
20 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Essential and relational models

Published version:

DOI:10.1017/S0960129515000316

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is a pre print version of the following article:

This version is available http://hdl.handle.net/2318/1542972 since 2020-06-14T22:02:34Z

Under consideration for publication in Math. Struct. in Comp. Science

Essential and Relational Models †

L U C A P A O L I N I1 , M A U R O P I C C O L O2 and S I M O N A R O N C H I D E L L A R O C C A1

1 Dipartimento di Informatica, Università degli Studi di Torino, Corso Svizzera 185, 10149 Torino, Italy
2 Dipartimento di Informatica Scienze ed Ingegneria, Università di Bologna

Received 14 February 2015

Dedicated to Corrado Böhm for his 90th birthdays.

Intersection type assignment systems can be used as a general framework for building

logical models of λ-calculus that allow to reason about the denotation of terms in a

finitary way. We define essential models (a new class of logical models) through a

parametric type assignment system using non idempotent intersection types. Under an

interpretation of terms based on typings instead than the usual one based on types,

every suitable instance of the parameters induces a λ-model, whose theory is sensible.

We prove that this type assignment system provides a logical description of a family of

λ-models arising from a category of sets and relations.

1. Introduction

In the general framework of denotational semantics of λ-calculus, logical models are

a particular class of λ-models supplying a finitary description of the interpretation of

terms, through type assignment systems. Types are built from a set of constants, via

two type-constructors: the arrow (→) and the intersection (∧). Terms are interpreted

as sets of types, so reasoning about the interpretation of a term in these models can be

done via type inference; in fact, in order to prove the equivalence between two terms,

it is sufficient to show that they can be assigned the same set of types. Although the

type inference is undecidable, logical models are concrete tools for reasoning in finitary

way on the interpretation of terms, since a (finite) derivation grasps a finite piece of the

semantic-interpretations.

The relationship between logical models and domain-theoretical models has been

widely studied, and it has been proved that some interesting classes of such models can be

described in logical form. For instance, filter models supply a logical description of a class

of Scott models based on continuous functions, since they can be seen as a restriction

of the domain theory in logical form, which goes back to Stone duality (see Abramsky

(1991)). A first characterization of a logical model where types represent continuous func-

tions is in Coppo et al. (1984), a sketch of the proof of the correspondence between filter

† This work was partly supported by MURST - PRIN 2010FP79LR-007.

Paolini, Piccolo and Ronchi Della Rocca 2

models and (a class of) Scott models is in Honsell and Ronchi Della Rocca (1992) among

others and a more complete proof is in Ronchi Della Rocca and Paolini (2004), Chapter

13. Furthermore a logical description of models based on stable functions has been first

proposed in Honsell and Ronchi della Rocca (1990), where qualitative domains have been

considered, while in Paolini et al. (2009) a logical description of stable models based on

coherence spaces has been proposed. Intersection types roughly correspond to names for

finite elements of a domain, e.g. for compact elements in a Scott’s domain and for tokens

in a coherence space. In both these cases, intersection is considered modulo idempotency

(σ ∧ σ = σ), commutativity and associativity. So, an intersection is treated as a n-ary

operator, and an intersection of types σ1 ∧ ... ∧ σn can be naturally considered as a set,

so inducing a functional interpretation of types: a type σ1 ∧ ... ∧ σn → τ represents a

step-function in the continuous setting and a token of the trace of a stable function in

the stable setting respectively. Types come equipped with a type theory, reflecting the

structure of the underlying domain: in case of the Scott models, the type theory is a

preorder on types reflecting the order between the compact elements of the domain, in

case of the stable models the type theory is an equivalence relation, inherited by the

coherence relation between tokens. Therefore each class of models can be represented by

a parametric type assignment system, where the parameters are the set of type constants

and the type theory. Every correct instance of them supplies a particular model. In fact,

a key notion of the logical description of a class of models is the notion of legality of a

type theory, i.e., the constraint that a type theory must satisfy in order to represent a

λ-model. The main structural difference between these two kinds of logical descriptions

is that weakening is necessary in order to describe a Scott model, while it is unsound

in the description of stable models. In both cases, a type can be assigned to a term

whenever the corresponding element belongs to its interpretation in the model, and so

the interpretation of a term is the set of types derivable for it.

In this paper we define a new class of λ-models, using non-idempotent intersection

types. In particular, we propose a parametric type assignment system, where intersection

is associative and commutative, but not idempotent, and where the parameters are the

set of type constants and a type theory, i.e. a congruence on types on which we only ask

the constraint of preserving the number of components of an intersection. Weakening is

not allowed, since we want to consider the minimal information necessary to give type

to terms. Every suitable instance of the parameters gives rise to a λ-model, by using

a non standard interpretation of terms. In fact, in this setting interpreting a term as

the set of types derivable for it is no more sound (it induces a λ-algebra but not a λ-

model). Therefore, we interpret a term as a set of pre-typings, which are pairs (B;σ),

where B is a finite map from variables to types and σ is a type. In case of a closed

term M, the interpretation is reminiscent of the standard one, since it is the set {(∅;σ) |
σ is derivable for M}. We call this class of models the class of essential models. This class

turns out to be quite poor, with respect to the induced λ-theories, since it induces only

sensible theories.

It is worth noticing that the loss of idempotency implies that a type of the shape

σ1 ∧ ... ∧ σn → τ has no more a pure functional interpretation, since it carries out some

intensional information about how many times an argument is used. In fact, the family

3

of essential models we define provides a logical description of a class of models formalized

in Bucciarelli et al. (2007) in MRel, a category of sets and relations. The proposed non

standard interpretation of terms in the essential λ-models reflects the fact that MRel has

not ”enough points”. Following Selinger (2002), in order to build lambda-models each

term is interpreted as a suitable morphism of MRel(Un, U), where U is a reflexive object

and n ∈ N. Indeed, this issue is logically modeled by the use of pre-typings.

Two type assignment systems based on non idempotent intersection types and inducing

a λ-algebra have been already defined, namely in Coppo et al. (1981) and de Carvalho

(2009). Both can be obtained from the class of essential type assignment systems, by a

suitable instance of the parameters, as we will show in the conclusion.

