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Abstract

Category generalization is a central function in human cognition. It plays a
crucial role in a variety of domains, such as learning, everyday reasoning, spe-
cialized reasoning, and decision making. Judging the content of a dish as edible,
or a hormone level as healthy, are examples of category generalization. In this
paper we propose self-organizing maps as possible candidates to explain the
psychological mechanisms underlying category generalization. Self-organizing
maps are psychologically and biologically plausible neural network models that
can learn after limited exposure to positive category examples, without any need
of contrastive information. Just like humans. They reproduce human behavior
in category generalization, in particular the Numerosity and Variability effects,
which are usually explained with Bayesian tools. Where category generalization
is concerned, self-organizing maps deserve attention to bridge the gap between
the computational level of analysis in Marr’s hierarchy (where Bayesian mod-
els are often situated) and the algorithmic level of analysis in which plausible
mechanisms are described.

Keywords: category generalization, self-organizing maps, connectionist
modeling, Bayesian models

1. Introduction

Category generalization is a central function in human cognition that plays
a crucial role in a variety of domains, such as learning, everyday reasoning,
specialized reasoning, decision making. Judging the content of a dish as edible,
or a hormone level as healthy, are examples of category generalization. In this



paper we propose a psychologically plausible, simple mechanism that can un-
derlie such a central function and offers an account of two phenomena related
to category generalization reported in the literature.

More formally, category generalization can be stated as follows: Starting
from the observation that an object z belongs to a category C (or has the
property P), how do we generalize C' (or P) to objects other than 7 As Shepard
(1987) suggests, ‘because any object or situation experienced by an individual
is unlikely to recur in exactly the same form and context, psychology’s first
general law should be a law of generalization’ (Shepard, 1987), p.1317.

Both probabilistic (Shepard, 1987; Anderson, 1991; Tenenbaum and Grif-
fiths, 2001), and similarity-based (Tversky, 1977; Medin and Schaffer, 1978;
Nosofsky, 1986) accounts of generalization have been proposed: the former sug-
gesting that our generalization judgements are based on probabilistic reasoning,
the latter suggesting that we base our generalization judgements on an evalua-
tion of similarity between stimuli. According to the probabilistic account, the
doctor’s judgement on whether a new hormone level is healthy, similarly to a
previously observed one, is based on a set of considerations involving the attri-
bution of a probability to every possible range of values corresponding to healthy
hormone levels, which in turn takes into account the likelihood of encountering
the observed examples of healthy hormone levels if that was indeed the correct
range of possible hormone values. In contrast, according to the similarity-based
approach, the doctor’s judgement on whether a new hormone level is healthy is
based on a different set of considerations based on the similarity (for instance
Euclidean similarity) of the new hormone level with respect to a previously built
representation of the category of healthy hormone levels.

In this paper we show that a similarity-based account, that only uses Eu-
clidean distance between stimuli feature vectors, can explain two effects of cat-
egory generalization that were thought to be explainable only with Bayesian
tools and that were indeed one of the arguments in favor of the superiority of
a Bayesian account over similarity-based explanations of category generaliza-
tion (Tenenbaum and Griffiths, 2001): these are the Numerosity and Variability
Effects.

We illustrate this point by considering a specific similarity based kind of
model, namely self-organizing maps (Kohonen et al., 2001), which is a particu-
larly plausible neural network model that learns in an unsupervised way, which
reproduces many experimental results on category formation (Schyns, 1991; Mi-
ikkulainen et al., 2005; Li et al., 2007; Gliozzi et al., 2009; Mayor and Plunkett,
2010), and which reflects basic constraints of plausible brain implementations,
as extensively motivated by Miikkulainen et al. (2005). In the specific self-
organizing map we consider, learning occurs from a limited set of positive ex-
amples (although this is not generally true for all self-organizing maps that may
be trained with larger training sets-always in a non supervised way).

Our similarity-based account describes a plausible mechanism underlying
category generalization. This complements Bayesian models of category gener-
alization, as the one by Tenenbaum and Griffiths (2001), which are formulated
at Marr’s computational level of analysis, and describe what an optimal solu-



tion to the problem of category generalization would be. Approximations of
Bayesian models of category generalization have been proposed for instance by
Sanborn et al. (2010); Shi et al. (2010); Sanborn and Chater (2016), as well as
some possible neural implementations of some of the ingredients of probabilistic
inference (R. Zemel, 1998). Although the proposed approximations are certainly
very interesting, as we will see, they are based on tools (such as Monte Carlo
methods and stored hypothesis) that may imply a level of inferential power and
memory that is unrealistic for the human cognizer. As a difference, here we
propose a mechanism which is simpler and more readily executable by an indi-
vidual with limited memory and reasoning capacities, and which uses tools, such
as self-organizing maps, that are considered to reflect basic constraints of plau-
sible brain implementations in the cortex. By the simplicity of the tools used,
our model also differs from other Bayesian algorithms of incremental category
formation that deal with more complex categories (e.g. Frermann and Lapata,
2016 that also uses methods like sequential Monte Carlo inference mechanisms).
The other side of the coin of the simplicity of of our model is that it deals with
simple stimuli, as Tenenbaum and Griffiths (2001). We will discuss this point
in the Discussion section.

2. Numerosity and Variability effects in Category Generalization

Two effects have been highlighted that characterize category generalization.
These effects are described by Tenenbaum and Griffiths (2001) in their extension
of Shepard’s (1987) universal law of generalization. Shepard describes an ex-
ponential decay in humans’ inclination to consider a new stimulus as belonging
to the same category as a previously considered one. The decay is proportional
to the distance between the new stimulus and the examples already observed.
Tenenbaum and Griffiths (2001) extend Shepard’s analysis to the case where the
examples already observed are multiple. In this case, the tendency to generalize
a category to a new stimulus is affected by:

1. A Numerosity Effect: the more examples of a category observed within a
given range, the lower the generalization outside that range.

