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Abstract
The conservation of historic structures requires detailed knowledge of their state of preservation. Documentation of dete-
rioration makes it possible to identify risk factors and interpret weathering mechanisms. It is usually performed using non-
destructive methods such as mapping of surface features. The automated mapping of deterioration is a direction not often 
explored, especially when the investigated architectural surfaces present a multitude of deterioration forms and consist of 
heterogeneous materials, which significantly complicates the generation of thematic decay maps. This work combines reflec-
tance imaging and supervised segmentation, based on machine learning methods, to automatically segment deterioration 
patterns on multispectral image composites, using a weathered historic fortification as a case study. Several spectral band 
combinations and image classification techniques (regression, decision tree, and ensemble learning algorithmic implementa-
tions) are evaluated to propose an accurate approach. The automated thematic mapping facilitates the spatial and semantic 
description of the deterioration patterns. Furthermore, the utilization of low-cost photographic equipment and easily operable 
digital image processing software adds to the practicality and agility of the presented methodology.

Keywords  Built heritage · Deterioration mapping · Multispectral reflectance imaging · Thermal infrared imaging · 
Supervised image segmentation · Machine learning

1  Introduction

Architectural heritage possesses outstanding value while 
concomitantly comprises a fundamental manifestation 
of sociocultural identity. The historic build environment 
is a vital aspect of a place's culture, history, and land-
scape, which necessitates measures to ensure its preser-
vation through time. However, environmental pressures 
and anthropogenic factors cause constant alterations and 
impose significant risks. Planning appropriate and compat-
ible conservation and restoration interventions to tackle the 
deterioration of historic structures requires a comprehensive 
knowledge of the preservation state. Thus, the need for the 
historic structures' recording emerges, which will provide 
the detailed information needed to support required preser-
vation interventions.

Recording the preservation state of a historic structure is 
a crucial prerequisite for pathology diagnosis. Document-
ing in detail the condition of the structure's elements is the 
first step towards qualitatively interpreting its condition and 
identifying mechanisms of deterioration. Therefore defin-
ing the data recording techniques that will provide rich and 
suitable information about the extent and forms of deteriora-
tion is essential for condition documentation. To the greatest 
extent possible, recording should be non-destructive, mean-
ing that it should encompass those nonintrusive inspection 
and sensing techniques that do not cause further damage 
to, nor impair the future usefulness of the structure and the 
historic materials.

Mapping is widely recognized as an effective non-
destructive method useful for condition documentation and 
can be applied to all materials at different scales. It registers 
information about the surface patterns of historic structures 
that can be later analyzed through computational systems. 
Mapping is frequently performed as a manual process in 
a computer-aided design (CAD) or geographic informa-
tion system (GIS) environment using as background color 
photos.
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Progress in automated mapping for historic structures 
has primarily concentrated on identifying and classifying 
building elements, materials, and additionally deterioration 
as a binary concept—considering the presence and absence 
of deterioration solely. The segmentation algorithms that 
have been considered are mainly based on dimensional-
ity reduction, unsupervised clustering, and deep learning 
approaches, occasionally considering spectral bands at the 
infrared range.

1.1 � Aims and scope

This work delves into the fields of imaging science and pat-
tern recognition to identify a novel and accurate methodol-
ogy for classifying different deterioration forms on historic 
structures. Reflecting on the potential of multispectral imag-
ing and learning-based image analysis for defect detection, 
the classification of multispectral composites synthesized 
from reflectance images captured at the visible (RGB), near-
ultraviolet (NUV), near-infrared (NIR), and thermal infrared 
(TIR) spectra, with supervised segmentation methods based 
on random decision trees, ensemble learning, and regression 
algorithmic implementations, is thoroughly evaluated.

1.2 � Article structure

This article is structured into six sections. Section 2 delivers 
an overview of the background for the presented work and 
discusses the related research. Section 3 describes the meth-
odology followed, including the instrumentation, data col-
lection and preparation, algorithmic implementations, and 
approaches followed to evaluate the segmentation results. 
Section 4 presents the application and results for the case 
study of a historic fortification, while Sect. 5 discusses the 
accuracy and interpretation of the results. The concluding 
remarks are presented in Sect. 6.

