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Summary

The immune system is composed of a variety of cells that act in a coordi-

nated fashion to protect the organism against a multitude of different

pathogens. The great variability of existing pathogens corresponds to a

similar high heterogeneity of the immune cells. The study of individual

immune cells, the fundamental unit of immunity, has recently trans-

formed from a qualitative microscopic imaging to a nearly complete

quantitative transcriptomic analysis. This shift has been driven by the

rapid development of multiple single-cell technologies. These new

advances are expected to boost the detection of less frequent cell types

and transient or intermediate cell states. They will highlight the individu-

ality of each single cell and greatly expand the resolution of current avail-

able classifications and differentiation trajectories. In this review we

discuss the recent advancement and application of single-cell technologies,

their limitations and future applications to study the immune system.

Keywords: CD4+ T helper cells; immune cells; single-cell RNA-sequencing;

single-cell technology.

Introduction

200 years of cell history

In the first half of the nineteenth century, Schleiden,

Schwann and Virchow developed the cell theory stating

that ‘the cell’ is the structural and functional unit of all

living things. For the next 170 years scientists have been

looking at the biological processes from a cell-population

point of view, separating and categorizing cells into sub-

classes and subpopulations based on their morphology

and phenotype. In the past century, this approach of ana-

lysing cells at a population level in which all cells are

assumed to behave in a constant manner, allowed scien-

tists to study and characterize all the fundamental biolog-

ical processes that are the basis of our current knowledge

of life in a top–down manner. One such example is the

process of blood and immune cell differentia-

tion – haematopoiesis. However, the aspect that has been

neglected is the contribution that each single cell makes

within a population. This is mainly a result of the lack

of tools available to address questions from a single-cell

perspective.

In the last few years, there has been a rapid develop-

ment in single-cell technologies, which have revealed huge

variability among cells traditionally assigned to the same

category.1–3

In this review we analyse the impact and potential of

these innovations, with special emphasis on single-cell

RNA sequencing (scRNA-seq) as applied to the immune

system.

The immune system

The immune system is not only responsible for the

defence of the organism from a plethora of diverse infec-

tions ranging from bacteria to viruses, but also protects

us by healing wounds and clearing cancerous cells. The

efficiency of the immune response is dependent on the

coordinated and balanced behaviour of a multitude of

different cells involved in each stage of the process. This

includes pathogen recognition, the initiation of the sig-

nalling cascade that leads to recruitment of other effector

cells, and the final clearance of the infection.

The classification of all the cells involved in this process

has progressively been amplified over the years. This is

partly a result of the continuous development and appli-

cation of more advanced technologies. Starting from the

discovery of red blood cells in 1695 and the identification

of white blood cells in 1843, every advance in technology

has added a new layer of complexity and more and more

subcategories in the blood composition tree (Fig. 1).4

With the recent growth of high-throughput single-cell

technologies we are now realizing that even within a
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well-defined subgroup, there is significant structural and

functional heterogeneity. The high throughput study at

single-cell level would allow us to investigate the immune

cell population in a bottom–up way, and unravel this

heterogeneity in a quantitative manner.3

Recent development of single-cell techniques

In the past few years the development of a multitude of

single-cell technologies has allowed scientists to dissect

different cellular scenarios from a new single-cell perspec-

tive. These techniques can be subdivided into four main

categories according to which cellular component is

under study: the whole cell, the protein content, the DNA

and the RNA (Table 1). Sequencing of RNA, DNA and

bisulphite are independent of any prior knowledge about

the population analysed and are ‘OMICS’ techniques that

will give a comprehensive picture of the single-cell state.

All the other technologies share the limitations of being

restricted to the analysis of fewer, pre-identified markers.