Related Works Type assignment systems with non-idempotent intersection have been

already studied in literature, for many different purposes. Kfoury and Wells (2004) used

non-idempotent intersection in order to formalize a type inference semi-algorithm whose

complexity has been studied in Mairson and Neergaard (2004). Kfoury (2000), connected

non-idempotent intersection types and linear β-reduction. Non idempotent intersection

types have been used in Pagani and Ronchi Della Rocca (2010b,a) to characterize the

solvability in the resource λ-calculus. Non idempotent intersection types have been used

as technical tool for a characterization of strong normalization in Bernadet and Lengrand

(2011b). Non idempotency has a quantitative flavour, in fact they have been used for prov-

ing interesting quantitative properties about the complexity of the β-reduction in de Car-

valho (2009), Bernadet and Lengrand (2011a) and De Benedetti and Ronchi Della Rocca

(2013). Some observations about the use of non idempotent intersection types in the

setting of implicit computational complexity have been made in Terui (2006). In Di Gi-

anantonio et al. (2008) game semantics of a typed λ-calculus has been described in

logical form using an intersection type assignment system where the intersection is not

idempotent neither commutative nor associative. Ehrhard (2012) has presented a paper,

where the logical descriptions of continuous and relational models for the call by value

λ-calculus are put in correspondence by an extensional collapse, and both idempotent

and not idempotent intersection types are used to prove this relation. Very recently, in

Bucciarelli et al. (2014) it has been defined a sound and complete inhabitation algorithm

for non-idempotent intersection types, while in Urzyczyn (1999) the problem has been

proved undecidable in the idempotent case.

Outline The paper is organized as follows. In Section 2 the crucial definitions of λ-

algebra and λ-model are recalled. Section 3 contains the definition of the essential type

assignment system, and the proofs of some of its properties. In Section 4 it is proved

that every essential type system induces a λ-model, under a suitable notion of semantic

interpretation. In Section 5 we discuss the interpretation of terms in essential models. In

Section 6 we recall the class of models in the category MRel, formalized by Bucciarelli,

Erhard and Manzonetto, and in Section 7 we prove that the essential models are a correct

and complete logical description of them. Section 8 contains a proof that all theories

induced by essential models are sensible. In Section 9, we give some final considerations

and sketch some future developments.

Paolini, Piccolo and Ronchi Della Rocca 4

2. λ-algebras and λ-models

We recall the λ-calculus syntax, and the notions of λ-algebra and λ-model, following the

definitions provided in Barendregt (1984).

Definition 1.

(1) Terms of λ-calculus are defined by the following syntax:

M ::= x | λx.M | MM

where x belongs to Var, i.e. a countable set of variables. Variables are ranged over by

x, y, z and terms by M, N, P. The set of terms is denoted by Λ, the set of closed terms

by Λ0. FV(M) denotes the set of free variables of M.

(2) Contexts are generated by adding a special constant [.] (the hole) to the above term-

grammar. C[M] denotes the term obtained from C[.] by replacing the hole by the term

M. Note that free variables of M could be captured by the replacement.

(3) The α-equality is the contextual closure of the following rule:

λx.M =α λy.M[y/x]

where y is fresh. As usual, terms are consider modulo =α.

(4) β-reduction is the contextual closure of the following rule:

(λx.M)N→β M[N/x]

where M[N/x] denotes the capture free substitution of N to all occurrences of x in M.

We denote by =β the minimal congruence induced by→β . We denote by =η the least

congruence satisfying also M =η λx.Mx if x 6∈ FV(M).

≡ is an alternative notation for =α. FV(M) denotes the set of variables occurring free

in M. Many equivalent notions of λ-algebra and λ-model are present in the literature. We

will use the syntactical characterization given by Barendregt (1984), Ch. 5.3, based on

definition of syntactical λ-model given by Hindley and Longo (1980).

Let D be a set. An environment is a function from Var to D. Environments are ranged

over by ρ, ρ′. We denote by E the collection of all environments. If ρ is an environment

x ∈ Var and d ∈ D, then we denote with ρ[d/x] the environment ρ′ such that ρ′(x) = d

while ρ′(y) = ρ(y) for all y 6= x.

Definition 2. (See Barendregt (1984))

(1) A syntactical λ-algebra is a triple A = 〈D, ◦, J.KA〉, such that D is a set (the carrier

set) and ◦ is a total map from D2 to D. The interpretation function J.KA : Λ×E→ D
satisfies the following conditions:

(a) JxKAρ = ρ(x);

(b) JMNKAρ = JMKAρ ◦ JNKAρ ;

(c) Jλx.MKAρ ◦ d = JMKAρ[d/x];

(d) ∀x ∈ FV(M).ρ(x) = ρ′(x) implies JMKAρ = JMKAρ′ ;

(e) Jλx.MKAρ = Jλy.M[y/x]KAρ , if y 6∈ FV(M);

5

(f) if M =β N then ∀ρ.JMKAρ = JNKAρ .

(2) A syntactical λ-algebra A = 〈D, ◦, J.KA〉 is a syntactical λ-model if the interpretation

function J.KA satisfies the further requirement:

(g) if JMKAρ[d/x] = JM′KAρ[d/x] for each d ∈D, then Jλx.MKAρ = Jλx.M′KAρ .

Some comments are in order. The definition ensures that the interpretation function

respects some elementary key properties, namely that the syntactical substitution is

modeled by the environment (conditions (a) and (c)), that the interpretation of a term

depends only on the behavior of the environment on its free variables (condition (d)),

that α and β-equalities are respected (conditions (d) and (f)), that the interpretation

is closed under applicative contexts (condition (b)). The further request (g) makes the

interpretation closed also under abstraction contexts, thus the induced semantic equiva-

lence:

M =A N if and only if ∀ρ.JMKAρ = JNKAρ
is a lambda-theory, i.e., a congruence on terms closed under β-equality. As usual, the

lambda-theory =A will be called simply the theory of the model A. A lambda theory is

extensional if and only if it is closed under =η .

3. The class of Essential Type Assignment Systems

We introduce a class of type assignment systems for the λ-calculus, that we call essen-

tial. We prove that, under a given condition, subject reduction and expansion lemmas

hold. Types are built through two connectives: arrow (→) and intersection (∧). The key

characteristics of these systems are the non-idempotency of intersection and the lack of

weakening rule.

Definition 3.