2 � Background and related work

Architectural surfaces of historic structures are subjected 
to continuous alterations due to exposure to environmental 
conditions, microorganisms, pollution, anthropogenic dam-
ages; their susceptibility to decay also depends on (incom-
patible) conservation interventions of the past and the inher-
ent characteristics of historic materials. Particularly when 
several different materials are present (such as in masonry 
structures), the architectural surfaces consist of an intricate 
mosaic of deterioration forms. Consequently, documentation 
methods for describing these complicated conditions in a 
non-destructive way become pertinent and often necessary.

2.1 � Mapping the preservation state

Mapping is a valuable non-destructive method as it facili-
tates the description, registration, and quantification of the, 
often overlapping, multitude of surface patterns on historic 
structures. When performed in a digital, computerized man-
ner, it produces spatial information, entities with geometric 
attributes that can be correlated, compared, used to pro-
duce statistical information, and allow for the attribution 
of semantic data about the characteristics of materials and 
their decay. Traditionally, mapping is a technique manually 
performed inside CAD and GIS platforms by describing the 
shape of surface patterns and organizing them into thematic 
layers [1–6]. An alternative way of mapping deterioration 
is the visualization of damage levels/indexes, which can be 
either accomplished directly or indirectly by analyzing the 
mapped deterioration patterns [7–15]. The additional spatial 
annotation of lithotypes facilitates the association between 
materials and alteration [1, 11–13, 15–23]. Mapping sup-
ports the interpretation of weathering phenomena when 
combined with data from non-destructive testing (NDT) [8, 
9, 17–20, 22, 24, 25], laboratory mineralogical, chemical 
and physical characterization [15, 18, 19, 23, 26], and envi-
ronmental measurements [8, 12, 18, 19, 25, 27].

2.2 � Generating base‑maps for deterioration 
mapping

Mapping is typically a photo-based approach where a color 
image, an orthorectified image, or an orthoimage-mosaic is 
used as a base-map for designing the geometrical shape of 
surface patterns [27]. The metric (accuracy, scale-dependent 
spatial resolution) and chromatic quality of this background 
are essential for identifying deterioration [25, 28, 29]. Thus, 
acquiring suitable images is crucial for successful deterio-
ration mapping. However, not only true color images have 
been considered as base maps, but also images captured at 
portions of the electromagnetic spectrum beyond the visible.

2.3 � Multispectral imaging and data 
complementarity

The reciprocity of mapping and infrared reflectance imag-
ing—especially thermography—has often been considered 
essential for detecting weathering on historic structures [5, 
20, 24, 30, 31]. Besides, thermography is being extensively 
used in built heritage structural diagnostics [32–34] and has 
also been explored to detect different historic materials on 
building façades [35, 36]. The additional inclusion of NIR 
reflectance images enhances the identifiability of deterio-
ration, mainly when there is a presence of vegetation and 
biogenic crusts, which present vastly different near-infrared 
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reflectance characteristics compared with construction mate-
rials [37, 38]. However, the decision to include recorded data 
from multiple bands comes with the realization that suitable 
sensing techniques have to be selected.

Spectral collection in the infrared is connected with 
various sensing techniques that depend on the wavelength 
choice. Detection in the wavelength range between 400 and 
1100 nm has been performed with multispectral configura-
tions that involve multiple single-band cameras recording at 
4–12 different narrow spectral bands. The resolution of these 
instruments is usually low, and the collected imagery has to 
be meticulously checked to correct sensors' errors [39, 40]. 
The introduction, or rather repurposing, of commercial digi-
tal single-lens reflex (DSLR) cameras with charge-coupled 
device (CCD) and complementary metal–oxide–semicon-
ductor (CMOS)-based detectors, for spectral imaging at the 
same range, however, provides more affordable and agile 
solutions that retain the user-friendly features and the inter-
faces to a wide variety of photographic software and acces-
sories, and have high spatial resolution [41–43]. Commercial 
off-the-shelf (COTS) DSLR camera detectors are generally 
sensitive in a portion of the NIR range up to 1100 nm, which 