Relying on fewer genes has the potential drawback that

results can be biased to some extent and it generally fails

to give a global picture of the process analysed.
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Figure 1. The complexity of the blood cell

populations has grown in parallel with the

development of always more sophisticated

technology. From the discovery of red blood

cells in 1658 by the Dutch naturalist, Jan

Swammerdam, almost 200 years passed until

the identification of leucocytes (1843) by two

independent physicians from England and

France establishing the beginning of haematol-

ogy as a new field in medicine. The molecular

characterization of the leucocytes required the

advent of flow cytometry (1960) and mono-

clonal antibodies (1975). The latter were a cru-

cial tool for the discrimination of CD4+ and

CD8+ T helper cells. In the next decades the

scenario of CD4+ T helper cells became more

and more complicated with the discovery of

distinct subclasses. In 1986 Mosman and Coff-

man revealed the existence of two functional

subsets, termed T helper 1 (Th1) and T helper

2 (Th2). In 1995 Dr Sakaguchi60,61 discovered

another specific subpopulation of T cells,

named regulatory T (Treg) cells, that were spe-

cialized for immunosuppression. More recently

other subsets have been isolated named Th17

(2005),62,63 Th9 (2008)64,65 and Th22 (2009).40

Finally, single-cell RNA-sequencing has

revealed the existence of a subpopulation

of steroid-producing cells within the Th2

compartment.23

Table 1. Different available methods for single-cell sequencing

Method Principle

Strand-

specific?

Positional

bias? Ref

Tang et al. PolyA tailing No 30 (weak) 6,14

STRT 50 selection Yes 50 (strong) 7,11

SMART–seq Template

switching

No 30 (weak) 8,12,13

CEL–seq/

MARS-seq

In vitro

transcription

Yes 30 (strong) 9

Quartz–seq PolyA tailing No 30 (weak) 10
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Moreover, some of these new techniques that require

little input material are essential when focusing on tran-

scriptomic/genomic profiles of rare cells, as for example

with circulating tumor cells, fetal circulating cells,

haematopoietic stem cells in peripheral blood and in the

bone marrow, and antigen-specific T or B cells that occur

at very low frequencies in the population. The gene

expression profiles of these rare cells were difficult, if not

impossible, to study with the previous technologies and

only now are we able to explore the heterogeneity within

these specific subclasses of cells.

Single-cell RNA-seq, the good and the bad of a
powerful technique

Scientists have made great strides in the 25 years after

Iscove and co-workers5 succeeded in the purification and

amplification of mRNA from one single cell in 1990. Two

decades of technological and computational progress have

recently resulted in the advent of scRNA-seq technology

that allows the simultaneous quantification of the expres-

sion of most genes in one single cell.

Even though it seems obvious, we need to underline

that single cells do not have a perfect biological repli-

cate as each cell is, by definition, a unique unit. The

high variability observed between two different cells

could be either biological or purely technical. The tech-

nical variation is mainly the result of the extremely low

amount of input material, which can in turn cause a

substantial loss during cDNA synthesis and promote

amplification biases during the multiple rounds of PCR

that are required before the sequencing can be

performed.

In the past 6 years, five main methods have been devel-

oped and optimized to reverse transcribe the mRNA and

amplify the cDNA from one single cell to achieve a better

coverage and a lower cost per cell6–14 (Table 2). A parallel

development of multiple algorithms has taken place in

order to deal with the huge amount of data these new

experiments have produced.15 These computational meth-

ods become crucial for data interpretation because this

new technology generates an incredible amount of data,

which require faster and more standardized computa-

tional methods. The data are also ‘corrupted’ by numer-

ous confounding factors and biases that need to be

corrected for, using automated methods.16–20

To overcome these limitations, different technical

strategies have been adopted to calculate the inherent

technical variability; for instance, the addition of artificial

nucleic acid DNA and RNA standards or spike-in Exter-

nal RNA Controls Consortium (ERCC) molecules that

are assumed to be the same across the samples. Alterna-

tively, the count of the mRNA molecules per cell, in

which each molecule is individually labelled with random

DNA sequences (Unique Molecular Identifiers21). Accord-

ing to the sample preparation method, different computa-

tional approaches can be used to calculate gene

expression level.16,19,22

After data normalization and gene expression level cal-

culation, unsupervised clustering approaches (principal

Table 2. Different available techniques for analysing single cells at Cell/Protein/DNA and RNA level

Technique Pros Cons

Cellular level Live imaging Easy to use, available in many laboratories.

Live cells

Laborious, long data processing. Restricted to

few genes of interest

Reporter cells Easy to use, available in many laboratories.

Live cells

Restricted to few genes of interest

Lineage tracing Useful for developmental studies Laborious, long data processing. Restricted to

few genes of interest

Protein level Flow cytometry Well-established technique. Easy to use

and available in many laboratories

Restricted to few genes of interest (up to 17).

