never fall
below the fifth position. India and Canada, followed by various of European countries, i.e., Germany, Italy,
Spain, and France, consistently position after the three leading countries with few fluctuations during the
years. South Korea and Russia follow instead negative trends. South Korea is the fifth hub in the scientific
migration network during 2000, then loses ten positions by 2016. About the authority score, United States
have the best performance during the whole time horizon, while United Kingdom always classifies 2nd.
Germany generally occupies the 3rd position in early 2000, before the growth of Australia. Similarly to the
hub score, after the top-4 positions, there is a series of European countries such as Spain, France, and Italy,
together with Canada and China. Interestingly, among the best receivers, there are Asiatic countries that
are not identified as good hubs, e.g., South Korea, Singapore, and Hong Kong, suggesting important efforts
in attracting researchers from all over the world and investing for the return of whom left the countries.
These dynamics deserve to be further analysed for uncovering latent causes and factors by the inclusion of
complementary sources, e.g., local regulations, political alliances, investments in research, development, and
education.
At the same time, the evolution of hubs and authorities’ scores over time, alongside their relative discrepancy,
and other network measures, suggest that local policies can buck the trend, as testified by the Gini coefficient.
Also, Gini coefficient decreases as h and a decrease, as Figures 11 and 12 attest. Complexity in terms of
migration patterns seems to co-exist in the best positions of the hub and the authority rankings, in analogy
with the economic framework, so that successful countries are extremely diversified in products export [31].
Ranking by means of hubs and authorities scores it is insightful, but just a preliminary step toward a more
refined analysis. As future work, we plan to expand the study carried out so far by tackling the correla-
tion between hub and authority scores with respect to metrics of research/academic success and economic
indicators, as in [32]; even though not very high due to the presence of countries of high GDP showing
poor performances in terms of hub or authority ranking, as also discussed in [33], where the relationship
between science and investments shows complex behaviours. Furthermore, we plan to restrict the analysis
to a specific geographical region (e.g., Europe) to study migrations at smaller granularity (e.g., cities) or,
according to specific science fields in order to understand where skills actually move, and by different career
stages, education or employment.
Finally, we plan to adapt our methodology to evolving datasets that grow over time, to deliver a more
precise picture as the information increases. In particular, we would like to design a permanent observatory
of the scientific migration network, that can keep track over the year of the multiple aspects of this rich and
complex phenomenon and this work is an important step in that direction. Moreover, it is important to
mention that the ambition of our proposed methodology is that hub and authority scores will be considered
in forthcoming biblio-metric observatories and studies, to exploit the interplay of incoming and outgoing
scientific migration flows, to better understand the role of single countries in a world-wide interconnected
ecosystem.
It would be of interest to replicate our analysis on other data sources to confirm/integrate our results, and
to keep updating the analysis to ever evolving global and local scenarios.

List of abbreviations

SMN scientific migration network
HITS hyperlink-induced topic search
GDP gross domestic product
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A Network Model

In Table 6, we show some basic network statistics, grouped by year. For each year y ∈ [2000, . . . 2016] we
show the number of nodes, i.e., countries that occur as a source or as a destination in that year at least once
(|Vy|), the number of links established during that year between countries (|Ey|), and the related following
measures: the density of the network (d = 2|Ey|

|Vy|(|Vy|−1) ); the reciprocity, i.e., the ratio of the number of edges
pointing in both directions to the total number of edges in the graph (r = |e=(i,j):(j,i))∈Ey|

|Ey| ); the size of the
Strongly Connected Component (SCC ); and the diameter of the network, i.e., the length of the longest path
among the shortest ones.

[Table 6 about here.]

[Figure 15 about here.]

We show in Figure 15 the in-strength and the out-strength distributions in the scientific migration network in
2000, 2014, and 2016. Other years are not reported here, but they show a comparable behaviour: the shapes
of the distributions are very similar to each other. Also, there are not notable differences between in-strength
and out-strength. Such distributions will come in handy in the following, as input of configuration models
that create random graphs preserving in-strength and out-strength sequences.