is cut off by an internal blocking filter. Removing this filter 
implies that the camera can be used for imaging at a wider 
than visible range, and external wavelength-specific filters 
can be utilized. Detection in the long-wavelength infrared 
(LWIR) range has usually been performed with uncooled 
microbolometer detectors for building inspections. The 
spatial resolution of thermography cameras is considerably 
lower than that of DSLR, and their relative cost is higher. 
Recently, more affordable thermography camera models 
have come into the market, including smartphone-adjusta-
ble low-resolution instruments. However, these inexpensive 
cameras provide lower accuracy, which makes them unus-
able for some applications.

2.4 � Digital image processing

The need for more efficient inspection [44] and intelligent 
identification of conservation needs [45] has led to the adop-
tion of image processing approaches to generate the thematic 
data needed for deterioration mapping. Digital image pro-
cessing (DIP) refers to the manipulation of the digital images 
to extract features and recognize patterns, which, after hav-
ing acquired the suitable base-maps, can be performed 
with techniques as simple as thresholding, edge detection, 
or information reduction to obtain the required results [33, 
46–48]. However, these approaches still largely depend on 
the human factor since many parameters have to be tuned 
differently for each application, and often deterioration pat-
terns have to be identified and extracted one at a time. The 
current rise of deep learning-based pattern recognition has 
delivered powerful tools for fully automated detection of 
deterioration (often through convolutional neural networks), 
even when a plethora of surface patterns can be observed 
[49–52]. Nevertheless, deep-learning implementations 
require large image datasets to be efficiently trained, which 
is often impractical for built heritage applications. They 
may also underperform considering the uniqueness of each 
heritage asset, many of which present a distinctive mixture 

Fig. 1   Overall research methodology

Table 1   Specifications of digital cameras used for acquiring multi-
spectral reflectance data

a Field-of-view
b Noise equivalent temperature difference (thermal sensitivity)
c Typical percentage of the difference between ambient and scene tem-
perature

Camera model Canon EOS Rebel SL1 FLIR ONE Pro

Spectral range 0.3–1.1 μm 8–14 μm
Resolution 5184 × 3456 pixels 160 × 120 pixels
Pixel pitch 4.3 μm 12 μm
FOVa – 43° ± 1°
NETDb – 70 mK
Measurement accuracy –  ± 5%c
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of historic materials. Therefore, other more easily execut-
able supervised learning-based approaches are sometimes 
considered for deterioration detection through classification 
and regression.

Multiband and multispectral image segmentation for built 
heritage inspection purposes has been applied via a range 
of clustering algorithms, some of the most common being 
maximum-likelihood, minimum-distance, and k-means [36, 
37, 39, 48, 53–56]. However, most of the relevant works 
aim at segmenting the materials and elements of historic 
façades, and when deterioration is considered, it is deter-
mined as present or not present. To be specific, many works 
consider the altered and unaltered areas of a historic material 
as two categories rather than identifying the different dete-
rioration typologies, which is also partly a result of the state 
of preservation of the heritage assets involved. Alternative 
multi-sensor approaches, involving terrestrial LiDAR for 
NIR recording, have been reported to produce high-accuracy 
thematic mapping results for damaged historic structures 
[57, 58]. However, they introduce significant instrumenta-
tion costs, and require rigorous radiometric calibrations and 
optimal data gathering conditions.

3 � Methods and materials

The rationale behind this work is set on the identified lack 
of image-based methods for automatic mapping of weath-
ered historic structures. The methods tested aim to tackle the 
problematics of mapping the preservation state when various 
surface deterioration forms are present. Instead of following 
unsupervised segmentation techniques and then interpret-
ing each classified category of weathering-caused alteration, 
supervised algorithmic approaches are implemented using as 
input the already identified deterioration categories. Com-
binations of different spectral band composite images and 
supervised segmentation algorithms are evaluated to distin-
guish an optimal solution in terms of accuracy—based on 
reference data.