(1) Let C be a non empty set of type constants, ranged over by a, b, c. The set of types T(C)

and the set of intersections M(C) are mutually defined by the following grammar:

σ, τ, π ::= a | ω → σ | µ→ σ (types)

µ, ν ::= σ | µ ∧ ν (intersections)

where a belongs to the set C. Note that ω is not a type constant. In order to avoid

a redundant use of parentheses, we assume an order relation between connectives,

imposing ∧ takes precedence over →: so σ1 ∧ σ2 → τ stands for (σ1 ∧ σ2)→ τ .

(2) Let = denote the syntactical equality on types and intersections, modulo commu-

tativity and associativity of ∧, i.e., µ ∧ ν = ν ∧ µ, and (σ ∧ τ) ∧ π = σ ∧ (τ ∧ π).

Henceforth, types and intersections will be always considered modulo =. To consider

intersection modulo associativity allows us to use it as an n-ary connective (n ≥ 0),

so (σ ∧ τ)∧ π and σ ∧ (τ ∧ π) are both denoted by σ ∧ τ ∧ π. To consider intersection

modulo commutativity allows us to freely permute types in a n-ary intersection.

(3) An essential type theory ' is a congruence relation on types and intersections (in-

cluding the syntactical equality).

Paolini, Piccolo and Ronchi Della Rocca 6

We will show that, in order to build a λ-model, we need to restrict ourselves to consider

essential types theories which are legal. Roughly speaking, an essential type theory is legal

if it respects the non-idempotency of the intersection, so forcing intersections to model

multisets (of types). Then, morally, an intersection joins non empty multisets of types

and ω represents the empty multiset.

Definition 4 (Legality). A legal essential type theory is an essential type theory '
satisfying the following conditions:

• µ ' ν implies µ = σ1 ∧ . . . ∧ σn, ν = τ1 ∧ . . . ∧ τm, n = m, and σi ' τi (1 ≤ i ≤ n);

• µ→ τ ' ν → τ ′ implies µ ' ν and τ ' τ ′;
• ω → σ ' ω → τ implies σ ' τ .

Proposition 1. Let ' be a legal essential type theory. If σ ' σ′ then one of the following

cases holds:

(1) there is a ∈ C such that either σ = a or σ′ = a;

(2) σ = ω → τ and σ′ = ω → τ ′, with τ ' τ ′;
(3) σ = σ1∧ ...∧σn → σ0 and σ′ = σ′1∧ ...∧σ′n → σ′0 such that σi ' σ′i, for all 0 ≤ i ≤ n,

n ≥ 0.

Proof. The proof follows easily from the definition of ' and by the fact that it is a

congruence.

Now we can introduce a new class of intersection type assignment systems. Up to

details, the type systems in Coppo et al. (1981) and de Carvalho (2009) can be considered

instances of this class.

Definition 5.

(1) An essential type system ∇ is a pair 〈C,'〉, where C is a set of type constants and

' is a legal essential type theory on T(C) and M(C).

(2) A basis B is a partial function from variables to M(C), such that B(x) is defined only

for finitely many variables. We denote with dom(B) the domain of B. The relation '
can be easily extended to basis in the following way:

B ' B′ if and only if dom(B) = dom(B′) and, for all x ∈ dom(B), B(x) ' B′(x).

(3) Let ∇ be a type system. The ∇-essential type assignment system is a formal system

proving statements of the shape:

B `∇ M : σ

where M is a term, σ ∈ T(C) and B is a basis. The rules of the system are given in

Table 1 which uses notations defined in Notation 1.

Notation 1. If µ = σ1 ∧ . . . ∧ σn, we can write alternatively µ as ∧1≤i≤nσi. If ∇ is an

essential type system then C∇, T∇ and M∇ denote respectively its set of constants, types

and intersections and '∇ denotes its essential type theory. Let B be a basis, we denote

by B, x : µ the basis B′ such that x 6∈ dom(B), B′(x) = µ and B′(y) = B(y) for all y 6= x.

7

Table 1. The Type Assignment Systems `∇.

x : σ `∇ x : σ
(var)

B `∇ M : τ σ '∇ τ

B `∇ M : σ
('∇)

B0 `∇ M : σ1 ∧ ... ∧ σn → σ
(
Bi `∇ N : σi

)
1≤i≤n(∧

0≤i≤n Bi
)
`∇ MN : σ

(→ E)
B, x : σ1 ∧ ... ∧ σn `∇ M : τ

B `∇ λx.M : σ1 ∧ ... ∧ σn → τ
(→ I)

B `∇ M : ω → σ

B `∇ MN : σ
(→ Eω)

B `∇ M : τ x 6∈ dom(B)

B `∇ λx.M : ω → τ
(→ Iω)

∅ denotes the basis mapping every variable to the undefined element. We write x : µ in

place of ∅, x : µ. If B1, B2 are two bases then B1
∧
B2 is the basis such that

(B1
∧
B2)(x) =


B1(x) if x ∈ dom(B1) and x 6∈ dom(B2)

B2(x) if x ∈ dom(B2) and x 6∈ dom(B1)

B1(x) ∧ B2(x) if x ∈ dom(B1) and x ∈ dom(B2)

undefined otherwise
Thanks to associativity,

∧
can be extended to an n-ary operator in a straightforward

way, for n ≥ 0. Sometimes we will write B
∧
i Bi as an abbreviation for B

∧
(
∧
i Bi). Deriva-

tions are ranged over by Π,Σ, and Π� B `∇ M : σ denotes a derivation whose conclusion

is B `∇ M : σ. The term M is commonly called the subject of Π.

Table 1 defines a parametric type assignment system, where the parameter is an es-

sential type system ∇. Every choice of ∇, i.e., of a set of type constants and of a legal

essential type theory, provides a particular instance of essential systems. Note that the

system `∇ does not allow weakening, i.e. it is relevant. The rules are quite standard. We

remark that (→ E) is quantitative, in the sense that the number of derivations for the

arguments is exactly the number of the components of the intersection in the left part of

the type in functional position. Moreover, in rule (→ Eω), the argument of the application

in the subject is not asked to have a type, so also terms with unsolvable subterms can

be typed, e.g. y((λx.xx)(λx.xx)).

Lemma 1 (Generation). Let ∇ be an essential type system.