B Correlations among measures

The correlation between ~h and ~a and the evolution of such correlation is an interesting aspect to take into
account. We show, in Figure 16, the Pearson correlation between ~h and ~a as a function of the year, and
compare it to a null model.
The correlation in the original network is strong during the whole time domain, constantly greater than
0.85. The null model has even stronger correlation in all years, with small variation between the different
configurations. This means that we should expect more countries of high (low) hub score having also high
(low) authority score, and vice versa, in the scientific migration network. The observed behaviour should
then rely on different factors, e.g., local patterns than the strength distribution.

[Figure 16 about here.]

[Figure 17 about here.]

In order to compare the HITS and the PageRank results, in Figure 17 we also visualise the Pearson correlation
between ~h and ~a, and ~r. Interestingly, both ~h and ~a are highly correlated to ~r. ~a, in particular, has
correlation greater than 0.95 in all years. This validates the results obtained by the HITS algorithm that
has the advantage of depicting two different aspects of the world countries, providing then more accurate
indications.

C HITS complete ranking

2016 rankings of countries according authority and hub scores are reported in this section for illustrative
purposes. We are aware that this information will be obsolescent at the time of publication; however this is
based on the dataset provided in [24], that has been collected from ORCID in 2017 and made available to
the community. We claim that temporal scientific migration networks can be built from actual ORCID data
and that always up-to-date rankings and accessory information can be explored by the interested user via
a Web based dashboard. However, the implementation of such software architecture is beyond the scope of
this paper.

[Table 7 about here.]
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[Table 8 about here.]
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Figure 1: Distribution of the number of ORCID members migrating per year, from 1950 to 2020.
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Figure 2: Pipeline of data preparation: from row data to network data. Josiah Carberry is a fictitious
person, his account is used as a demonstration account by ORCID.
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β

Figure 3: Drain index β in 2014. Positive (negative) values of β are colour coded with different shades of
red (blue). Countries without data have been dashed with diagonal lines.
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Figure 4: Focus on the network backbone: figures above show the percentages of retained nodes (Nb/N),
edges (Eb/E) and weights (Wb/W ) after the application of the filtering strategy. Each plot shows the
application of the filter with a increasing significance levels (α = {0.001, 0.05, 0.2}).
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Figure 5: s estimates the similarity between the rankings in two successive years. Plots in the first row
represent similarities between the top twenties (a), the bottom twenties (b), and the middle twenties (c) in
two successive years if we use the brain index defined in Eq. 1. Plots in the bottom row represent respectively
the similarities between the top 20-th countries in each ranking by page rank (d), authority score (e), and
hub score (f).
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r

Figure 6: PageRank ~r2014 is colour coded with different shades of red. Darker (lighter) red is used for
countries with higher (lower) page rank values. Countries without data have been dashed with diagonal
lines.