Figure 1 depicts the implemented research design in 
this work. As already highlighted, the quality of available 
imagery upon which the pattern recognition will be per-
formed is essential for ensuring the accuracy and inter-
pretability of results. Therefore, the workflow starts from 

acquiring appropriate images and then continues with their 
radiometric correction. The multispectral composites are 
digitally synthesized from the band-specific reflectance 
images and subsequently segmented into deterioration cat-
egories following a visual identification of training regions. 
The results are evaluated with metrics deriving from the 
field of remote sensing. The output of the deterioration 
classification can be optionally transferred to an environ-
ment appropriate for spatial information management. The 
principle of using low-cost equipment and software was fol-
lowed throughout this work as it is an essential factor for the 
inspection of historic buildings.

3.1 � Sensors and data acquisition

The selection of the instruments employed in this work 
considers the complementarity of data captured at differ-
ent spectral bands and the flexibility requirements of sens-
ing techniques used for built heritage condition monitoring. 
Affordable, portable sensors are utilized to obtain the neces-
sary multispectral data that will constitute the background 
for the deterioration pattern analysis, contributing to a sim-
ple to implement methodology. The characteristics of the 
instrumentation are presented in Table 1. The images are 
taken with two sensors, an EOS Rebel SL1 (Canon Inc., 
Tokyo, Japan) digital single-lens reflex camera with an EF-S 
18-55 mm f/3.5–5.6 IS II lens, and a FLIR ONE Pro (Tel-
edyne FLIR LLC, Wilsonville, OR, USA) thermographic 
camera attached to a smartphone. The internal hot mirror 
filter of the SL1 camera has been removed to allow imag-
ing beyond the visible range. Three low-cost external filters 
are employed to allow RGB, NUV, and NIR photo shoot-
ing. The images are acquired as parallel as possible to the 
architectural surfaces to avoid occlusions, and with small 
focal lengths to avoid large distortions that can affect image 
quality during the resampling phase of distortion correction. 
Furthermore, the images are acquired under homogeneous 
illumination conditions and without shadows, improving 
their radiometric potential and with a steady tripod, thus 
preventing image blur. Since low-cost sensors are more 
likely to be affected by noise sources, the camera sensor is 
checked to estimate the vignetting and background noise 
levels, and the images are corrected to ensure their quality. 

Table 2   Multispectral image 
composition

Multispectral image Red band Green band Blue band

G-B-NUV Green Blue Near-ultraviolet
R-G-B Red Green Blue
NIR-R-G Near-infrared Red Green
TIR-NIR-R Thermal infrared Near-infrared Red
NIR-M-NUV Near-infrared RGB monochromatic Near-ultraviolet
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The thermographic data are acquired at sets of burst images 
to increase digitally later their spatial resolution.

3.2 � Multispectral data preparation

Pre-processing the imagery data involves the preparation 
of multispectral image composites for the subsequent seg-
mentation. At first, the radiance images acquired with the 
SL1 camera are downloaded in the RawDigger (LibRaw 
LLC, Maryland, USA) software, where the color filter array 
conversion is reversed to acquire raw radiance images, and 
RGB images are color balanced. Non-visible spectrum 
images should also be converted to reflectance images based 
on pixel values of a reference surface. The uncompressed 
images are then corrected from distortion [59] in ImageJ2 
[60]. Thermal infrared burst mode images acquired with the 
FLIR ONE Pro camera are used to create high-resolution 
thermal images [61].

The manual matching of band-specific images is done 
using the HyperCube software [62] (projective transfor-
mation, nearest-neighbor interpolation). Subsequently, the 
image composites are constructed using different multispec-
tral combinations, as described in Table 2. The images are 
resampled to match the resolution of all bands, and the sky 
and ground are trimmed from all multispectral composites 
to reduce potential misclassifications. The synthesis of the 
multiband composites also considers the same principle of 
using low-cost equipment, and thus all composites consist 
of three bands so that segmentation can be performed in 
ImageJ2—avoiding the use of commercial specialized spa-
tial analysis software.

