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An ab initio quantum-mechanical theoretical framework is presented to compute thermal prop-
erties of molecular crystals. The present strategy combines dispersion-corrected density-functional-
theory (DFT-D), harmonic phonon dispersion, quasi-harmonic approximation to the lattice dy-
namics for thermal expansion and thermodynamic functions, and quasi-static approximation for
anisotropic thermo-elasticity. The proposed scheme is shown to reliably describe thermal properties
of the urea molecular crystal by a thorough comparison with experimental data.

Molecular crystals have increasingly attracted great
attention due to their peculiar chemical and physical
properties, which make them suitable as high energy-
density materials,1–3 active pharmaceutical ingredients
(APIs),4–7 constituents of opto-electronic devices for
their linear and non-linear optical properties,8–10 etc.

Nonetheless, from a theoretical view-point, they still
represent a major challenge to state-of-the-art quantum-
chemical methods as many kinds of chemical interactions
(covalent intra-molecular, electrostatic, hydrogen-bond,
long-range dispersive) need to be accurately described
simultaneously. Only in recent years, different theoret-
ical approaches have been devised in order to predict
their structural and energetic properties (with the main
goal of discriminating between competing polymorphs):
from force-field to high-level molecular fragment-based
schemes, from periodic dispersion-corrected density func-
tional theory (DFT-D) to periodic many-body wave-
function techniques.11–21 However, once a reliable and
balanced description of the various chemical interac-
tions has been achieved by means of any of the above-
mentioned quantum-chemical methods, the extension of
their applicability to more complex properties of tech-
nological and industrial relevance, which would greatly
increase their predictiveness, such as mechanical, elas-
tic, optical and thermodynamic responses,22–25 has to be
tackled. Apart from the intrinsic high degree of complex-
ity of the required theoretical techniques and algorithms,
the main difficulty is here represented by the fact that
most of those properties are largely affected by thermal
effects,26–28 even at room temperature, such as zero-point
energy, harmonic and anharmonic thermal nuclear mo-
tion, anharmonic thermal lattice expansion, etc.

Most quantum-chemical ab initio methods describe the
ground-state of a system at zero pressure and tempera-
ture. If the inclusion of pressure on computed structural
and elastic properties is a relatively easy task,18,29–31 this
is definitely not yet the case when temperature has to
be accurately accounted for. Indeed, we are still far
from having effective schemes formally developed and
efficiently implemented in a solid state context, partic-

ularly so when anharmonic terms to the lattice poten-
tial have to be included into the formalism. When the
harmonic approximation (HA) to the lattice potential
is used, the vibrational contribution to the free energy
of the crystal is assumed to be independent of volume.
As a consequence, a variety of properties are wrongly
described: null thermal expansion, elastic constants in-
dependent of temperature as well as the bulk modu-
lus, equality of constant-pressure and constant-volume
specific heats, infinite thermal conductivity as well as
phonon lifetimes, etc.32 If the explicit calculation of an-
harmonic phonon-phonon interaction coefficients remains
a rather computationally demanding task, with imple-
mentations often limited to a molecular, non-periodic
context,33–35 a simpler, though effective, approach for
correcting most of the above mentioned deficiencies of
the HA is represented by the so-called quasi-harmonic
approximation (QHA),36 which retains the same formal
expression of the harmonic Helmholtz free energy F and
introduces an explicit dependence of phonon frequencies
ωkp on volume:

F (T, V ) = U0(V )+kBT
∑
kp

[
ln

(
1 − e

−
~ωkp(V )

kBT

)]
, (1)

where kB is Boltzmann’s constant, U0(V ) is the zero-
temperature internal energy of the crystal, which in-
cludes the zero-point energy of the system, and the sum
samples phonon dispersion within the first Brillouin zone
in reciprocal space.