(1) B `∇ x : σ implies dom(B) = {x} and σ '∇ B(x);

(2) B `∇ M : σ implies dom(B) ⊆ FV(M);

(3) B `∇ λx.M : σ implies either σ '∇ ω → τ or σ '∇ µ→ τ for some µ, τ ;

(4) B `∇ MN : σ implies either B `∇ M : ω → σ or there are B0, . . . , Bn (n ≥ 0) such that

B0 `∇ M : σ1 ∧ ... ∧ σn → σ, Bi `∇ N : σi (1 ≤ i ≤ n) and B = (
∧

0≤i≤n Bi);

(5) B `∇ M : σ and B '∇ B′ imply B′ `∇ M : σ;

(6) If '∇ is a legal essential type theory, then B `∇ λx.M : σ1 ∧ ...∧ σn → τ if and only if

B, x : σ1 ∧ ... ∧ σn `∇ M : τ (n ≥ 1).

(7) If '∇ is a legal essential type theory, then B `∇ λx.M : ω → τ if and only if B `∇ M : τ

with x 6∈ dom(B).

Proof. We just discuss some points.

Paolini, Piccolo and Ronchi Della Rocca 8

• Proof of point (2). By induction on the derivation. Let the last applied rule be (→ Eω):

B `∇ M : ω → σ

B `∇ MN : σ
(→ Eω)

Remember that FV(MN) = FV(M) ∪ FV(N). By induction, dom(B) ⊆ FV(M). Since the

final judgment is B `∇ MN : σ, in case there is x ∈ FV(N) − FV(M), x 6∈ dom(B), so the

inclusion can be strict. The other cases follow by induction.

• Proof of point (6). We just prove the left-to-right implication, by induction on the

derivation. If the last applied rule is either (→ I) or (→ Iω), then the proof is immediate.

Otherwise, the derivation proving B `∇ λx.M : σ1 ∧ ... ∧ σn → τ ends in the following

way:

B, x : π1 ∧ ... ∧ πm `∇ M : π

B `∇ λx.M : π1 ∧ ... ∧ πm → π
(→I)

B `∇ λx.M : σ1 ∧ ... ∧ σn → τ
(')

where π1 ∧ ... ∧ πm → π '∇ σ1 ∧ ... ∧ σn → τ by transitivity of '∇ (as usual, the

double line in the derivation means many applications of the considered rule). Since

'∇ is a legal essential type theory, π1 ∧ ... ∧ πm '∇ σ1 ∧ ... ∧ σn and π '∇ τ , so by

definition m = n and πi ' σi (1 ≤ i ≤ n). Then the proof follows by point (5) of this

Lemma.

• Point (7) is similar to the Point (6) but simpler.

The proof of all other points is immediate, by induction on derivation.

Note that the point (5) of the previous lemma implies that the following is a derived

rule:
B `∇ M : σ B '∇ B′

B′ `∇ M : σ
('B

∇)

From now on, where not specified otherwise, we will always consider only legal essential

type theories. Every type assignment system `∇ satisfies the β-equality on terms. For

proving it, first we need to prove that it enjoys the substitution property.

Lemma 2 (Substitution). B, x : σ1 ∧ ... ∧ σn `∇ M : τ and Bi `∇ N : σi (1 ≤ i ≤ n)

imply B
∧

1≤i≤n Bi `∇ M[N/x] : τ (n ≥ 0).

Proof. By induction on the derivation proving B, x : σ1 ∧ ... ∧ σn `∇ M : τ . The only

non obvious case is when the last applied rule is (→ E). Then M ≡ PQ, and the derivation

ends by:

B0, x : τ1 ∧ ... ∧ τp `∇ P : π1 ∧ ... ∧ πm → σ
(
Bj , x : τ j1 ∧ ... ∧ τ jqj `∇ Q : πj

)
1≤j≤m(

B0
∧

1≤j≤m Bj
)
, x : σ1 ∧ ... ∧ σn `∇ PQ : σ

(→ E)

where σ1∧ ...∧σn = τ1∧ ...∧τp∧τ11 ∧ ...∧τ1q1∧ ...∧τ
m
1 ∧ ...∧τmqm . So n = p+Σ1≤j≤mqj , and

σi coincides either with τr or with τhk , for some r, h, k (1 ≤ r ≤ p, 1 ≤ h ≤ m, 1 ≤ k ≤ qh).

Let Bh `∇ N : τh (1 ≤ h ≤ p) and B
j
kj
`∇ N : τ jkj (1 ≤ j ≤ m, 1 ≤ kj ≤ qj). By induction

we have that

(1)B0
∧

1≤h≤p Bh `∇ P[N/x] : π1 ∧ ... ∧ πm → σ,

9

(2)Bj
∧

1≤kj≤qj B
j
kj
`∇ Q[N/x] : πj (1 ≤ j ≤ m).

Then it follows that B0
∧

1≤h≤p Bh
∧

1≤j≤m(Bj
∧

1≤kj≤qj B
j
kj

) `∇ P[N/x]Q[N/x] : σ by rule

(→ E) and the proof is given, since (PQ)[N/x] =α P[N/x]Q[N/x].

Lemma 3 (Subject Reduction). B `∇ M : σ and M→β M′ imply B `∇ M′ : σ.

Proof. M →β M′ means M ≡ C[(λx.Q)N] and M′ ≡ C[Q[N/x]]. The proof is by induction

on C[.]. The case C[.] ≡ [.] follows from Lemmas 1.(4) and Substitution. Inductive cases

are straightforward.

Lemma 4 (Subject Expansion). B `∇ M : σ and M′ →β M imply B `∇ M′ : σ.

Proof. M′ →β M means M′ ≡ C[(λx.Q)N] and M ≡ C[Q[N/x]]. The proof is by induction

on C[.].

Let us consider the basic case C[.] ≡ [.]. Let Π� B `∇ Q[N/x] : σ and let Πi� Bi `∇ N : τi
be the sub-derivations of Π whose subject is N for some 0 ≤ i ≤ n (note that it is possible

that n = 0). W.l.o.g. we can assume that x does not occur in N, so x 6∈ dom(Bi) by Lemma

1.(2). Thus, Π can be transformed into a derivation Π′ � B′′ `∇ Q : σ just by replacing

every Πi by the derivation x : τi `∇ x : τi and by defining B′′ as follows. If n = 0 then

B′′ = B and Π′ is the following derivation:

B `∇ Q : σ

B `∇ λx.Q : ω → σ
(→ Iω)

B `∇ (λx.Q)N : σ
(→ Eω)

Otherwise, let {y1, ..., yh} = FV(N).