3.3 � Machine learning‑based segmentation 
of deterioration patterns

The classification of deterioration patterns is performed 
via a supervised segmentation procedure using the Train-
able WeKa Segmentation 3D plugin [63] of ImageJ2. The 
machine learning-based image segmentation techniques fol-
low decision tree [64], ensemble learning [65], and regres-
sion approaches. Specifically, the Random Tree, Random 
Forest, Fast Random Forest, and LogitBoost classifiers are 
employed. The supervised approach presupposes the annota-
tion of image regions of interest (ROIs), corresponding to 
each semantic deterioration category to be segmented, that 
will train the algorithmic model into providing a semantic 
classification of the entire image.

The decision tree model is a machine learning algorithm 
that can be used for both supervised classification and 
regression problems. A decision tree simply consists of a 
series of sequential decisions made to reach a specific result 
of distinct data classes. The classes are mutually exclusive 
and represented by specific attributes. The learning input, 
which consists of sets of pixels belonging to known classes, 
assists the accurate classification of both annotated pixels 
and not annotated pixels. Each node of the decision tree 
decides an outcome based on the attribute values and leads 
either to another node, using an appropriate subtree, or to a 
leaf, which gives the predicted class of the pixel [66]. The 
Random Tree classifier is based on a decision tree learning 
method. Single decision trees are easy to conceptualize but 
usually suffer from high variance, making them not competi-
tive in terms of accuracy.

Fig. 2   Fort of Karababa, bird’s-
eye view
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A random forest classifier combines ensemble classifica-
tion machine learning algorithms and decision trees. Each 
tree classifier is independently generated from the input 
training data using a random sample like in bagging. When 
growing a tree, the best possible split is computed for a ran-
dom subset, instead of always computing the best split for 
each node. In this way, tree diversity is generated using two 
ways of randomization. Aggregating predictions make the 
class prediction of the ensemble. Random forest generally 
overcomes the accuracy limitations of single decision trees 
[65, 67].

LogitBoost is a boosting algorithm that performs classifi-
cation using a regression scheme as the base learner and can 
handle multi-class problems. It can be seen as a convex opti-
mization; it applies the cost function of logistic regression 
on a generalized additive model. This classifier determines 
the appropriate number of iterations by performing efficient 
internal cross-validation [68].

3.4 � Accuracy metrics

The performance of the machine learning classification 
implementations, and of the different multispectral combina-
tions, are quantitatively evaluated using manually produced 
degradation maps as the ground truth. Different parameters 
are used to assess the classification efficiency of the intel-
ligent feature extraction techniques based on accuracy met-
rics common for thematic mapping. More specifically, the 
evaluation relies on the precision (fraction of appropriate 
classification among the classified instances) and F1-score 
(harmonic mean of precision and sensitivity) calculated for 
each class (Eqs. 1,2), and on the overall accuracy (Eq. 3)—
useful to estimate the overall performance of the classifiers.

where, for each class the TP (true positive), FP (false posi-
tive), and FN (false negative) come from the error matrix, a 
square array of numbers, which express the number of pixels 
assigned to a particular class in one classification relative 
to the number of pixels assigned to a particular class in the 
reference data [69, 70].

3.5 � Case study

The historic structure selected as a case study for the appli-
cation and assessment of the proposed methodology is a for-
tification in Euboea, Greece (Fig. 2). The Fort of Karababa is 
an Ottoman fortification constructed in 1684 on the homony-
mous hill which dominates the Boeotian coast across the city 
of Chalcis. The construction of the fortress was part of the 
effort to protect the city of Chalcis from impending Venetian 
attacks. The architectural style of the fort is more European 
than Turkish. It is oblong in plan, with a rampart on the 
north side, three bastions, and a large tower. Several parts 
of the fortification walls have ancient spolia built-in, while 
the south part is preserved in poor condition. The weathered 

(1)Precision =
TP

TP + FP

(2)F1 Score =
2TP

TP + FP + TP + FN

(3)Overall accuracy =
Sum of correctly classified units

Total number units

Fig. 3   Fort of Karababa north side, façades selected for evaluating 
the mapping methodology; from top to bottom: A (westernmost), B, 
and C (easternmost)
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masonry surfaces selected for evaluating the methodology 
are presented in Fig. 3. They are on the north side, and for 
abbreviation purposes, they have been named A, B, and C, 
starting with the westernmost (on the north bastion).