21

10.1016/j.osnem.2021.100176


Postscript - DOI: 10.1016/j.osnem.2021.100176

0.00 0.05 0.10 0.15 0.20 0.25
a

0.0

0.1

0.2

h
2000

CN
US

GBGBCA
DE USIT

0.00 0.05 0.10 0.15 0.20 0.25
a

0.0

0.1

0.2

h

2002

GB USUSGB
CN DEDE

IT

0.00 0.05 0.10 0.15 0.20 0.25
a

0.0

0.1

0.2

h

2004

GB USUSGBCN
ESIN CA

0.00 0.05 0.10 0.15 0.20 0.25
a

0.0

0.1

0.2

h

2006

CN USUSGBGB

AU
IN

ES

0.00 0.05 0.10 0.15 0.20 0.25
a

0.0

0.1

0.2

h

2008

CN

USIN GBGB

AU
US

ES

0.00 0.05 0.10 0.15 0.20 0.25
a

0.0

0.1

0.2

h

2010

CN

USGBGB USDEIN

AU

0.00 0.05 0.10 0.15 0.20 0.25
a

0.0

0.1

0.2

h

2012

CN
USGBGB US

AU
IN DE

0.00 0.05 0.10 0.15 0.20 0.25
a

0.0

0.1

0.2

h
2014

CN
USGBGB US

AU
IN DE

0.00 0.05 0.10 0.15 0.20 0.25
a

0.0

0.1

0.2

h

2016

Africa Europe Americas Oceania Asia

USUSCN GBGB
AU

DEDE

Figure 7: Evolution of hub and authority scores of the nodes of the scientific migration network in time.
ISO 3166-1 alpha-2 codes are reported for selected countries: Australia (AU), China (CN), Germany (GE),
India (IN), Italy (IT), Spain (ES), United Kingdom (GB), and United States (US).
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(a) US Successors 2016 (b) CN Successors 2016

(c) US Predecessors 2016 (d) CN Predecessors 2016

Figure 8: Evolution of the Ego-network for United States and China in 2016. Edges follow clockwise
directions: we show outgoing connections (top), and incoming connections (bottom). Node dimensions scale
over authority values for the attractors countries and over hub values for providers countries. Edge thickness
is proportional to edge weights. Colours follow continent schema as in Figure 7.
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Figure 9: Lorenz curves and 95% confidence intervals for three classes of hubs in 2014. The population W
is represented by the edge weights of incoming edges.
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Figure 10: Lorenz curves and 95% confidence intervals for three classes of authorities in 2014. The population
W is represented by the edge weights of outgoing edges.
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Figure 11: Average Gini coefficient (and 95% confidence interval) as a function of the hub ranking of the
scientific migration network and of the null model. The population W is represented by the edge weights of
outgoing edges and the average is computed over the time domain T .
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Figure 12: Average Gini coefficient (and 95% confidence interval) as a function of the authority ranking of
the scientific migration network and of the null model. The population W is represented by the edge weights
of outgoing edges and the average is computed over the time domain T .

27

10.1016/j.osnem.2021.100176


Postscript - DOI: 10.1016/j.osnem.2021.100176

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

years

0

10

20

30

40

50

60

70

80

ra
nk

in
g 

po
si

tio
n

China

India
Denmark

United States

Malaysia

GreecePeru

(a) Authority Ranking

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

years

0

10

20

30

40

50

60

70

hu
b 

ra
nk

in
g 

po
si

tio
n

Bangladesh

Finland
Iran
Denmark
South Korea

Italy

Jordan

Russia

(b) Hub Ranking

Figure 13: Ranking according to increase or decrease of position in time span 2000-2016 for authorities (a)
and hubs (b).
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Figure 14: Gini values for weights edges distributions of Greece (GR) and Peru (PE) predecessors (a), and
of South Korea (KR) and Denmark (DK) successors (b). We also drew partial ego-networks for the same
countries (c-j) in 2000 and 2016: node sizes scale over authority (hub) values for the receiving (provider)
countries; edge thickness is proportional to weights; colours follow continent schema as in Fig. 7.
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Figure 15: In-strength (left) and the out-strength (right) distributions in the scientific migration network in
2000, 2014, and 2016.
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Figure 16: Person correlation between ~h and ~a of the scientific migration network and of the null model, for
which we report mean and 95% confidence interval. p-values are smaller than 1.5e−05 in all cases.
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Figure 17: Person correlation between ~h and ~a, and ~r of the scientific migration network.
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Table 1: Ranking (partial) of the countries by drain index β in 2014. For each country, out-strength and
in-strength measured during such year are also reported. Countries highlighted in bold have the highest
out-strength in 2014.