2. A Variability Effect: the higher the variability in the set of observed ex-
amples of a category, the higher the generalization outside the examples’
range.

These effects are amongst the primary motivations supporting Bayesian anal-
yses of category generalization, in addition to the strongest argument in favor
of Bayesian analyses of cognition, namely that they offer a single, coherent
framework for understanding multiple cognitive phenomena, ranging from cat-
egorization to causal learning, to perception, to prediction and argumentation
(see for instance N. et al. (2001), Griffiths et al., 2010). Bayesian models explain
both the Numerosity and the Variability Effect in a very elegant way. However,
by offering an explanation at Marr’s computational level of analysis, they do not
provide a description of a possible underlying mechanism: some possible cor-
relates have been found for basic ingredients of Bayesian inference (R. Zemel,



1998), and some approximations have been proposed (Sanborn et al., 2010; Shi
et al., 2010; Sanborn and Chater, 2016). However, as we will discuss below, a
simple and plausible mechanism of all the computations involved is still needed.

In contrast to earlier claims (Tenenbaum and Griffiths, 2001), we argue that
both Numerosity and Variability effects can be explained at an algorithmic
level within a similarity-based framework that generalizes category membership
out of few plausible examples, and in so doing exhibits the two effects. We
provide a simple and psychologically plausible mechanism of category general-
ization, based on self-organizing maps, that captures the Numerosity and the
Variability effects, thereby meeting the challenge of reconciling different levels of
analysis in Marr’s hierarchy, when considering the specific problem of category
generalization.

Taking simplicity of a mechanism as a metric, we will argue that our similarity-
based SOM mechanism (which as already specified is well-founded both from a
biological and a psychological point of view) is more parsimonious than other
mechanistic approximations of Bayesian analyses that have been proposed in the
literature (Sanborn et al., 2010; Shi et al., 2010; Sanborn and Chater, 2016).

3. Bayesian analyses of category generalization

In contrast to more traditional models of cognition, which attempt to de-
scribe the psychological processes underlying basic cognitive abilities, Bayesian
models of cognition are formulated at Marr’s (1982) level of ‘computational the-
ory’. In Bayesian models cognitive tasks are described as computational prob-
lems posed by the environment. Humans are assumed to find optimal solutions
to these problems using inductive, probabilistic inference: given some limited
data, humans find the best possible hypothesis compatible with the evidence.

The problem of generalizing a category C' to a new object y is formulated
in this context as the problem of estimating the probability that y belongs to
C, after observing X examples of C' (Shepard, 1987; Tenenbaum and Griffiths,
2001)!. The probability estimation proceeds through two steps. First, the pos-
terior probability p(h|X) is computed by Bayes’ Rule for all possible extensions
h of C, where a possible extension is any consequential region, also called the
hypothesis (h). The Bayes Rule uses both priors and likelihoods: each hypoth-
esis h in the space of hypotheses H has a prior probability p(h), independent
of any observed example. p(X|h) is the likelihood of observing the examples
X if the true extension of the category is indeed h. The likelihood obeys the
size principle: the smaller the size |h| of the consequential region h including
all elements of X, the higher the probability of sampling all elements of X as
examples of C, and therefore the higher the likelihood. The size principle is
expressed as follows:

IShepard (1987) considers the case in which there is one single category example, whereas
Tenenbaum & Griffiths (2001) extend the approach to multiple examples. In this paper we
refer to Tenenbaum & Griffiths’ (2001) theory.



If X ={z;} (with 1 <4 < n), then

if z1...z, €h;

(1)

0 otherwise.

iy = { I

The priors and likelihood are combined together in order to determine the
posterior probability of h by Bayes’ rule:

p(X|h)p(h)
> p(X[|W)p(h)

h'inH

p(h|X) =

(2)

Second, once the posterior probability p(h|X) for all possible extensions h has
been computed by Bayes’ Rule, the probability that y belongs to C' is obtained
by summing up the probability of all extensions containing y:

plyeClX)= Y p(hlX) (3)

h:yeh

In the hormone level example, if a doctor observes a healthy hormone level
x, and she has to decide if another close-by hormone level y is still healthy, she
first has to infer a probability distribution over the set of possible extensions of
the healthy hormone level. Only then can she estimate the probability that the
new hormone level y is still healthy.

The computations just defined entail the Numerosity and the Variability
Effects mentioned above. The fact that Bayesian models of category gener-
alization explain Numerosity and Variability effects in such an elegant way is
a strong support for Bayesian analyses of category generalization (Tenenbaum
and Griffiths, 2001).

Indeed, while the two effects also hold in human categorization, they are not
easily captured by alternative theories of categorization such as exemplar and
prototype theories, and back-propagation-based neural networks. In the next
section we will argue that, on the contrary, a specific kind of psychologically
plausible neural network, namely self-organizing maps, can account for these
phenomena.

For the moment, it is worth re-emphasizing that Bayesian models of cog-
nition are formulated at Marr’s computational level of analysis, and do not
describe a mechanism underlying these computations. Bayesian cognitive sci-
entists recognize the need to establish a bridge between Marr’s different levels
of analysis, and acknowledge the identification of psychologically plausible pro-
cesses underlying Bayesian inferences as a key challenge in their overall effort
to reverse-engineer the human brain.

A possible neural implementation of probabilistic inference is described by
R. Zemel (1998).