In this Communication, we present a fully-integrated
ab initio quantum-mechanical theoretical framework for
the study of thermal properties of molecular crystals,
which is based on: i) use of generalized-gradient and
global hybrid functionals, as a posteriori dispersion-
corrected according to Grimme’s D3 proposal;37,38 ii)
efficient use of both harmonic and quasi-harmonic lat-
tice dynamical calculations for the description of phonon
dispersion, including anharmonic effects;39–43 iii) peri-
odic boundary condition calculations with use of an
atom-centered Gaussian-type function basis set of triple-
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FIG. 1: (color online) Thermal expansion (A,B,D,E) and crys-
tal structure (C) of urea. Absolute (A) and relative to 150
K (B) cell volume as a function of temperature. Directional
thermal expansion, relative to 150 K, along the a and c lattice
vectors (D,E, respectively). Directional thermal expansion co-
efficients are given in the inset of panel E.

ξ quality plus polarization functions;44,45 iv) use of ef-
ficient fully-automated algorithms for the calculation
of the fourth-rank elastic tensor of crystals belong-
ing to any space group of symmetry;46–48 v) combined
use of the quasi-harmonic and quasi-static approxima-
tions to include thermal effects on elastic constants;49,50

vi) full exploitation of both point-symmetry and effi-
cient parallelization of all algorithms at all steps of the
calculations.51,52

The molecular crystal of urea, belonging to the tetrag-
onal P421m space group, is taken as a suitable test-
case for a couple of reasons: i) its thermal features
(anisotropic thermal lattice expansion,53–57 single-crystal
elastic constants at room temperature,58–60 thermody-
namic properties61,62) have been measured in different,
independent experimental studies, thus making it the op-
timal system for benchmarking our computational strat-
egy; ii) a balanced description of most kinds of chemi-
cal interactions is required to properly describe it; fur-
thermore, its peculiar molecular chain-like structure (see
panel C of Figure 1) leads to a high directionality of the
various interactions (from intra-chain electrostatic and
hydrogen-bonds to inter-chain dispersive, etc.).

In Figure 1, we report the volumetric and directional
(i.e. anisotropic) thermal lattice expansion of urea,
as measured experimentally53–57 and as determined by
present anharmonic ab initio calculations (phonons of
the primitive cell evaluated at 7 distinct volumes within
QHA), by minimizing Eq. (1) with respect to the volume
at each temperature. Several DFT functionals are consid-
ered: some non dispersion-corrected and a bunch of -D3
corrected ones. For the global hybrid B3LYP functional,
an older dispersion-corrected version is also considered,
which was specifically parametrized on molecular crys-
tals (namely, B3LYP-D2∗).17 From V (T ) data reported
in panel A, all non dispersion-corrected functionals are
seen to poorly describe the absolute value of the equilib-
rium volume of the crystal, with a large overestimation by
PBE, B3LYP and PBE0 and a large underestimation by
LDA. On the contrary, all -D corrected functionals nicely
reproduce the correct volume with deviations from each
other always smaller than 1.5%. Let us stress that the
sole zero-point motion effect at 0 K (seldom included,
along with proper thermal effects, in most ab initio stud-
ies on the relative performance of different functionals)
is that of increasing the volume by about 2.6% for all
-D corrected functionals. It follows that any ranking of
functionals for the description of structural features of
molecular crystals where zero-point and thermal effects
are neglected would be rather questionable. In order
to better highlight the description of thermal expansion,
panel B reports the V (T )/V (150K) ratio as a function
of temperature. Non corrected functionals wrongly de-
scribe the thermal expansion either by largely over- or
under-estimating it; all dispersion-corrected ones give a
reliable description of the expansion, with a similar trend
with respect to each other, PBE-D3 providing the best
description at high temperatures. The anisotropy of the
thermal expansion is documented in panels D and E for
-D3 corrected functionals, where the a(T )/a(150K) and
c(T )/c(150K) ratios are reported (on the same absolute
scale), respectively. The thermal structural response of
urea is seen to be rather anisotropic, with a much larger
expansion in the ab plane (inter-chain directions) than
along c (intra-chain direction), as expected (see also the
inset of panel E where directional thermal expansion co-
efficients αx(T ) = 1/x(T )[∂x(T )/∂T ] are reported, with
x either a or c). All -D3 corrected functionals nicely pre-
dict such a strong anisotropic thermal response, with an
excellent description of the expansion along a and just a
slight underestimation of the small expansion along c.