Then we choose B′′ such that x 6∈ dom(B′′) and B(yk) = (
∧

0≤i≤n Bi(yk))
∧
B′′(yk)

(0 ≤ k ≤ h), while B(z) = B′′(z), for z 6∈ FV(N). So we can build the following derivation:

Π′

...
B′′, x : τ1 ∧ ... ∧ τn `∇ Q : σ

B′′ `∇ λx.Q : τ1 ∧ ... ∧ τn → σ
(→ I)

(Bi `∇ Ni : τi)0≤i≤n

B′′
∧

0≤i≤n Bi `∇ (λx.Q)N : σ
(→ E)

Since B = B′′
∧

0≤i≤n Bi, the proof is given. The induction case is straightforward.

Next theorem trivially follows by Lemmas 3 and 4.

Theorem 1. The type assignment system `∇ is closed under =β .

4. Essential Logical Models

In this section we prove that each legal essential type system induces a λ-model. The

main difference with respect to the usual logical model construction is that terms are

not interpreted as sets of types, but are interpreted as sets of typings. A typing is a pair

(B;σ) such that B `∇ M : σ for some term M, and a typing for M is a pair (B;σ) such that

Paolini, Piccolo and Ronchi Della Rocca 10

B `∇ M : σ. Then the interpretation domain is the set of pre-typings, i.e., pairs whose

components are a basis and a type, in principle unrelated from each other.

Definition 6. Let ∇ be a legal essential type system.

(1) A pre-typing is a pair (B;σ), where B is a basis and σ is a type. The equivalence '∇
can be extended to pre-typings in the following way:

(B;σ) '∇ (B′; τ) if and only if σ '∇ τ and B '∇ B′.

A pre-typing set s of ∇ is a set of pre-typings closed under '∇ such that the set⋃
(B,σ)∈s dom(B) is finite. Pre-typings sets are ranged over by s, t. Let T(∇) be the

family of all pre-typing sets.

(2) ◦∇ is a binary operation defined on T(∇) in the following way:

s1◦∇s2 = {(B;σ) | (B;ω → σ) ∈ s1}
⋃(

∧
0≤i≤n

Bi;σ)

∣∣∣∣ (B0;σ1 ∧ ... ∧ σn → σ) ∈ s1,
(Bi;σi) ∈ s2 (1 ≤ i ≤ n, n > 0)

}
The set of pre-typings is closed under composition.

Lemma 5. Let ∇ be a legal essential type system. If s1, s2 ∈ T(∇) then s1◦∇ s2 ∈ T(∇).

Proof. Obvious.

Terms are interpreted as set of pre-typings, closed under the relation '∇. Two terms

M and N will be said denotationally equal if and only if they share the same typings.

Let an environment be a function from Var to T(∇), and let E∇ be the set of environ-

ments. The interpretation function J.K∇ : Λ −→ E∇ −→ T(∇) is defined as follows.

JMK∇ρ =

{
(B;σ)

∣∣∣∣ B′ `∇ M : σ where dom(B′) = {x1, ..., xn}, B′(xi) = σi1 ∧ . . . ∧ σini
(ni ≥ 1),

and ∃Bij s.t. (Bij ;σ
i
j) ∈ ρ(xi) and B =

∧
1≤i≤n(

∧
1≤j≤ni

Bij)

}
Let M∇ = 〈T(∇), ◦∇, J.K∇〉. We prove that each type system ∇ induces a model M∇

of λ-calculus, according to Definition 2.

Theorem 2. Let ∇ be a type system. Then M∇ is a λ-model.

Proof. We need to prove that all conditions of Definition 2 are satisfied.

(a) JxK∇ρ =

{
(B;σ)

∣∣∣∣ B′ `∇ x : σ where dom(B′) = {x1, ..., xn}, B′(xi) = σi1 ∧ . . . ∧ σini

and B =
∧

1≤i≤n
∧

1≤j≤ni
Bij where (Bij ;σ

i
j) ∈ ρ(xi)

}
= {(B;σ)|x : τ `∇ x : σ where τ '∇ σ and (B; τ) ∈ ρ(x)} = ρ(x)

where the first equality follows by definition, the second follows by Lemma 1.1, and the

third follows by the fact that typing sets are closed under '∇.

11

(b) JMNK∇ρ ={
(B;σ)

∣∣∣∣ B′ `∇ MN : σ where dom(B′) = {x1, ..., xn}, B′(xi) = σi1 ∧ . . . ∧ σini
and

B =
∧

1≤i≤n
∧

1≤j≤ni
Bij where (Bij ;σ

i
j) ∈ ρ(xi)

}
=

{
(B;σ)

∣∣∣∣ B′ `∇ M : ω → σ where dom(B′) = {x1, ..., xn}, B′(xi) = σi1 ∧ . . . ∧ σini
and

B =
∧

1≤i≤n
∧

1≤j≤ni
Bij where (Bij ;σ

i
j) ∈ ρ(xi)

}⋃
(B;σ)

∣∣∣∣∣∣
B′0 `∇ M : σ1 ∧ . . . ∧ σm → σ, Bh `∇ N : σh(1 ≤ h ≤ m),

B′ = B0
∧

1≤h≤m Bh where dom(B′) = {x1, ..., xn}, B′(xi) = σi1 ∧ . . . ∧ σini

and B =
∧

1≤i≤n
∧

1≤j≤ni
Bij where (Bij ;σ

i
j) ∈ ρ(xi)

 =

JMK∇ρ ◦ JNK∇ρ

where the first equality follows by definition, the second equality follows by Lemma 1.4.

and the last equality follows by definition of ◦∇.