Furthermore, some proposals have been made to provide a mechanistic ac-
count of Bayesian models of generalization (Sanborn et al., 2010; Shi et al.,
2010; Sanborn and Chater, 2016). In particular, Sanborn et al. (2010) propose
Monte Carlo methods as possible mechanisms underlying Bayesian models. Shi



et al. (2010) propose mechanisms underlying Bayesian models that are based on
exemplar models in which the stored exemplars correspond to hypotheses rather
than stimuli. These models are certainly informative but imply a level of infer-
ential power and memory that may be unrealistic for the human cognizer: the
tools they employ, including both Monte Carlo methods and stored hypotheses,
are potentially too complex to pass as psychologically plausible mechanisms.

Relatedly, there are Bayesian algorithms of incremental category formation
that deal with more complex categories (e.g. Frermann and Lapata, 2016) that
also rely on Monte Carlo inference mechanisms.

With respect to these previous proposals, in this paper, we attempt to formu-
late mechanisms which are simpler and more readily executable by an individual
with limited memory and reasoning capacities.

Relations between Bayesian approaches and neural networks have been stud-
ied in the past (MacKay, 1995; Neal, 1996; McClelland, 1998). However, the
neural network models considered by these researchers suffered from a general
criticism raised against neural networks as models on human category forma-
tion: in order to properly categorize and generalize, these neural networks must
be exposed to a large sample of training examples (rather than the small number
of examples required by humans), and with both positive and negative examples
(whereas humans can learn from positive examples only). In the following, we
describe a neural network model that overcomes these shortcomings and provide
a neuro-computationally plausible account of category generalization.

4. A similarity-based account of category generalization based on self-
organizing maps

Our objective is to demonstrate that the Numerosity and Variability effects
can be accommodated within a simple and psychologically plausible similarity-
based account. This contrasts what was previously maintained Tenenbaum and
Griffiths (2001). In short, we will show that in the model the numerosity and the
variability of the known instances of a category affect the quality of the category
representation: the numerosity of known examples of the category improves the
precision of category representation whereas the variability of these examples
diminishes this precision. In turn, the precision of the category representation
is the core of our generalization judgements. Roughly speaking, we judge a new
stimulus as belonging to a category by comparing the distance of the stimulus
from the category representation to the precision of the category representation
(see Definition 6 below).

We will use self-organizing maps (SOMs, introduced by Kohonen, 2001) as
our instantiation of a similarity-based framework. We leave open the possibility
that other similarity-based models can account for the category generalization
properties that we consider.

In this paper, we focus on SOMs since these are particularly plausible neural
network models that learn in a human-like manner. In particular:



4.1.

SOMs learn to organize stimuli into categories in an unsupervised way,
without the need of a teacher providing a feedback. Even young infants
are able to form categories spontaneously in the absence of corrective
feedback (e.g., Younger and Cohen, 1986; Eimas and Quinn, 1994);

SOMs can learn with just a few positive stimuli, without the need for
negative examples or contrastive information, as humans do (e.g., Gliozzi
et al., 2009, 2013). With these features, SOMs overcome some of the
main criticisms raised against neural network approaches, namely that
they have to be trained with large amount of data and with explicit con-
trastive information, in order to mimic characteristics of human category
formation;

SOMs reflect basic constraints of a plausible brain implementation in dif-
ferent areas of the cortex (Miikkulainen et al., 2005), and are therefore
biologically plausible models of category formation;

SOMs have proven to be capable of explaining experimental results. In
particular:

SOMs have been very successful at modelling the architecture of the
primary visual cortex (Miikkulainen, Bednar, Choe, & Sirosh, 2005) where
neighbouring neurons are responsive to similar orientations of the visual
scene (Hubel & Wiesel, 1962);

SOMs have been successfully used to model conceptual acquisition
(Schyns, 1991 was the first such proposal);

SOMs have been successfully used to simulate aspects of word learn-
ing: Miikkulainen (1997) introduced a SOM model of dyslexic and aphasic
disorders (DISLEX) that, through selective lesioning procedures, was able
to mimic language dysfunction, semantic slips, category-specific aphasic
impairments and dyslexic behavior. Li et al.(2004; 2007) proposed two
SOMs models of early lexical development. The DevLex models simu-
lated the acquisition of linguistic categories, such as nouns, verbs and
adjectives, as well as lexical confusions as a function of word density and
semantic similarity. These models accounted for age-of-acquisition effects
in the course of learning a lexicon and simulated the challenge infants face
when they learn to articulate phonemic sequences of words.

The architecture of a SOM

SOMs consist of a set of neurons, or units, spatially organized in a grid (Kohonen
et al., 2001), as in Figure 1.

Each map unit u is associated with a weight vector w, of the same dimen-
sionality as the input vectors. At the beginning of training, all weight vectors
are initialized to random values, outside the range of values of the input stimuli.
During training, the input elements are sequentially presented to all neurons of
the map. After each presentation of an input x, the best-matching unit (BMU,,)



Figure 1: An example of SOM. The set of rectangles stands for the input presented to the
SOM (in the example the input is three-dimensional). This is presented to all neurons of the
SOM (these are the neurons-dots-in the upper grid) in order to find the BMU.



is selected: this is the unit ¢ whose weight vector w; is closest to the stimulus «
(i.e. i = argmin; ||z — w;||).

The weights of the best matching unit and of its surrounding units are up-
dated in order to maximize the chances that the same unit (or the surrounding
units) will be selected as the best matching unit for the same stimulus or for
similar stimuli on subsequent presentations. At iteration n + 1, the weights for
neuron j are updated as follows:

wj(n+1) = w;(n) +n(n)hpuu, ;(n)(@ — w;(n)) (4)

where 7 is the learning rate, and hpasu, ; is the neighborhood function between
the best-matching unit BMU, and j. hpuu, ;(n) is defined as:

—dB MU,
hpmu, j(n) = exp 27(° (5)

where dpnru,,; is the distance between BMU, and j on the map’s grid, and
o(n) is the width of the gaussian.
Both the learning rate n and the width of the gaussian o decrease with n.
This weight change has a twofold effect:

1. It reduces the distance between the best matching unit (and its surround-
ing neurons) and the incoming input, so that subsequently the same unit
(and the surrounding ones) will most likely be the best matching unit for
the same or similar inputs.