Limited to surface markers for live cells

Immunofluorescence Well-established technique. Easy to use,

available in many laboratories

Restricted to few genes of interest. Manual

data analysis

CytOF Up to 40 different proteins analysed in

single cells. No compensation required

Costly and specific machine is required

Amnis Automatic data analysis Restricted to few genes of interest

DNA level Single cell (Sc)-genome No pre-knowledge required Costly

Sc-bisulphite seqencing No pre-knowledge required Costly

RNA level Sc-quantitative PCR Quick results Costly

Sc-sequencing Global profiling, no need of pre-knowledge Costly Slower than quantitative PCR

Single molecule

RNA-fluorescence

in situ hybridization

Absolute mRNA count Laborious, long data processing. Restricted to

few genes of interest
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component analysis and hierarchical clustering) can help

in identifying new distinct subpopulations (Fig. 2)23,24,

but the discrimination between cell state and cell type still

needs to be further validated experimentally. In other

words, the distinction between physiological fluctuations

of gene expressions without phenotypic changes, and dif-

ferent cells types cannot be made solely by analysis of

gene expression pattern. This is especially true in the con-

text of the immune system where cells are known to fre-

quently shift from an inactive to an active state. One of

the main problems that we face when analysing single

cells is that each cell can be in a different cell cycle phase

and can therefore display variation not only in terms of

gene expression abundance, but also in terms of size and

RNA content. This difference, that in bulk data is com-

pletely averaged out, may account for most of the varia-

tion we observe in single-cell data and needs to be

corrected for.17 The same is also true for stress conditions

and other factors that might introduce another level of

variability within the cell population analysed.

Heterogeneity in the immune system

The heterogeneity displayed by cells in the immune sys-

tem reflects the extreme flexibility and plasticity that

makes the immune system efficient in fighting different

pathogens. At the same time, it poses a big challenge that

scientists face when studying these cells. The word
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Figure 2. Identification and characterisation of novel immune cell types and cell states (1) Identification of novel immune cell populations or

distinct cell states can be performed using hierarchical clustering (1A) or principle component analysis (PCA) for example (1B). (2) Analysis of

differential splicing: specific splice variants may associate with a subpopulation of immune cells or cell state because of their differential function

(2A). Example of different approaches to characterise novel cell states. Find markers of cell types by analysing differential expression between dif-

ferent groups of cells (2B), identification of genes that show particular pattern during differentiation such as during developmental maturation of

immune cells or in response to immunogenic stimuli: genes that either increase, decrease or are transiently expressed (2C).
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‘heterogeneity’ has been used with regards to the immune

system in immune cells since the early 1970s,25 and the

level of complexity and diversification has grown since

then. The diversity includes diversity at the DNA level as

well at the RNA and protein levels. Regarding the DNA

level, it is worth noting that, whereas the human genome

contains roughly 30 000 genes, the number of T-cell

receptors (TCRs) is estimated to be in the order of 107

and the same is true for the B-cell receptors.26,27 This

variability is achieved by somatic recombination of the

DNA, a process that is restricted to B and T cells only.

This extreme situation is indicative of the importance of

the heterogeneity in the immune system, as evolution has

selected a way to guarantee the recognition of a multitude

of pathogens through the variability of those repertoires.

The same happens at the RNA and protein levels. For

instance the secretion of specific signalling cytokines by

immune cells displays a high rate of diversity as quanti-

fied by flow cytometry.

Early reports from 1995 and 199628,29 underlined how

the level of synthesis of different cytokines was different

under different stimuli in T helper type 1 (Th1) com-

pared with Th2 cells. It was also clear that, even when

looking at just two cytokines at a time, cells display enor-

mous cell-to-cell variability. With improvements in flow

cytometry technology we are now able to analyse 17 dif-

ferent parameters at the same time per cell.30

The CD4+ T-cell lesson

From the discovery of CD4+ T cells (T helper cells) in

the early 1980s31,32 with the advent of monoclonal anti-

body technology and the initial distinction between Th1

and Th2 from Tim Mosmann and Bob Coffman33,34 the

T helper subtypes organization has become far more

complex. Starting from the two main Th1 and Th2

groups, five other new members have now joined the

CD4+ T-cell panorama, such as Th17,35,36 the regulatory

T cells,37 the follicular helper T cells38 and, most recently,

the Th939 and Th2240 subsets. This is a very simplified

categorization, but, the overall picture, rather than

becoming clearer over time, has actually become more

blurred (Fig. 3). This subsequent complication is mainly

caused by the fact that the distinction among different

subtypes is defined by the expression of few specific

genes41 and the intermediate cell types (expressing mark-

ers of different subtypes at the same time) has not yet

been completely understood and hence incorporated.