4 � Results

Following the described methodologies, after the compo-
sition of multispectral images was completed (Fig. 4), 60 
classifications were performed. The generation of reference 

Fig. 4   Multispectral data preparation for façade C. Note: NUV near-ultraviolet; R red; B blue; G green; NIR near infrared; TIR thermal infrared; 
M monochromatic color image
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maps considered the Illustrated Glossary on Stone Dete-
rioration Patterns [71] as a guide during visual inspection. 
The observed categories of deterioration were vegetation, 
moss, black crusts, lichens, missing material (including loss 
of components, large cracks, and windows), and dampness. 
These constituted all the categories of surface pathology that 
altered the surface reflectance characteristics of the masonry 
façades. Patterns that caused slight geometrical surface 
alterations, such as minor cracks, superficial cracking due 
to biogenic deterioration, disintegration, or other shape fea-
tures induced by material loss, insignificant concerning the 
considered scale and the reflectance contract comparing with 
healthy historic materials could not be considered. The the-
matic comparisons were performed using the full reference 
maps and not sampled patch areas. Overall accuracy statis-
tics calculated from the confusion matrixes are presented in 
Table 3. The precision and F1-score results are presented in 
detail in “Appendix A”.

The deterioration maps produced for all the studied archi-
tectural surfaces were of generally high thematic accuracy, 

especially for classifications performed with ensemble 
learning-based algorithmic implementations. Furthermore, 
the inclusion of different spectral bands improved the clas-
sification potential, subject to the categories of deterioration 
present.

5 � Discussion

The inclusion of the NIR spectral band fairly improved the 
classification results for all deterioration forms. The seg-
mentation of a NIR-R-G multispectral image and the Fast 
Random Forest classifier proved to be the most consistent 
solution overall (79 ≤ overall accuracy%). Figure 5 presents 
a comparison between the reference maps and the NIR-
R-G composites segmented with the Fast Random Forest. 
Using NUV reflectance data generally did not provide any 
improvement to the quality of the classifications. Including 
the TIR band also did not improve the deterioration patterns' 
classification. Furthermore, the fusion of visible with ther-
mal data significantly decreased the accuracy of detecting 
deterioration when dampness was present, which contradicts 
that thermal images are helpful in detecting moisture on his-
toric masonry, as evident by Fig. 6. 

According to the overall accuracy results, the Fast Ran-
dom Forest classifier was the most accurate learning-based 
method for deterioration classification for all multispec-
tral images, not including the TIR band (70% < overall 
accuracy < 87%). Implementing the random tree classifier 
resulted in more inconsistent and less accurate classifications 
(60% < overall accuracy < 77%). LogitBoost outperformed 
the Random Tree classifier.

According to the precision and F1-score values, moss and 
lichens were the most misclassified surface patterns, even 
though both random forest approaches improved their clas-
sification. The results prove that the distinction among non-
deteriorated material, dampness, black crusts/discoloration, 
and plants is much more easily detectable (and therefore 
classifiable) than biogenic colonization of any form. There-
fore, surface alterations of the historic materials—which 
alter the reflectance characteristics—can be more accurately 
mapped using multispectral images in comparison with the 
deterioration forms that completely cover them as an addi-
tional layer.

6 � Conclusions

In this work, a novel methodology for the automatic clas-
sification of damage on built cultural heritage was proposed 
that uses low-cost photographic equipment for multispec-
tral data acquisition and supervised machine learning-based 
image segmentation to map deterioration patterns. It was 

Table 3   Overall accuracy statistics by image and classifier

A B C
Overall accuracy (%)

G-B-NUV
 LogitBoost 82.1 66.9 58.4
 Random tree 71.0 66.3 50.9
 Random forest 84.9 69.9 57.3
 Fast random forest 84.6 70.2 58.4

R-G-B
 LogitBoost 77.3 67.9 78.5
 Random tree 73.7 63.7 74.3
 Random forest 84.4 69.8 81.9
 Fast random forest 84.4 69.9 83.1