2. It organizes the map topologically so that the weights of close-by neurons
are updated in a similar direction, and come to react to similar inputs.

The learning process is incremental: after the presentation of each input, the
map’s representation of the input (and in particular the representation of its
best-matching unit) is updated in order to take into account the new incoming
stimulus.

Although in standard self-organizing maps Kohonen et al. (2001) this weight
update can go on for hundreds of epochs each consisting of the presentation of
all the stimuli of the training set, we consider here a specific configuration of
parameters (similar to Gliozzi et al. (2009) or Gliozzi et al. (2013)) with a high
learning rate n(and a narrow neighborhood function h) that allows the map
to learn after a single presentation of a stimulus of the training set (details in
Section 4.2.1 below). In this way self-organizing maps learn following the same
schedule than humans. This can be seen as a plausible mechanism by which
humans form categories: starting from a first stimulus, that gives rise to an
initial representation, the representation is updated each time a new stimulus is
considered, in order to accommodate it. The final representation of the stimuli
is the result of this iterative process. At the end of the whole process, the SOM
has learned to organize the stimuli in a topologically significant way: similar
inputs (with respect to Euclidean distance) are mapped to proximal areas in the
map, whereas inputs which are far apart from each other are mapped to distal
areas of the map.



Once the SOM has learned to categorize, we assess category generalization.
We define the map’s disposition to consider a new stimulus y as a member of
a known category C' as a function of the distance of y from the map’s repre-
sentation of C'. We take a minimalist notion of what is the map’s category
representation: this is the ensemble of best-matching units corresponding to
the known instances of the category. We will use BMU¢ to refer to the map’s
representation of category C.

More precisely, we define category generalization as depending on two ele-
ments:

e the distance of the new stimulus y with respect to the category represen-
tation

e compared to the maximal distance from that representation of all known
instances of the category

This captured by the following notion of relative distance, rd for short,:

min|ly — BMUc||
mazzec |z — BMUy||

rd(y,C) = (6)
where min|ly — BMU¢/|| is the (minimal) Euclidean distance between y and C’s
category representation, and maz,cc|x — BMU,|| expresses the precision of
category representation?, and it is the (maximal) Euclidean distance between
any known member of the category and the category representation.

With this definition, a given Euclidean distance from y to C’s category rep-
resentation will give rise to a higher relative distance rd if the maximal distance
between C and its known examples is low (and category representation is pre-
cise) than if it is high (and category representation is coarse).

We are now ready to define the map’s Generalization Degree of category C
membership to a new stimulus y. This is a function of the relative distance of
Equation 6. The map’s Generalization Degree exponentially decreases with the
increase of the relative distance as follows 3:

Generalization Degree= ¢~ "4(¥:C) (7)

It is worth observing that the above notion of relative distance (Equation 6)
requires there to be a memory of some of the known instances of the category
being used (this is needed to calculate the denominator in the equation). This

2mazgec||t — BMU,| is indeed inversely related to precision: the higher its value, the

higher the maximal distance between the category representation and the worst represented
stimulus, hence the lower the precision; and viceversa, the lower the precision, the higher the
maximal distance between the category representation and the worst represented stimulus,
and the higher the expression’s value.

3The use of an exponential function of a distance when defining the categorization of a
stimulus, or the activation of a unit when receiving a stimulus, is common in the neural
network literature (see for instance Westermann and Mareschal, 2004; Mayor and Plunkett,
2010).
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gives rise to a sort of hybrid model in which category representation and some
exemplars coexist. An alternative way of formulating the same notion of relative
distance would be to calculate online the distance between known category in-
stance currently examined and the representation of the category being formed.
Even in this alternative case, the Numerosity and Variability effects would still
hold.

For a simple example of the use of the equations introduced in this section,
see the Supplemental Material.

4.2. Modeling Numerosity and Variability effects

Do Numerosity and Variability impact the nature of the representations
formed by self-organizing maps, and consequently, the Generalization Degree?

In order to answer these questions, we have run three sets of simulations.

In a first set of simulations, stimuli are points in a continuous metric psy-
chological space (e.g., hormone levels) that vary along one dimension (as in
Tenenbaum & Griffiths, 2001). In a second set of simulations, stimuli are points
in a continuous metric psychological space that vary along two dimensions (as
in Tenenbaum & Griffiths, 2001). Since in these first two simulations we have
used a very simplified self-organizing map, that allowed us to make the point
by considering a training set uniquely made of the stimuli under observation
(rather than a richer training set including those stimuli), we have also run a
third set of simulations with a more standard self-organizing map.

Each set of simulations compares the map’s Generalization Degree in a Base
Condition with respect to a Numerosity Condition (in which the numerosity of
the stimuli augments but the range remains the same than in the Base Con-
dition), and then the map’s Generalization Degree in a Base Condition with
respect to a Variability Condition (in which the number of the stimuli is the
same than in the Base Condition but the range of the stimuli augments).