The experimental determination of thermo-elastic pa-
rameters of molecular crystals is rather problematic due
to general difficulties in growing crystals of adequate size,
performing measurements on very soft samples, and deal-
ing with low-symmetry space groups (i.e. high num-
ber of independent elastic constants Cvu to be deter-
mined). From a theoretical point of view, temperature-
dependent elastic constants could be obtained as sec-
ond free energy density derivatives with respect to the
strain: CT

vu(T ) = 1/V (T )[∂F/(∂εv∂εu)], which, however,
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TABLE I: Single-crystal independent elastic constants Cvu

and bulk modulus K of urea (in GPa) as computed for each
functional at 0 K (without zero-point effects) and at room
temperature in both the isothermal (T) and adiabatic (S) con-
ditions. Experimental adiabatic constants and bulk modulus
at room temperature are also reported for comparison.

C11 C33 C44 C12 C13 C66 K

B3LYP-D3

0 K 18.7 80.8 10.6 19.3 11.5 24.1 18.3

293 K (T) 12.3 70.3 8.9 13.5 7.9 17.4 12.5

293 K (S) 13.5 71.5 8.9 14.6 9.1 17.4 13.1

PBE0-D3

0 K 16.9 75.3 10.3 17.1 10.7 22.1 16.5

293 K (T) 11.0 66.2 8.5 11.7 7.5 15.6 11.1

293 K (S) 11.9 67.0 8.5 12.5 8.4 15.6 11.7

PBE-D3

0 K 16.7 73.2 9.9 17.5 10.9 22.0 16.5

293 K (T) 10.9 64.2 8.3 12.1 7.7 15.8 11.2

293 K (S) 12.7 66.1 8.3 13.9 9.6 15.8 11.8

Exp.60 293 K (S) 11.7 54.0 6.2 10.7 9.2 10.6 11.1

Exp.59 298 K (S) 23.5 51.0 6.2 -0.5 7.5 0.5 11.2

Exp.58 298 K (S) 21.7 53.2 6.3 8.9 24.0 0.5 11.6

would require the costly calculation of phonons at sev-
eral strained lattice configurations.63 A simpler way to
obtain those thermo-elastic quantities is represented by
the quasi-static approximation (QSA),49,50 which, tak-
ing advantage of the V (T ) relation obtained through
the QHA, consists in evaluating static internal-energy E
derivatives at the volume corresponding to the desired
temperature: CT

vu(T ) ≈ 1/V (T )[∂E/(∂εv∂εu)]. Let us
stress that these elastic constants are isothermal ones,
while those commonly measured experimentally are adi-
abatic ones (i.e. refer to the isentropic limit). To enable
a quantitative comparison with the experiment, isother-
mal constants CT

vu must be transformed into adiabatic
ones CS

vu, via the following relation, which involves quasi-
harmonic quantities:64

CS
vu(T ) = CT

vu(T ) +
TV (T )λv(T )λu(T )

CV (T )
, (2)

where CV is the constant-volume specific heat and, in
the case of urea, λv(T ) = −αa(T )[CT

v1(T ) + CT
v2(T )] −

αc(T )CT
v3(T ).

In Table I, single-crystal elastic constants of urea are
reported as computed at 0 K and at room temperature
(in both the isothermal and adiabatic limit) with the -D3
corrected functionals here considered. The corresponding
bulk modulus is also reported. Three independent exper-
imental determinations at room temperature are also re-
ported with large discrepancies between each other.58–60

The effect of temperature is very large, reducing the value

FIG. 2: (color online) Specific heat (left panel) and en-
tropy (right panel) of urea as a function of temperature, as
computed at PBE-D3 level and compared with experimental
determinations.61,62 Dashed lines correspond to Γ-only calcu-
lations while continuous lines to a converged description of
phonon dispersion. Experimental data are constant-presure
ones while both constant-volume (thin line) and -pressure
(thick line) ones are reported for computed data.