Our knowledge of CD4+ T cells has significantly

expanded over the last few years by employing single-cell

technologies. For instance, single molecule RNA-fluores-

cence in situ hybridization combined with immunostain-

ing has been employed to study the interplay between

extracellular cytokines and intracellular transcription fac-

tors during the early phase of CD4+ T helper cell differ-

entiation.42 The same process has been investigated at

single-cell resolution43 with conventional flow cytometry

staining integrated with mathematical modelling. The

integration of the results from both these works showed

that the CD4+ T-cell differentiation scenario is more var-

iegated than was thought and stochasticity seems to play

a very important role in determination of cell fate. The

original theory of the two mutually exclusive master regu-

lators Gata3 and Tbx21 in instructing the Th2 versus the

Th1 lineage commitment has now been substituted by the

co-existence of a mixed continuum of T helper cells with

a weak intracellular network that is strongly affected by a

robust extracellular cytokine signal. In an article by Peine

and co-workers,44 the authors demonstrated the existence

of an in vivo intermediate Th1/Th2 cell type. These cells,

that were conventionally thought to be unstable, are

shown to be highly stable and cannot be considered a

mere undecided precursor. The same approach applied to

other differentiation pathways might lead to similar con-

clusions.

A recently published paper from Mahata et al. revealed

the existence of a Th2 subpopulation identified by the sin-

gle-cell sequencing technologies. This specific subset of

Th2 cells is distinguished from the rest of the population

by the expression of a specific enzyme (Cyp11a1) that is at

the basis of steroid biosynthesis.23 The comprehensive data

obtained by the single-cell transcriptomic approach

allowed not only identification, but also purification of

these cells based on new markers. Cells of interest were iso-

lated from the whole population using antibodies against a

surface molecule, the expression of which correlated with

the expression of the cytoplasmic enzyme of interest,

allowing a broad ex vivo functional validation of the new

cell type discovered. This is the first example of how the

single-cell sequencing approach can ultimately shed light

on the variegated compositions of the standard T helper

cell subclasses, not only in terms of expression profile but

also in terms of functional characterization of the cells.
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Th22 Th22

Th9Th17 Th17

Th2 Th2

Th1 Th1

Treg Treg
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? ?
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?Single cell transcriptomic

Figure 3. The static and discrete view of the CD4+ T helper cell

population composition might be completely revised thanks to sin-

gle-cell technology. In the new scenario many more intermediate

subtypes as well as new subpopulations can be introduced by the

whole transcriptomic profiles of single immune cells. In this scheme,

CD4+ T helper cells are used as an example that can be applied to

many different cell types.
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TCR sequencing coupled with functional analysis of T
cells

T-cell receptor repertoire studies have greatly benefited

from the new single-cell sequencing approaches. Pioneer

studies on TCR repertoire at single-cell level45–48 (revised

in refs. 49,50) were limited to the analysis of TCR-a or

TCR-b chains (sometimes one of the two only) without

any information on the expression of other genes charac-

teristic of different subpopulations of T cells.

A recently published work51 has finally coupled the

analysis of a-chain and b-chain sequences with the

expression of a panel of genes characteristic of differenti-

ated T cells. This analysis showed how T cells bearing the

same TCR-a and TCR-b sequences can exhibit substantial

differences in the expression of cytokines and transcrip-

tion factors, demonstrating for the first time that T cells

derived from the same progenitor can actually differenti-

ate towards different mature T cells.

Future directions

Dissection of immune cell populations

The advantage of scRNA-seq is the identification of cellu-

lar sub-populations in an unbiased way. Redetermination

of immune cell types taking each cell’s transcriptome into

account in a bottom–up manner would reveal a new

dimension. Immune responses often rely on sequential

changes in cell state from inactive to active. Single-cell

transcriptomic analysis of the transition between cellular

states can reveal new insights into regulatory mechanisms.