4.2.1. First simulation: Stimuli varying along one dimension.

In our first set of simulations we have used an architecture and a set of
parameters similar to those used by (Gliozzi et al., 2009, 2013): a 3*3 hexagonal
SOM, initialized to random values*. The map was trained with the learning rate
initially set to 0.8, with a neighborhood gaussian starting at o = 0.1. This low
value of the neighborhood parameter results in just a single unit being used to
form the representation of the stimuli. With learning rate in the range between
0.7 and 0.9 simulations achieve statistical significance (o, simplified here, does
not vary since we want to consider one best-matching unit at a time; see Section
4.2.3 for a more standard set of SOMs parameters, including o). This is a rather

4Our model was implemented using the SOM Toolbox (http://www.cis.hut.fi/somtoolbox).
This is the Matlab toolbox of reference when implementing SOMs. Our SOM’s weights were
initialized with the somrandinit function, and then slightly modified in order to contain values
separate from the input space: to this end we have multiplied by 2 the initial values provided
by somrandinit
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theoretical and abstract use of SOMs that we chose in order to investigate our
starting hypothesis: that Numerosity and Variability impact the way in which
the stimuli are categorized and that this in turn can explain the Numerosity
and Variability Effects. In the third simulation we will show that the same
effects hold for SOMs trained with more standard neighborhood function and
parameters.

As in Gliozzi et al. (2009), each input stimulus was presented to the SOM
once during learning. With this training schedule SOMs learn without extensive
training, and from positive examples only.

In this set of simulations, in the Base Condition, we trained the map with two
stimuli: the points [50, 0] and [60, 0] (see Figure 4.2.1). We then compared the
map’s Generalization Degree with the Generalization Degree of a map trained
with a more numerous training set, by keeping the range of values the same as in
our Base Condition. The training stimuli in this Numerosity Condition are the
points: [50, 0], [53, 0], [55, 0], [57, 0], [59, 0], [60,0]. In the Variability Condition
we kept the number of stimuli presented to the SOM constant with respect to
the Base Condition, while varying the range of values. In this condition, the
stimuli considered are [30,0] and [60, 0].

We then evaluated whether the representation of the stimuli in the different
conditions changes. The answer is positive: the Variability and the Numerosity
Conditions affect the precision by which the category examples are represented
by the SOM. In the Numerosity Condition, the examples are represented more
precisely than in the Base Condition: the (maximal) Euclidean distance between
the map’s category representation and the examples is lower in the Numerosity
Condition than in the Base Condition. In contrast, variability leads to a less pre-
cise representation of the examples: in the Variability Condition the (maximal)
distance between the map’s category representation and the category examples
is higher than in the Base Condition. This difference is illustrated in Figure
2, where there is one subfigure for the Base Condition, one for the Numerosity
Condition, and one for the Variability Condition; each subfigure represents the
stimuli used to train the SOM in the corresponding condition, as well as the
SOM’s units, when training is complete, plotted with respect to the values of
their weights (x and y axis). The precision of the SOM’s category representa-
tion of the examples is figured by the dashed line (the longer the line the lower
the precision).

Nor is this pattern of results affected by changing the exact values of the
stimuli, provided the stimuli are selected with some care: in the Numerosity
condition, stimuli must be uniformly spread in the interval; in the Variability
condition stimuli must have the same Numerosity as the Base condition.

This difference in the quality of representation in the two conditions leads
to the Numerosity and Variability effects. When the number of category exam-
ples within a given range increases, the generalization curve outside that range
shrinks, and the SOM is less likely to attribute to the same category a new
stimulus y outside that range.

The opposite effect holds when the variability of the category examples in-
creases: in this case the generalization curve widens, and the SOM’s disposition

12
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Figure 2: SOM organization in the Base Condition, in the Numerosity Condition, and in
the Variability Condition. Each plot has nine black dots, one for each neuron of the SOM
(plotted with respect to its weights’ values, on the x— and y—axis respectively). The grey lines
connect adjacent neurons in the map’s grid. Each plot represents the neurons’ organization
after training with the stimuli in the Base, Numerosity, and Variability Condition, respectively.
Black boxes represent the stimuli (plotted with respect to their values on the z and y axis
respectively) in the three conditions. The maximal Euclidean distance between the stimuli
and their best-matching unit is represented by the dashed line: this is longer in the Base
Condition than in the Numerosity Condition, whereas it is shorter in the Base Condition than
in the Variability Condition.
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to attribute a new stimulus y to the same category increases.

The Numerosity and Variability effects are illustrated in Figure 3. The
left plot compares the Generalization Degree for the Base Condition versus
the Numerosity Condition, and shows that numerosity of the known category
examples produces a decrease in generalization. The right plot compares the
Generalization Degree for the Base Condition versus the Variability Condition,
and shows that variability of the known category examples generates an increase
in generalization.

We have run 100 simulations for each condition. When comparing the Gen-
eralization Degree in the Base Condition and in the Numerosity condition, a
two-tailed t-test® revealed that the effect is significant (the mean of the Gener-
alization Degree in the Base Condition at the leftmost point = 0.008, sd = 0.001,
whereas it is = 0.004,sd = 0.004 in the Numerosity case, t(198) = 7.96,
p < 0.001; for the rightmost point the mean of the Generalization Degree in
the Base Condition = 0.05, sd = 0.006, whereas it is = 0.03, sd = 0.03 in the
Numerosity case, t(198) = 7.86, p < 0.001).

Furthermore, when comparing the Generalization Degree in the Base Condi-
tion and in the Variability Condition, a two-tailed t-test revealed that the effect
is significant (the mean of the Generalization Degree in the Base Condition at
the leftmost point = 0.008, sd = 0.001, whereas it is = 0.26, sd = 0.0001 in the
Variability case, t(198) = —648.5, p < 0.001; for the rightmost point the mean
of the Generalization Degree in the Base Condition = 0.05, sd = 0.006, whereas
it is = 0.28, sd = 0.0008 in the Variability case, t(198) = —197, p < 0.001).

4.2.2. Second simulation: Stimuli varying along two dimensions.

In the second set of simulations we have then replicated the simulations
above, with the same self-organizing map architecture and the same training
schedule and parameters, by considering the other set of stimuli considered by
Tenenbaum and Griffiths (2001), namely bi-dimensional stimuli that vary on
two dimensions. The stimuli are represented in Figure 4 and 5.