(c) Jλx.MK∇ρ ◦∇ s =

{(B;σ) | (B;ω → σ) ∈ Jλx.MK∇ρ }
⋃{

(
∧n
i=0 Bi;σ)

∣∣∣∣ (B0;σ1 ∧ ... ∧ σn → σ) ∈ Jλx.MK∇ρ ,
(Bi;σi) ∈ s (1 ≤ i ≤ n, n > 0)

}
={

(B;σ)

∣∣∣∣∣ B′ `∇ λx.M : ω → σ, where dom(B′) = {x1, . . . , xq}, B′(xj) = σj1 ∧ . . . ∧ σjqj
and B =

∧
1≤j≤q

∧
1≤l≤qj B

j
l where (Bjl ;σ

j
l) ∈ ρ(xi)

}⋃
(
∧n
i=0Bi;σ)

∣∣∣∣∣∣∣∣
B′′ `∇ λx.M : σ1 ∧ ... ∧ σn → σ, where dom(B′′) = {y1, . . . , yp},
B′′(yh) = σh1 ∧ . . . ∧ σhnh

and

B0 =
∧

1≤h≤p
∧

1≤k≤nh
Bhk where (Bhk ;σhk) ∈ ρ(yh),

and (Bi;σi) ∈ s (1 ≤ i ≤ n, n > 0)

 =

{
(B;σ)

∣∣∣∣∣ B′ `∇ M : σ, where dom(B′) = {x1, . . . , xq}, B′(xj) = σj1 ∧ . . . ∧ σjqj and

B =
∧

1≤j≤q
∧

1≤l≤qj B
j
l where (Bjl ;σ

j
l) ∈ ρ(xi)

}⋃
(
∧n
i=0 Bi;σ)

∣∣∣∣∣∣∣∣
B′′, x : σ1 ∧ ... ∧ σn `∇ M : σ, where dom(B′′) = {y1, . . . , yp},
B′(yh) = σh1 ∧ . . . ∧ σhnh

and

B0 =
∧

1≤h≤p
∧

1≤k≤nh
Bhk where (Bhk ;σhk) ∈ ρ(yh),

and (Bi;σi) ∈ s (1 ≤ i ≤ n, n > 0)

 = JMK∇ρ[s/x]

where the first equality follows by definition of ◦∇, the second equality follows by def-

inition of interpretation, the third follows by Lemma 1 (points 3 and 6) and the third

equality follows again by definition of ◦∇.

(d)Obvious.

(e)Obvious.

(f)It follows directly from Theorem 1.

(g)We prove Jλx.MK∇ρ ⊆ Jλx.M′K∇ρ whenever, JMKAρ[s/x] = JM′KAρ[s/x] for each s ∈T(∇), since

the other one is symmetric. Let us assume (B;σ) ∈ Jλx.MK∇ρ . By definition, B′ `∇ λx.M : σ

for some B′, moreover, if dom(B′) = {x1, ..., xm}, then B′(xj) = σj1 ∧ ... ∧ σjnj
, such that

there is (Bjh;σjh) ∈ ρ(xj), B =
∧

1≤j≤m(
∧

1≤h≤nj
B
j
h). W.l.o.g. we can assume x 6= xi

for all i, since x can be freely renamed. So either σ '∇ ω → τ and B′ `∇ M : τ or

Paolini, Piccolo and Ronchi Della Rocca 12

σ '∇ σ1 ∧ ... ∧ σn → τ , for some τ and n ≥ 1, by Lemma 1 (points (3), (6) and (7)).

In the first case, let s = ∅, then (B;σ) ∈ JMK∇ρ[s/x], and consequently (B;σ) ∈ JM′K∇ρ[s/x] by

hypothesis. So B′ `∇ M′ : τ , and the proof follows by rules (→ Iω) and ('∇).

In the second case, let s = {(x : σh;πh) | σh '∇ πh, 1 ≤ h ≤ n}, thus (B ∧ {x :

σ1 ∧ . . . ∧ σn}; τ) ∈ JMK∇ρ[s/x] and, consequently, (B ∧ {x : σ1 ∧ . . . ∧ σn}; τ) ∈ JM′K∇ρ[s/x] by

hypothesis. Therefore B′, x : σ1 ∧ . . . ∧ σn `∇ M′ : τ . By applying (→ I) and ('∇), we

obtain B′ `∇ λx.M′ : σ. So, the proof follows.

So, an essential type assignment system is a model for λ-calculus, which at the same

time supply a tool for reasoning about the denotational meaning of terms, and for com-

paring terms.

Lemma 6.

(1) If M ∈ Λ0 then JMK∇ρ = {(∅;σ) | ∅ `∇ M : σ}, for all environment ρ.

(2) M =M∇ N if and only if, (B `∇ M : σ ⇔ B `∇ N : σ) for all pre-typings (B;σ).

Proof. Both points follow easily from the definition of interpretation.

5. Justifying the interpretation choice

We further justify our choice of interpretation by proving that the standard construction

of logical models applied to an essential type assignment system gives rise to a λ-algebra,

but not to a λ-model. To achieve this goal, we generalize to our parametric class of models

a counterexample already presented in de Carvalho (2009) for a particular case.

Let us recall that in the standard approach, the domain of interpretations is a subset

of the power set of types: the set of filters, in case of continuous semantics, the power set

modulo the coherence equivalence in case of stable function. Then a term is interpreted

by the set of types derivable for it. Mimicking this approach, we could define the domain

of interpretations as the power set of types, modulo the relation ', and interpret a term

as the set of its types.

Definition 7. Let ∇ be an essential type system, and let ℘(T∇/'∇) be the power set

on T∇/'∇ . The composition function ◦ : ℘(T∇/'∇)→ ℘(T∇/'∇) is defined as follows:

s ◦ s′ = {σ | ω → σ ∈ s}
⋃
{σ | σ1 ∧ ... ∧ σn → σ ∈ s, σi ∈ s′(1 ≤ i ≤ n)}

Moreover, if E is the collection of functions (environments) from Var to ℘(T∇/'∇),

ranged over by ρ, then the interpretation function L.M∇ is defined as:

LMM∇ρ = {σ | ∃B� ρ, B `∇ M : σ} (1)

where B� ρ means that, for all x, B(x) = σ1 ∧ ...∧ σn implies σi ∈ ρ(x), for all 1 ≤ i ≤ n.

We show that the above attempt of interpretation does not provide a lambda-model,

but just a lambda-algebra. The same result would be obtained through the correspon-

dence with relational models, given in the next sections, using some observations in

13

Selinger (2002), but here we would like to supply a proof inside our essential type assign-

ment system.