of C11, C66 and C12 by about 30% and that of C33 and
C44 by about 12%. The bulk modulus K is reduced by
about 33% when passing from 0 to 293 K (where a reduc-
tion of about 12% is due to the sole zero-point motion
effect). All -D3 corrected functionals provide a similar
description of the anisotropy of the elastic response (i.e.
relative values of the different elastic constants), which
is a remarkable result given the weak and anisotropic na-
ture of the chemical interactions in urea. The adiabatic
correction is relatively small (null by symmetry for the
C44 and C66 constants), always increases the value of
the elastic constants, as expected, and acts differently on
different elastic constants: C11 is increased by 16% while
C33 by just 3% because of the different thermal expansion
along a and c, respectively (see Figure 1). Present calcu-
lations provide the first complete and homogeneous set of
elastic constants of urea, which allows to amend previous
experimental uncertainties on their absolute values.

The ab initio quantum-mechanical determination of
thermodynamic properties of molecular crystals requires
the accurate lattice-dynamical evaluation of phonon dis-
persion (i.e. of out-of-phase intermolecular vibrations).
From computed phonon frequencies, harmonic thermo-
dynamic quantities such as the constant-volume specific
heat CV and entropy S can be derived through the vi-
bration partition function within standard statistical me-
chanics. Experimentally measured specific heats (via
calorimetric techniques) refer to the constant-pressure
CP case, which might significantly differ from the CV

one when anharmonic (i.e. lattice expansion) effects are
large, as in the case of molecular crystals. The QHA
offers a way to evaluate such quantity, again enabling a
direct comparison with experimental data. The constant-
pressure specific heat can indeed be obtained by summing
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on top of the harmonic constant-volume one the term:

CP (T ) − CV (T ) = α2
V (T )KT (T )V (T )T , (3)

where αV is the volumetric thermal expansion coef-
ficient and KT the isothermal bulk modulus. Such
thermodynamic properties of urea are reported in Fig-
ure 2 as a function of temperature, as obtained at the
PBE-D3 level of theory (thermodynamic properties have
been shown to be very insensitive to different choices of
DFT functionals).40,41 A direct space, frozen-phonon, ap-
proach is here adopted,65 which consists in computing
phonon frequencies on super-cells of the primitive lat-
tice: a 3×3×3 super-cell is used (i.e. containing 432
atoms), which corresponds to a sampling of phonon dis-
persion over 27 k-points within the first Brillouin zone
in reciprocal space. In the right panel, the computed
entropy is compared with the experimentally measured
one by Andersson et al.61 The dashed line corresponds
to a Γ-only calculation of vibration frequencies (i.e. to
entirely neglecting the effect of phonon dispersion), while
the continuous line to a converged description of phonon
dispersion, which confirms the crucial role of collective in-
termolecular vibrations in predicting reliable thermody-
namic properties of molecular crystals. The same consid-

eration also applies to the specific heat case (left panel).
Here, we shall note that the anharmonic correction given
in Eq. (3) is essential in order to recover the correct
behavior (i.e. slope) of the specific heat at high tempera-
tures when comparing with the experiment (see difference
between thin, CV , and thick, CP , continuous lines).

To summarize, we have presented a multifaceted ab ini-
tio theoretical framework for the evaluation of a variety of
thermal anharmonic properties (structural, elastic, ther-
modynamic) of molecular crystals, which has been im-
plemented into a development version of the Crystal14
program by some of the present authors. The anisotropic
thermal expansion, adiabatic single-crystal elastic con-
stants and thermodynamic properties of urea have been
shown to be reliably described within the proposed ap-
proach. Zero-point and thermal effects (often neglected
in quantum-mechanical studies) are documented to be
crucial for the accurate prediction of these properties and
for a rigorous assessment of the relative performance of
different theoretical methods.

Prof. Piero Ugliengo is gratefully acknowledged for
having stimulated this study as well as Prof. Roberto
Orlando for his fundamental contribution in the imple-
mentation of the -D3 correction.
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