As before, the numerosity of the known category examples lowers the degree
of generalization outside the range of the examples, whereas the variability of
the known category examples augments the Generalization Degree outside that
range®. The effect of numerosity is shown in Figure 4, where the thickness of
the rectangles represents the Generalization Degree for the stimuli whose values
lie on the rectangles. The leftmost plot refers to the Base Condition whereas
the rightmost plot refers to the Numerosity Condition, and the thickness of the
rectangles, i.e., the Generalization Degree, decreases faster in the second case
than in the first. The lower plot explicitly represents the different trend in the
decrease of the Generalization Degree. We ran 100 independent simulations.

5We applied t-test to the Generalization Degrees for the extreme points, those more distant
from the known category examples

6The Generalization Degree in this case refers to a rectangle rather than to single points.
This is calculated as the maximal Generalization Degree for reference points that define the
edges of each rectangle
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Figure 3: Map’s generalization. On the z—axis the stimuli varying along that dimension. On
the y—axis the corresponding Generalization Degree from the map’s category representation.
Left plot: squares are known examples for the Base Condition, diamonds are known examples
for the Numerosity Condition; dashed curve Generalization Degree for the Base Condition,
continuous line Generalization Degree for the Numerosity Condition. The right plot is as the
left one, with the Variability Condition instead of the Numerosity Condition. The plot refers
to a single simulation.
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A two tailed t-test revealed that the difference in the Generalization Degree
in the two conditions is significant (the mean Generalization Degree for the
points at a distance corresponding to the outer rectangle in the Base case is
0.29, SD = 0.11, whereas it is 0.19, SD = 0.06 for the Numerosity condition,
t(198) =7, p < 0.001).

For the Variability, the effect is shown in Figure 5, with the upper leftmost
plot referring to the Base Condition, the right uppermost plot to the Variability
Condition (in which the stimuli vary more on the y—axis), and the thickness
of the rectangles to the strength of the Generalization Degree for stimuli on
the rectangles: when comparing the two plots it appears that the variability of
the known stimuli makes the decrease of the Generalization Degree slower; this
is explicitly represented in the lower plot, where the dashed line refers to the
decrease in the Generalization Degree for the Base Condition, the continuous
line for the Variability Condition. We ran 100 independent simulations. A two
tailed t-test revealed that the difference in the Generalization Degree in the two
conditions is significant (the mean Generalization Degree for the points at a
distance corresponding to the outer rectangle in the Base case is 0.29, SD =
0.11, whereas it is 0.37, SD = 0.03 for the Variability condition, ¢(198) = —8.22,
p < 0.001).

4.2.3. Third simulation: Stimuli varying along two dimensions and more stan-
dard training parameters.

In the simulations above, the SOMs are trained on the known category exam-
ples only. Furthermore, they are trained in a simplified way, with a high learning
rate in order to have a single epoch of training, and with a low neighborhood
value so that the overall category representation is simple. This abstract way of
training allowed us to make the point of this paper: that the Numerosity and
Variability Effects can be the consequence of a change in category representa-
tion in the two conditions, and that the two effects can be accounted for within
a representation-based algorithm.

Now we report results from a third set of simulations, indicating that the
Numerosity and Variability effect also hold in a SOM trained with a richer
training set made of different categories, and with standard parameters.

In order to see whether the Numerosity and Variability effect also hold in a
SOM trained with a richer training set made of different categories, and with
more standard parameters (lower learning rate, higher number of epochs, higher
neighborhood function), we have run a third set of simulations in which we have
trained a SOM made of 25 units with a training set made of the same stimuli
than those considered above augmented with 10 new categories each containing
the same number of stimuli. As above, we have compared the map’s Gen-
eralization Degree when the target category contained more known examples
than when it contained less such examples, and when it contained more vari-
able examples than less variable examples. In these simulations, SOMs weights
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Figure 4: The Generalization Degree (represented by the thickness of the rectangles’ edges)
decreases faster when the known examples of a given category augment (Numerosity Con-
dition, rightmost plot referring to the stimuli are crosses), compared to when there are less
known examples (Base Condition, leftmost plot). In the lower plot the dashed line represents
the decrease of the Generalization Degree in the Base Condition, the continuous line in the
Numerosity Condition. Results plotted refer to a single simulation.

were initialized to random values ”; the values for the learning rate and the
neighborhood function parameters were the standard ones, as calculated by the
som_seqtrain function of the SOM Toolbox®.

The map was trained for 1000 epochs. Results match those of Figures 4 and
5.

We ran 100 independent simulations. As for Numerosity, a two tailed t-test
revealed that the difference in the Generalization Degree in the two conditions
is significant: the mean Generalization Degree for the points at a distance cor-
responding to the outer rectangle in the Base case is 0.33, SD = 0.07, whereas
it is 0.13,SD = 0.01 for the Numerosity condition, ¢(198) = 27.21, p < 0.001.
For Variability, the mean Generalization Degree for the points at a distance cor-
responding to the outer rectangle in the Base case is 0.08, SD = 0.01, whereas

"This was done as in the som_randinit function of the SOM Toolbox
8We imposed the width of the neighborhood function to decrease to very low values so that
during the last epochs of training, only one single unit was concerned at a time
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Figure 5: The Generalization Degree (represented by the thickness of the rectangles’ edges)
decreases slower when the known examples of a given category are more variable, here along
the y-dimension (Variability Condition, rightmost plot, stimuli are crosses), compared to
when they are less variable (Base Condition, leftmost plot). In the lower plot the dashed line
represents the decrease of the Generalization Degree in the Base Condition, the continuous
line to the Variability Condition.Results plotted refer to a single simulation.
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it is 0.26, SD = 0.01 for the Variability condition, ¢(198) = —185.95, p < 0.001.