NIR-R-G
 LogitBoost 80.4 71.3 80.1
 Random tree 72.6 71.0 77.4
 Random forest 85.4 75.8 83.8
 Fast random forest 86.3 79.0 84.6

TIR-NIR-R
 LogitBoost 74.6 76.3 58.4
 Random tree 64.9 71.3 50.9
 Random forest 76.8 76.3 57.3
 Fast random forest 78.5 77.7 58.4

NIR-M-NUV
 LogitBoost 83.2 71.6 75.3
 Random tree 75.4 66.8 66.6
 Random forest 85.5 69.3 77.0
 Fast random forest 86.8 69.8 78.2
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confirmed that including near-infrared reflectance intensi-
ties in the employed methods improved the classification of 
alterations on the historic masonry façades.

The segmentation of multispectral composites (synthe-
sized with visible and near-infrared reflectance images), 
with classifiers combining random trees and ensemble learn-
ing, performed particularly well even were a high number 

Fig. 5   Reference deterioration 
maps (left), and corresponding 
deterioration maps produced 
with a NIR-R-G multispectral 
image using the Fast Random 
Forest Classifier (right); façades 
A, B, and C (from top to bot-
tom)

Fig. 6   Thermograms of façades A (left), and B (right)



	 Journal of Building Pathology and Rehabilitation            (2021) 6:41 

1 3

   41   Page 10 of 15

of surface patterns was present. However, the coexistence 
of different overlapping categories of biogenic colonization 
complicated the mapping procedure significantly. It should 
be highlighted that the accuracy evaluation considered some 
level of bias since the manually produced reference thematic 
maps cannot consider the overlapping surface patterns.

The proposed methodology has the limitation that it can 
map only the pathologies that have been previously recog-
nized through visual inspection (or analytical techniques) 
because regions of interest have to be annotated to train the 
intelligent algorithms. However, a crucial advantage is that 
it produces easily interpretable mapping results, in contra-
diction to unsupervised methods where each mapped pat-
tern class has to be a posteriori assigned to a deterioration 

category. Furthermore, there is a clear advantage over deep 
learning-based methods, that require large image datasets, 
for rapid monitoring purposes of monumental heritage struc-
tures. A direct outlook of the proposed framework is the 
combination with 3D recording technologies to enhance the 
capability of detecting and mapping the geometric altering 
(material loss) of historic monuments.

Appendix A

See Tables 4, 5, 6.

Table 4   Accuracy statistics calculated for façade A

LB LogitBoost; RT random tree; RF random forest; FRF fast random forest

Leafy vegetation No deterioration Black crusts Missing material Dampness

G-B-NUV
 LB 44.4 60.3 87.5 82.1 56.7 60.4 39.0 53.4 91.7 90.4
 RT 28.7 42.6 80.1 77.0 46.1 48.3 6.8 12.3 86.0 79.1
 RF 46.3 61.4 86.3 87.0 75.5 64.1 37.8 53.2 89.8 91.7
 FRF 41.8 55.8 85.3 87.7 81.8 60.2 45.4 60.5 88.5 91.0

R-G-B
 LB 27.7 42.6 85.8 80.4 49.9 51.2 26.0 39.5 87.6 88.5
 RT 27.9 42.0 77.7 78.6 57.0 53.0 13.8 23.5 85.4 81.3
 RF 39.0 54.6 87.4 87.5 74.7 64.3 40.8 56.0 89.2 90.3
 FRF 40.5 55.0 85.5 88.0 83.0 58.6 45.7 60.7 87.8 90.0

NIR-R-G
 LB 41.4 57.5 87.0 81.2 51.4 56.6 31.4 45.0 91.4 92.1
 RT 26.6 40.1 79.0 77.4 50.8 45.7 11.6 20.2 83.4 81.5
 RF 48.6 63.9 88.0 87.3 76.7 67.9 28.6 43.2 89.8 91.6
 FRF 54.3 68.0 86.4 88.3 84.6 64.8 43.1 58.0 89.6 92.2