ranking country β sout sin

1 Sint Maarten 1.0 2 0
2 Eritrea 1.0 2 0
3 Central African Republic 1.0 1 0
4 Curacao 1.0 1 0
5 Saint Vincent 1.0 1 0

85 Spain 0.03 80 74
90 United Kingdom 0.01 109 105

111 France 0.0 78 78
114 United States −0.008 114 116
116 Italy −0.01 71 73
202 Guinea −1.0 0 2
203 Guyana −1.0 0 2
204 Belize −1.0 0 2
205 Niger −1.0 0 3
206 Chad −1.0 0 3
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Table 2: Countries (partial) rankings by drain index β calculated on three different network backbones in
2014. Each backbone is extracted after the application of a filter with a increasing significance levels (α =
{0.001, 0.05, 0.2}). The five countries of highest β (ties broken by out-strength) and the five countries of
lowest β (ties broken by in-strength) are reported.

alpha = 0.001 alpha = 0.05 alpha = 0.2
1 Iran 1 Hungary 1 Syria
2 Sweden 2 Cuba 2 Serbia
3 Greece 3 Venezuela 3 Uruguay
4 New Zealand 4 Uganda 4 Jamaica
5 Denmark 5 Zambia 5 Rwanda
. . . . . . . . .
38 Mexico 73 Ethiopia 117 Macao
39 Austria 74 Tunisia 118 Bolivia
40 Chile 75 Senegal 119 Guatemala
41 Russia 76 Estonia 120 Brunei
42 South Africa 77 Luxembourg 121 Mali
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Table 3: Top-20 ranking by PageRank in 2000, 2014, and 2016.

ranking 2000 2014 2016
s(r2000, r2014) = 0.88 s(r2000, r2014) = 0.91

1 United States United States United States
2 United Kingdom United Kingdom United Kingdom
3 Germany Australia Australia
4 Spain Spain Germany
5 Italy Germany Spain
6 France China China
7 Canada France Canada
8 Australia Canada France
9 Portugal Italy Switzerland
10 Netherlands Sweden Sweden
11 Sweden Portugal Netherlands
12 Japan Brazil Italy
13 Switzerland Switzerland Denmark
14 Brazil Netherlands Portugal
15 China Denmark Japan
16 South Korea India Ireland
17 Malaysia Japan Colombia
18 Mexico South Korea India
19 Denmark Belgium Brazil
20 Indonesia Saudi Arabia New Zealand
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Table 4: Best providers of scientist: top-20 ranking by hub score in 2000, 2014, and 2016.

ranking 2000 2014 2016
s(r2000, r2014) = 0.87 s(r2000, r2014) = 0.91

1 China China United States
2 United Kingdom United Kingdom China
3 Canada United States United Kingdom
4 United States India Germany
5 South Korea Spain India
6 France Canada Spain
7 Germany Italy Canada
8 India Germany Italy
9 Italy France Australia
10 Spain Brazil France
11 Australia Australia Netherlands
12 Japan Portugal Brazil
13 Brazil South Korea Switzerland
14 Russia Netherlands Portugal
15 Portugal Japan South Korea
16 Mexico Switzerland Sweden
17 Turkey Sweden Japan
18 Switzerland Iran Denmark
19 Colombia Turkey Ireland
20 Taiwan Colombia Belgium
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Table 5: Best attractors of scientist: top-20 ranking by authority score in 2000, 2014, and 2016.

ranking 2000 2014 2016
s(r2000, r2014) = 0.86 s(r2000, r2014) = 0.88

1 United States United States United States
2 United Kingdom United Kingdom United Kingdom
3 Germany Australia Australia
4 Italy Germany Germany
5 Spain France Canada
6 Canada Canada Spain
7 Australia Spain China
8 Portugal China France
9 France Italy Switzerland
10 Japan Portugal Netherlands
11 Netherlands Sweden Sweden
12 South Korea Switzerland Japan
13 Sweden South Korea Italy
14 Brazil Netherlands Denmark
15 Malaysia Brazil Portugal
16 Switzerland Denmark Hong Kong
17 China Japan Ireland
18 Ireland Hong Kong Colombia
19 Mexico India Singapore
20 Taiwan Singapore India
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Table 6: Summary of some basic network statistics, grouped by year.