5. Discussion

The results of the previous section show that SOMs can provide a mechanis-
tic account of the Numerosity Effect as well as of the Variability Effect observed
in human categorization. In this way SOMs can complement the Bayesian ac-
count of category generalization which lies at Marr’s computational level and
does not provide a description of a possible plausible mechanism of category
generalization that leads to the two effects.

As a difference with respect to the explanation provided by a Bayesian ac-
count, the SOM’s explanation of the two effects relies only on the notions of:

e category representation and
e of distance of the new stimulus from the category representation

As far as we know, this is the first quantified argument demonstrating that the
two effects, which characterize human category generalization, can be explained
within the similarity-based paradigm. Furthermore, the SOMs we consider ex-
hibit the two effects when exposed only to few positive category examples (as
in humans), without the need of extensive or contrastive learning. This is very
different from what is usually argued against neural networks in general, namely
that they have to be trained in a massive way with huge amount of data and
with explicit contrastive information. SOMs’ results easily extend to stimuli
that vary along more than one dimension, as long as the notion of Euclidean
Distance between stimuli can be clearly defined.

These effects cannot be jointly explained within traditional theories of cate-
gorization based on similarity, such as the prototype theory (Posner and Keele,
1968) or the exemplar theory (Medin and Schaffer, 1978; Nosofsky, 1986). In-
deed, for the prototype theory: the prototype remains the same independently
from the number of instances considered, whereas the variability leads to a shift
of the prototype position in the direction of the increased variance. This leads
to an increase of the generalization curve only in that direction rather than to
a general increase, as postulated by the Variability Effect.

For the exemplar theory as well the increased variability leads to an increased
generalization only in the direction of increased variance, rather than to a gen-
eral increase of generalization for category membership, as the one postulated
by the Variability Effect. Similar considerations apply to a model as SUSTAIN
(Love et al., 2004). It is possible that a mechanism can be added to the above
formalisms in order to achieve the Numerosity and Variability effects. But for
the moment this does not hold.

Numerosity and Variability effects cannot be explained within neural net-
works based on backpropagation either, since these networks need a lot of in-
formation, including contrastive information in order to achieve a reasonable
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categorization of the inputs, whereas in the examples considered here there are
only few positive instances of the category.

As already mentioned in Section Bayesian analyses of category generaliza-
tion, previous important proposals have been made to provide a mechanistic
account of Bayesian models of category generalization (Sanborn et al., 2010;
Shi et al., 2010; Sanborn and Chater, 2016; L. Frermann, 2016). These models
are certainly informative but, as discussed in that section, imply a level of infer-
ential power and memory that may be unrealistic for the human cognizer: the
tools they employ, including both Monte Carlo methods (Sanborn et al., 2010)
and stored hypotheses (Shi et al., 2010) are potentially too complex to pass as
psychologically plausible mechanisms.

In this paper, we attempted to formulate a mechanism which is simpler and
more readily executable by an individual with limited memory and reasoning ca-
pacities. The outlined mechanism lies on a framework, as self-organizing maps,
that is considered to reflect basic constraints of plausible brain implementations
in the cortex, and that has proven to be capable of explaining experimental re-
sults. The other side of the coin of the simplicity of of our model is that it deals
with simple stimuli, as Tenenbaum and Griffiths (2001). Although dealing with
higher dimensional stimuli is not a problem for self-organizing maps per se, it
is not clear how easy would be the specific use we make of the model, for cat-
egory induction out of few training instances, especially when more categories
are treated at the same time and the category structure is intricated. Under-
standing if in the context of several highly intricated categories something more
refined than pure Euclidean distance would be needed is the object of future
work.

Before we conclude, let us make some general considerations on the pre-
cise relations between self-organizing maps and Bayesian models. This paper
shows that SOMs capture some aspects of Bayesian analyses. Being psycholog-
ically and biologically plausible, this makes SOMs good candidates to bridge
the computational, Bayesian level of analysis and the algorithmic level of anal-
ysis in the study of category generalization (and purportedly for other cognitive
tasks). However, understanding the exact extension of the correspondence be-
tween SOMs and Bayesian models requires future research.

For the time being we can say that there are small differences between SOMs
and Bayesian analyses predictions. For instance, SOMs are sensitive to the
specific position of repeated category examples within a given range, whereas
Bayesian analyses are not (at least when the size principle is used as a likelihood
estimation, as in Tenenbaum and Griffiths, 2001). Take the two following sets
of category examples, whose values vary in the same range but in which the
exact values of the instances change:

Set 1 = {[30,0], 40, 0], [60,0]};
Set 2 = {[30,0],[50,0], 60, 0]}

Figure 6 shows that for the Bayesian analysis of categorization in the two
conditions the generalization curve will be the same (Tenenbaum and Griffiths,

20



SOMs’prediction Bayes’s prediction

1 1
£ +
09 £ + 09 r 1
+ + + +
08 £ % 08 + T
& % o b
& t +
o o7t £ T o o7t I
o) A3 b o %
= 4 T =4 5 Y
D 06 yrd N o 06F + X
D Vg Tt \ ) A
a & A a ' %
05 N 05+ + %
5 ol : 5 / X
E=J Y1 N = - £ %
© © £ %
N N £ £
= o3 b N o3 &
© © £
o o F3
2 02 o o2 F
c c &£
o D oaf &
o oip 1 o fé-
0 10 20 30 40 50 60 70 8 % 100 O o)y 205 2OF I%0F I0F 0P {00 200 60 AU

Figure 6: In both plots: on the x—axes the stimuli varying along that dimension; boxes on
the rz—axis are the examples of Set 1, whereas diamonds are the examples of Set 2. Left plot:
on the y—axes the crossed line represents the Generalization Degree for the SOM trained with
Set 1, whereas the continuous line refers to the Generalization Degree for the SOM trained
with Set 2. Right plot: Probability (Equation 3) that the corresponding stimuli belong to the
same category than the observed examples of Set 1 (crossed line) and Set 2 (continuous line),

respectively.
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2001). This is clear in the rightmost plot, where the crossed curve refers to
the trend of the Probability (Equation 3) that the xz—stimulus belongs to the
same category than the category of observed examples of Set 1, whereas the
continuous line represents the Probability that the x—stimulus belongs to the
same category than the category of observed examples of Set 2. The two lines
overlap, indicating that the probability in the two cases is the same.