Theorem 3.

(1) 〈℘(T∇/'∇), ◦, L.M∇〉 is a syntactical λ-algebra.

(2) 〈℘(T∇/'∇), ◦, L.M∇〉 is not a syntactical λ-model.

Proof.

(1)We need to prove that 〈℘(T∇/'∇), ◦, L.M∇〉 satisfies all the conditions of Definition 2.

We will prove just point (c), since point (f) has been already proved in Theorem 1,

point (a) is obvious, and the other come directly by induction.

So let us prove that Lλx.MM∇ρ ◦ d = LMM∇ρ[d/x].

Lλx.MM∇ρ ◦ d = {σ | ∃B� ρ, B `∇ λx.M : σ} ◦ d
= {σ | ∃B� ρ, B `∇ λx.M : σ, σ ' τ1 ∧ ... ∧ τn → τ or σ ' ω → τ} ◦ d
= ({τ1 ∧ ... ∧ τn → τ | ∃B� ρ, B `∇ λx.M : τ1 ∧ ... ∧ τn → τ} ◦ d)⋃

({ω → τ | ∃B� ρ, B `∇ λx.M : ω → τ} ◦ d)

= {τ | ∃B� ρ, B, x : τ1 ∧ ... ∧ τn `∇ M : τ, τi ∈ d (1 ≤ i ≤ n)}⋃
{τ | ∃B� ρ, B `∇ M : τ}

= {τ | ∃B′ � ρ[d/x], B′ `∇ M : τ}

where the first equality follows by definition, the second equality follows by Lemma

1.(3), the third equality follows by rule '∇, the fourth equality follows by Lemma

1.(6), the fifth equality follows by definition of ◦ and the last equality follows by

definition of �.

(2)The following counterexample to point (g) of Definition 2, given in de Carvalho (2009),

applies to all the essential type assignment systems. Let a ∈ C∇, and let us consider

the environment ρ such that ρ(y) = {a → a} and ρ(z) = {a ∧ a → a}. Note that,

for every essential type theory ∇, a 6'∇ a ∧ a. It is easy to check that LyxM∇ρ[d/x] =

LzxM∇ρ[d/x], for all d. In fact

LyxM∇ρ[d/x] = LzxM∇ρ[d/x] =

{
{a} if a ∈ d
∅ otherwise

But Lλx.yxM∇ρ 6= Lλx.zxM∇ρ , since, by rule (→ I), a → a ∈ Lλx.yxM∇ρ and it does not

belong to Lλx.zxM∇ρ , while a ∧ a→ a ∈ Lλx.zxM∇ρ and it does not belong to Lλx.yxM∇ρ .

Remark. A notion of filter model with non idempotent intersection has been defined

Bernadet and Lengrand (2011b), where terms are interpreted as filters of types, and this

could be considered in contradiction with the previous statement. But in Bernadet and

Lengrand (2011b) filters are closed under a preorder relation based on the rule σ∧τ � σ,

which in some sense restores the idempotency, as already observed by the authors.

Paolini, Piccolo and Ronchi Della Rocca 14

6. MRel and its models

In this section, we describe a class of λ-models based on the category of sets and relations,

defined in Bucciarelli et al. (2007). The reader already acquainted with this class of models

could skip this section, which we introduced to make the paper self-contained. All the

proofs of the cited results are in Bucciarelli et al. (2007), so for sake of facility we will

use the same notations.

A category with terminal object 1 has enough points when for all f, g : A → B, if

f 6= g then there is x : 1 → A such that f · x 6= g · x. The classical way (described in

text-books as Barendregt (1984) Sect. 5, Asperti and Longo (1991) Sect. 9, Amadio and

Curien (1998) Sect. 4, mainly based on Koymans (1982)) of constructing a combinatory

algebra from a reflexive object in a cartesian closed category (ccc in what follows) does

not ensure one would obtain a λ-model in absence of enough points. Therefore authors

of Bucciarelli et al. (2007) used an alternative technique presented in Selinger (2002) in

order to build a λ-model starting from a λ-algebra.

Let S be a set. We denote by ℘(S) (resp. ℘f (S)) the collection of all subsets (resp.

finite subsets) of S and we write A ⊆f S to express that A is a finite subset of S. A

multiset can be represented as an unordered list with repetitions. For each element a of

a multiset m, the multiplicity of a (relative to m) is the number of its occurrences in m.

The support of a multiset is the set of its elements. A multiset m is finite if it is a finite

list, [] denotes the empty multiset. Given two finite multisets m1 = [a1, a2, . . . , an] and

m2 = [b1, b2, . . . , bm] (n,m ∈ N) the multiset union of m1,m2 is defined by m1 tm2 =

[a1, a2, . . . , an, b1, b2, . . . , bm]. We will write Mf (S) for the set of all finite multisets with

support S.

Definition 8. MRel is the category defined as follows:

• the objects of MRel are all sets;

• given two sets S and T , a morphism from S to T is a relation between Mf (S) and T ,

i.e. MRel(S, T) = ℘(Mf (S)× T);

• the identity morphism of S is IdS = {([a], a) | a ∈ S} ∈MRel(S, S);

• given two morphisms s ∈MRel(S, T) and t ∈MRel(T,U), we define their composition

t · s as follows

{(m, c) | ∃(m1, b1), . . . , (mk, bk) ∈ s such that m = m1t. . .tmk and ([b1, . . . , bk], c) ∈ t}.

MRel is cartesian closed. The terminal object 1 is the empty set ∅, and the unique

element of MRel(S, ∅) is the empty relation. Given two sets S1 and S2, their categorical

product S1&S2 in MRel is their disjoint union: S1&S2 = ({1} × S1) ∪ ({2} × S2) and

the projections π1, π2 are given by: πi = {([(i, a)], a) | a ∈ Si} ∈ MRel(S1&S2, Si),

for i = 1, 2. Given s ∈ MRel(U, S1) and t ∈ MRel(U, S2), it is easy to see that the

corresponding morphism 〈s, t〉 ∈MRel(U, S1&S2) is given by:

〈s, t〉 = {(m, (1, a)) | (m, a) ∈ s} ∪ {(m, (2, b)) | (m, b) ∈ t}.