year # nodes # links density reciprocity SCC diameter
2000 170 1341 0.047 0.552 124 5
2001 165 1396 0.052 0.549 123 6
2002 170 1476 0.051 0.562 127 5
2003 168 1530 0.055 0.571 127 6
2004 174 1661 0.055 0.580 136 4
2005 172 1815 0.062 0.608 140 5
2006 180 1942 0.060 0.582 148 5
2007 187 2103 0.060 0.602 144 5
2008 190 2259 0.063 0.602 146 5
2009 190 2457 0.068 0.597 156 5
2010 190 2514 0.070 0.621 152 4
2011 198 2655 0.068 0.627 164 5
2012 198 2916 0.075 0.634 167 4
2013 203 3041 0.074 0.622 172 4
2014 206 3035 0.072 0.611 171 5
2015 197 2872 0.074 0.604 163 4
2016 173 2133 0.072 0.625 135 4
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Table 7: Ranking of the countries by authority score in 2016.

1 United States 46 Iran 91 Serbia 136 New Caledonia
2 United Kingdom 47 Greece 92 Albania 137 Lithuania
3 Australia 48 Poland 93 Palestinian Territories 138 Angola
4 Germany 49 Bangladesh 94 Iceland 139 Timor-Leste
5 Canada 50 Peru 95 Algeria 140 Mongolia
6 Spain 51 Luxembourg 96 Mauritius 141 Bolivia
7 China 52 Sri Lanka 97 Zimbabwe 142 Myanmar [Burma]
8 France 53 Iraq 98 Slovakia 143 Congo [Republic]
9 Switzerland 54 Hungary 99 Malta 144 Congo [DRC]
10 Netherlands 55 Kenya 100 Tunisia 145 Afghanistan
11 Sweden 56 Nigeria 101 Madagascar 146 Turkmenistan
12 Japan 57 Ethiopia 102 Papua New Guinea 147 Curacao
13 Italy 58 Vietnam 103 Nicaragua 148 French Polynesia
14 Denmark 59 Nepal 104 Trinidad and Tobago 149 Belize
15 Portugal 60 Kazakhstan 105 Paraguay 150 Libya
16 Hong Kong 61 Uruguay 106 Zambia 151 Uzbekistan
17 Ireland 62 Philippines 107 Mozambique 152 Cote dIvoire
18 Colombia 63 Lebanon 108 Laos 153 Montenegro
19 Singapore 64 Sudan 109 Bhutan 154 Togo
20 India 65 Uganda 110 Rwanda 155 Tonga
21 South Korea 66 Estonia 111 Azerbaijan 156 Saint Vincent
22 Brazil 67 Costa Rica 112 Cameroon 157 Burundi
23 New Zealand 68 Romania 113 Senegal 158 Guadeloupe
24 Belgium 69 Ghana 114 Brunei 159 Niger
25 Taiwan 70 Cyprus 115 Grenada 160 Swaziland
26 Austria 71 Guatemala 116 Jamaica 161 Kyrgyzstan
27 Mexico 72 Slovenia 117 Syria 162 Guyana
28 Saudi Arabia 73 Honduras 118 Cape Verde 163 Saint Kitts and Nevis
29 Chile 74 Panama 119 Morocco 164 Belarus
30 Finland 75 Tanzania 120 Antigua and Barbuda 165 Greenland
31 Norway 76 Benin 121 Bahrain 166 Bahamas
32 Malaysia 77 Venezuela 122 Burkina Faso 167 British Virgin Islands
33 Ecuador 78 Ukraine 123 Dominican Republic 168 Yemen
34 Turkey 79 Croatia 124 Somalia 169 Maldives
35 South Africa 80 Puerto Rico 125 Faroe Islands 170 Guinea
36 Israel 81 Kuwait 126 Gambia 171 Eritrea
37 Russia 82 Oman 127 Armenia 172 Liberia
38 Qatar 83 Bulgaria 128 Cuba 173 Macedonia [FYROM]
39 Thailand 84 Macau 129 Cambodia
40 Egypt 85 Jordan 130 Gabon
41 United Arab Emirates 86 El Salvador 131 Isle of Man
42 Pakistan 87 Botswana 132 South Sudan
43 Czech Republic 88 Sierra Leone 133 Guernsey
44 Indonesia 89 Fiji 134 Latvia
45 Argentina 90 Malawi 135 Chad
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Table 8: Ranking of the countries by hub score in 2016.