On the contrary, for SOMs there will be a difference in the generalization
curve in the two conditions. This is illustrated in the leftmost plot of Figure 6,
where the crossed line represents the Generalization Degree for the SOM trained
with Set 1, whereas the continuous line refers to the Generalization Degree for
the SOM trained with Set 2. The difference between Set 1 and Set 2 produces a
difference on the two curves, i.e. on the Generalization Degree in the two cases.

This difference in the predictions is the consequence of the fact that SOMs
form a representation of the examples, whose position is shifted depending on
the exact values of the category examples. Instead, in Bayesian models there is
no representation being formed, therefore no shift, and no consequent effect of
the exact values of category examples.

6. Conclusions

In this paper we have shown that a biologically and psychologically plausi-
ble neural network architecture can provide a mechanistic account of Numeros-
ity and Variability effects usually explained, at the computational level, with
Bayesian tools. SOMs can do so when exposed to limited category examples
without any need of contrastive information, thus contradicting the main crit-
icism against neural networks models of category generalization alternative to
the Bayesian ones. We leave for future research the investigation of the exten-
sion of the correspondence between SOMs and Bayesian models, and whether
SOMs can be seen as describing the mechanisms underlying Bayesian analyses
in general.

Where category generalization is concerned, the model proposed in this pa-
per allows to bridge the gap between Marr’s different levels of analysis, and
in particular between Marr’s computational level of analysis, where we find
Bayesian models of category generalization and in particular the one by Tenen-
baum and Griffiths (2001) we consider and Marr’s algorithmic level in which we
put the similarity-based mechanism discussed in this paper.
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7. Supplemental Material

7.1. Example of use of the Equations of Section

We here provide some very simple examples to illustrate the application of
the Equations described in Section 4.1.

Equation 4 Consider a SOM only containig 3 neurons, with weight vector respectively
[1,1], [2,2], [3,3], receiving at the n'" iteration input z = [0,1]. When
computing the Euclidean distance between x and all the neurons’ weight
vectors, it results that the BMU is the first neuron. Suppose the learning
rate n(n) is 0.5, and suppose the neighborhood as calculated by Equation
5 is h(n) = 1 for the BMU and 0.5 for the other surrounding neurons, at
iteration n + 1, the weight vectors resulting from learning will be respec-
tively [0.5,1], [1.5,1.75], [2.25,2.5].

24



Equation 6 Suppose now the situation above is the final situation of training, resulting
from the presentation to the map of the two known instances of category
C, namely 2’ = [1,0.5] and « = [0.1]. For both z and 2’ the best matching
unit is the first neuron. Now take a new stimulus y = [0, 3]. We want to
calculate its relative distance from the map’s representation of category
C, which in this case is given by the only first neuron. Hence min|ly —
BMUg¢|| = 2.06, whereas the denominator maxec||x — BMU,|| is the
maximal Euclidean distance between BMUc and z or z’: in this case it
is 0.5. The overall relative distance between y and category C' is therefore
4.12 (notice that with higher numerosity presumably the precision of the
representation would improve, hence the distance between BM U and the
known category examples would diminish, and the overall relative distance
would increase; the opposite pattern for higher variability for which the
precision of representation would diminish. We see in the next point that
this has an effect on the Generalization Degree in the two cases).

Equation 7 The relative distance just calculated gives us a way to calculate the Gener-
alization Degree for the novel unknown stimulus v, i.e., our predisposition
to attribute y to the same category C than x and 2’. In our case the Gen-
eralization Degree for y would be 0.02. By the considerations we did for
the relative distance, in the Numerosity Condition the Generalization De-
gree (that decreases when the relative distance augments) would decrease,
whereas in the Variability Condition it would increase.

7.2. Higher dimensionality stimuli

In this paper we have considered the same stimuli than those considered
by Tenenbaum & Griffiths (2001) in order to compare the two models. These
stimuli are very simple and two dimensional. One may wonder if the same
pattern of results would hold for higher dimensional stimuli. As an example
Figures 7 and 8 below show that the answer is positive for higher dimensionality,
reporting patterns of results with 5 dimensional stimuli. However, it is possible
that when more categories are considered at the same time, which are more
complex and overlapping, (as for instance those considered by Lapata et al.,
2016), more sophisticated tools might be necessary, whereas Euclidean distance
would no longer be enough.
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Generalization degree

Figure 7: Variability Effect with 5 dimensional stimuli. The plot illustrates the presence of a
Variability Effect: when considering stimuli which are more and more distant from the known
category instances, generalization increases in the case of higher variability of the known
category instances (continuous line) than with lower variability (dashed line). In the plot
the generalization curve corresponding to higher variabiity condition is represented with a
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Figure 8: Numerosity Effect with 5 dimensional stimuli. The plot illustrates the presence of
a Numerosity Effect: when considering stimuli which are more and more distant from the
category instances, generalization decreases in the case of higher numerosity of the known
category instances than with lower numerosity. In the plot the generalization curve corre-
sponding to higher numerosity condition is represented with a continuous line, whereas for
the lower numerosity with a dashed line.
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