TIR-NIR-R
 LB 38.9 55.0 77.5 71.4 45.4 52.3 34.5 48.4 90.5 89.6
 RT 16.2 27.3 77.2 59.3 39.5 51.2 10.0 17.7 91.8 85.7
 RF 31.1 46.5 80.4 75.1 51.0 58.4 39.9 52.9 92.5 90.0
 FRF 32.2 47.6 79.8 77.6 56.0 61.0 43.8 55.4 93.4 89.6

NIR-M-NUV
 LB 40.5 56.5 88.9 83.9 59.3 63.8 35.1 48.4 92.6 92.5
 RT 17.6 29.4 82.9 78.6 59.8 59.1 15.9 26.8 90.0 86.5
 RF 38.9 55.0 87.6 87.5 76.3 70.2 26.6 41.0 92.9 92.2
 FRF 44.5 59.3 87.3 88.6 84.5 69.4 43.0 58.1 90.9 92.4

Precision F1-score Precision F1-score Precision F1-score Precision F1-score Precision F1-score
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Table 6   Accuracy statistics calculated for façade C

LB LogitBoost; RT random tree; RF random forest; FRF fast random forest

Leafy vegetation No deterioration Black crusts Missing material Plant Dampness

G-B-NUV
 LB 21.6 35.4 91.8 75.2 26.8 37.1 30.7 46.1 72.4 38.3 87.3 88.4
 RT 24.1 38.7 92.3 74.5 23.9 36.0 8.1 14.7 67.7 38.4 88.4 84.7
 RF 47.3 63.7 89.9 78.1 32.1 46.7 25.2 39.7 63.4 38.2 92.1 91.1
 FRF 47.3 63.1 88.5 78.9 37.2 51.8 29.4 45.1 57.3 37.4 91.9 91.3

R-G-B
 LB 29.5 45.3 78.8 77.8 29.3 41.7 29.9 45.2 67.4 37.8 90.6 83.9
 RT 11.4 19.9 76.7 73.1 19.8 29.9 22.2 35.5 63.8 38.2 84.1 74.1
 RF 52.6 68.2 79.6 76.3 34.7 50.2 27.7 42.6 57.1 37.3 90.0 85.1
 FRF 61.4 74.6 78.3 76.0 44.6 58.2 27.0 42.0 53.4 36.5 88.4 86.0

NIR-R-G
 LB 21.1 34.9 90.1 78.6 32.1 43.3 31.7 47.0 68.5 38.0 89.2 88.7
 RT 26.6 40.8 88.7 78.3 23.0 33.8 25.9 40.1 70.1 37.4 89.4 86.6
 RF 64.4 78.4 89.2 79.3 38.9 54.4 28.5 43.8 53.8 36.7 91.9 91.5
 FRF 67.7 80.7 88.1 80.2 44.0 58.7 31.1 46.9 54.7 36.8 91.5 91.6

TIR-NIR-R
 LB 18.6 31.3 54.9 61.1 25.6 38.8 25.2 39.3 49.9 34.6 83.3 62.9
 RT 8.5 15.5 53.8 56.2 18.2 28.7 24.6 37.8 28.4 28.6 80.2 57.1
 RF 21.4 35.0 50.7 57.9 31.3 45.7 31.4 46.8 38.5 32.7 80.9 61.1
 FRF 23.8 37.9 48.8 56.2 40.7 54.2 33.4 49.3 37.4 32.3 78.7 62.6

NIR-M-NUV
 LB 24.0 38.5 80.7 72.6 23.5 32.0 26.9 41.2 68.8 38.0 86.5 85.1
 RT 13.1 22.7 78.9 70.6 20.2 30.5 13.2 22.8 56.6 35.6 82.2 75.2
 RF 36.0 52.4 80.1 73.8 36.7 52.1 25.1 39.7 59.4 37.7 87.4 84.5
 FRF 43.9 59.3 78.9 73.8 42.4 56.4 25.7 40.5 54.1 36.7 86.7 85.1

Precision F1-score Precision F1-score Precision F1-score Precision F1-score Precision F1-score Precision F1-score
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