1 United States 46 Qatar 91 Kuwait 136 Guinea
2 China 47 Argentina 92 Cote dIvoire 137 Macedonia [FYROM]
3 United Kingdom 48 Vietnam 93 Panama 138 Azerbaijan
4 Germany 49 Thailand 94 Cameroon 139 Eritrea
5 India 50 Hungary 95 Brunei 140 Cambodia
6 Spain 51 Puerto Rico 96 Guatemala 141 Senegal
7 Canada 52 Ecuador 97 Palestinian Territories 142 Guadeloupe
8 Italy 53 Sri Lanka 98 Rwanda 143 Syria
9 Australia 54 Ghana 99 Armenia 144 Greenland
10 France 55 United Arab Emirates 100 Uganda 145 Angola
11 Netherlands 56 Philippines 101 Guyana 146 Timor-Leste
12 Brazil 57 Peru 102 Sierra Leone 147 Faroe Islands
13 Switzerland 58 Kenya 103 South Sudan 148 Madagascar
14 Portugal 59 Nepal 104 Liberia 149 Oman
15 South Korea 60 Lebanon 105 Kyrgyzstan 150 Zambia
16 Sweden 61 Venezuela 106 Swaziland 151 Benin
17 Japan 62 Romania 107 Cape Verde 152 Burundi
18 Denmark 63 Ukraine 108 Saint Kitts and Nevis 153 Niger
19 Ireland 64 Jordan 109 British Virgin Islands 154 Turkmenistan
20 Belgium 65 Costa Rica 110 Saint Vincent 155 Gabon
21 Turkey 66 Serbia 111 Malta 156 Jamaica
22 Singapore 67 Ethiopia 112 Slovakia 157 Belize
23 Austria 68 Cuba 113 Belarus 158 Burkina Faso
24 Iran 69 Luxembourg 114 Maldives 159 Gambia
25 Greece 70 Morocco 115 Libya 160 Papua New Guinea
26 Mexico 71 Kazakhstan 116 Fiji 161 New Caledonia
27 Finland 72 Estonia 117 Somalia 162 Tonga
28 Hong Kong 73 Sudan 118 Botswana 163 Montenegro
29 Egypt 74 Dominican Republic 119 Congo [Republic] 164 Afghanistan
30 Colombia 75 Tanzania 120 French Polynesia 165 Antigua and Barbuda
31 Saudi Arabia 76 Tunisia 121 El Salvador 166 Uzbekistan
32 Taiwan 77 Bulgaria 122 Bolivia 167 Mongolia
33 South Africa 78 Croatia 123 Bahrain 168 Chad
34 Israel 79 Latvia 124 Laos 169 Togo
35 New Zealand 80 Zimbabwe 125 Mozambique 170 Mauritius
36 Bangladesh 81 Grenada 126 Bhutan 171 Curacao
37 Malaysia 82 Nicaragua 127 Honduras 172 Guernsey
38 Russia 83 Iraq 128 Congo [DRC] 173 Isle of Man
39 Chile 84 Malawi 129 Algeria
40 Pakistan 85 Cyprus 130 Trinidad and Tobago
41 Nigeria 86 Uruguay 131 Iceland
42 Poland 87 Slovenia 132 Albania
43 Czech Republic 88 Lithuania 133 Yemen
44 Indonesia 89 Bahamas 134 Macau
45 Norway 90 Myanmar [Burma] 135 Paraguay
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