Whether the transitions between states are binary or

graded is still unresolved. Understanding the nature of

the immune cell activation process and possible interme-

diate states can lead to the identification of key genes that

act as switches and drivers of these processes. Hence the

clustering of cells into groups based on their single-cell

transcriptomes is an important future task.

For example, can we regroup tumour-infiltrated

immune cells (e.g. tumour-associated macrophages)?

Tumour-associated macrophages are structurally plastic

and heterogeneous, and functionally crucial for determin-

ing the fate of a tumour.52 These cells are widely accepted

to be a cause of anti-tumour immune suppression. A sin-

gle-cell study on tumour-infiltrated lymphoid and mye-

loid cells may lead to new insights and ways to identify

cancer drug targets.

An alternative to the clustering approach is to use prin-

ciple component analysis to identify cell types. Cellular

transitions can be studied by defining cell states using

hierarchical clustering or principal component analysis-

like methods. The approach has been applied to show

how cells change gradually along the developmental path-

way from zygote to the late blastocyst.53 In future, a simi-

lar approach can be applied to the in vivo immune cell

activation/inactivation dynamics and their dysfunction.

Promoterwise gene expression kinetics

Variability in the gene’s expression levels across cells pro-

vides information on how tightly its expression is con-

trolled. Genes with higher transcriptional bursts and lower

frequency are noisier than genes that are expressed in

small frequent bursts.54 An scRNA-seq based study of

bone marrow-derived dendritic cell activation revealed

that certain genes had a bimodal pattern of gene expres-

sion.55 Subsequent studies showed that paracrine sig-

nalling of a subset of fast-responding dendritic cells affects

the whole population.56 Future studies on other specific

groups of immune cell populations (e.g. T cells) following

a similar approach would reveal further insights.

Differential splicing: a mode of immune regulation

Some scRNA-seq methods (e.g. Smart-Seq) that provide

full transcript coverage can allow us to determine and

quantify the alternative splice forms. Immune cell hetero-

geneity due to the differential expression of splice variants

is still underexplored (Fig. 2). The report from Shalek

et al.55,56 showed that the predominant isoform of several

genes differs between different dendritic cell populations.

It remains to be seen whether this paradigm holds more

generally in other immune cells and plays a functional

role in building an effective immune response.

Gene–gene correlation studies and gene-regulatory
networks

Cell-to-cell variability in gene expression can be used to

infer gene regulatory interactions and gene regulatory net-

works.57,58 More specifically, by using scRNA-seq data,

gene-regulatory modules (sets of genes that are co-regulated)

can be inferred by calculating gene-to-gene correlations

or by clustering genes based on gene expression profiles

across cells (Fig. 2). Such an approach is expected to

reveal novel genes correlated with ones already known

to play an important role in the immune response. We

have applied such an approach to identify cell surface

receptors that were specifically enriched in the steroid-

producing Th2 cells.23 Further application of this

approach is anticipated to be beneficial for immunologi-

cal studies.

Concluding remarks

Assessment of bulk immune cell populations using classic

immunological techniques provided an imperfect systems

level view that greatly underestimated the constitutive

and functional diversity of the immune system. This is
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due to the averaging effect and contributions of minor

but functionally important populations. Both the huge

cell-to-cell variability and the amount of data these new

technologies have brought to light constitute a great

resource and at the same time a challenge for scientists.

The parallel development of more sophisticated algo-

rithms, faster computational approaches and new data

visualization methods has already allowed scientists to

gain new insights into immune system diversity.18,23,55,56

Despite this incredible progress, there are still some issues

that need to be solved and most of the works involving

single-cell sequencing are methodological. Few mechanis-

tic questions have been addressed with this technology so

far. This limitation is partly due to the high complexity

of the data and the inability to compare different data

sets due to batch effect variation.

The need for a standardized, more consistent and glob-

ally approved method for data normalization and data

analysis will allow us to merge and compare the multi-

tude of data sets that scientists from around the world

are producing, enabling a deeper, single-cell-centred char-

acterization of the architecture of different organs, and

ultimately the whole body.59

Though significant progress has been made capturing

the single-cell transcriptome, obtaining the proteome at

single-cell resolution is far from a reality. The most ambi-

tious goal of single-cell-level studies would be the integra-

tion of transcriptomic and proteomic profiles from a

single cell. The exact correlation between protein and

RNA content at the single-cell level would be an interest-

ing area of research specifically in immunobiology.
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