We treat the canonical bijection between Mf (S1)×Mf (S2) and Mf (S1&S2) as an equal-

ity, hence we denote by (m1,m2) the corresponding element of Mf (S1&S2). If S and T

are two objects then the exponential object S ⇒ T is Mf (S) × T and the evaluation

15

morphism is given by:

evST = {(([(m, b)],m), b) | m ∈Mf (S) and b ∈ T} ∈MRel((S ⇒ T)&S, T).

Given any set U and any morphism s ∈ MRel(U&S, T), there is exactly one morphism

Λ(s) ∈ MRel(U, S ⇒ T) such that: evST · (Λ(s) × IdS) = s where Λ(s) = {(p, (m, b)) |
((p,m), b) ∈ s}.

As already said, a reflexive object U of a ccc C induces a λ-algebra, whose carrier set is

C(1, U), which is a λ-model too in case C has enough points. Unfortunately MRel has not

enough points. In fact, the points of an object S are the elements of MRel(1, S), i.e. the

relations between Mf (∅) and S. These are, up to isomorphism, the subsets of S. To see

that MRel has not enough point, suppose A = {a} and B = {b} and take r1 = {([a, a], b)}
and r2 = {([a], b)}: these morphisms cannot be distinguished by pre-composition with

the points of A. Therefore, the standard construction does not work for MRel. However,

if the category is endowed with countable products then a lambda-model can be always

built. Since MRel is endowed with countable products thus, it is possible to circumvent

the “enough points” lack.

Let U be a reflexive object of MRel, we denote by UVar the countable product of

objects U (indexed by variables). A morphism f of C(UVar, U) is finitary whenever there

exists a finite set J of variables and a morphism fJ ∈ C(UJ , U) such that f = fJ · πJ
where πJ denotes the canonical projection from UVar onto UJ . The “finitary” morphisms

of C(UVar, U) provides the carrier set of a λ-model.

We denote by ~x = (x1, . . . , xn) a finite ordered sequence of variables without repetitions

of given length. Given an arbitrary λ-term M and a sequence ~x , we say that ~x is adequate

for M if it contains at least all the free variables of M. We simply say that ~x is adequate

whenever M is clear from the context. As implicitly done in Bucciarelli et al. (2007), we do

not provide a particular enumeration of variables and, essentially, we use adequate lists

to provide the initial part of the implicit variable-enumeration that we are considering. In

fact, adequacy just guarantees that the considered list of variables covers the non-vacuous

finitary part of our countable products.

Definition 9.

(1) An object U of MRel is a reflexive object whenever there are morphisms λ ∈
MRel(U ⇒ U,U) and Ap ∈MRel(U,U ⇒ U) such that Ap ·λ = IdU⇒U .

U

Ap

**
. U⇒U

λ

hh

Id

(2) Let U be a reflexive object of MRel. For all M ∈ Λ and for all adequate ~x, we note

by |M|U~x a finitary morphism of MRel(UVar, U). Pragmatically, if n is the length of ~x

then we simply write the finitary restriction to the adequate list ~x of an element of

MRel(UVar, U), i.e. an element of MRel(Un, U) (that unequivocally identify finitary

morphism of MRel(UVar, U)).

• |y|~x = πy projecting the argument indexed y (belonging to the adequate list ~x);

Paolini, Piccolo and Ronchi Della Rocca 16

• |PQ|~x = ev · 〈Ap ·|P|~x, |Q|~x〉;
• |λz.P|~x = λ · Λ(|P|~x,z), where z does not occur in ~x.

(3) Relational lambda-models are triple 〈Fin(UVar, U), ◦, J.KU 〉 such that Fin(UVar, U) is

the set of finitary morphisms in MRel(UVar, U), e1 ◦e2 is defined to be ev · 〈Ap ·e1, e2〉
and JMKUρ = |M|x1,...,xn · 〈ρ(x1), . . . , ρ(xn)〉 where ρ(xi) ∈ Fin(UVar, U).

7. Logical characterization of a family of MRel models

The class of essential models defined in Section 4 is equivalent to a particular class of

MRel models, so essential type assignment system can be used as tool for reasoning in a

completely syntactical way about the denotation of terms in these particular relational

models. In order to prove this relationship between essential and relational models, we

adapt the pattern followed in Paolini et al. (2009), where a logical description of models

based on coherence spaces is given.

First, let us define a class of MRel models that rises from retraction pairs (i.e. the mor-

phisms λ,Ap of Definition 9.(1)) satisfying some additional requirements. A morphism

f ∈MRel(A,B) is linear whenever (m, b) ∈ f implies that m is a singleton. Linear mor-

phisms have been introduced to define linear reflexive objects (relying on a pair of linear

morphisms for the retraction) and to define models of the differential λ-calculus (see

Definitions 5.1 and 5.2 in Manzonetto (2012)). This notion of linearity is quite standard,

since MRel is the Kleisli category of Rel over the finite-multiset comonad and Rel is

indeed a model of Linear Logic.

For us, a morphism s inMRel(A,B) is strongly linear whenever it is linear and injective,

i.e. if (m′, b), (m′′, b) ∈ f then m′ = m′′. It is easy to see that the composition of (strongly)

linear morphisms is (strongly) linear.

Definition 10. A reflexive object (U,Ap, λ) in MRel is strongly linear whenever Ap, λ

are strongly linear.

It is easy to check that the morphism λ of a reflexive object (see Definition 9.(1)) is

always monic, but it can be not injective (i.e. it is not necessarily split monic). We remark

that if the reflexive object involves an iso (so, the induced model is extensional) then the

retraction pair is formed by strongly linear morphisms. It is not hard to build a strongly

linear reflexive object starting form any reflexive object, but the induced lambda-theory

can be different. Still, in Manzonetto (2012) many properties are proved about linear

reflexive objects.

Now we prove that the essential type assignment system provides a logical description

of strongly linear categorical models inMRel. Roughly, we use types as names for elements

of the reflexive object of MRel and we use arrow-types to record their functional behavior.

An essential type theory formalizes names in order to can speak of the elements of a

domain.

Definition 11. Let ∇ = 〈C,'〉 be a legal essential type system, and let (((σ)))' denote

the equivalence class of σ with respect to '. The essential domain induced by ∇ is

a triple (U∇, λ∇, Ap∇) where U∇ is an object of MRel, λ∇ : (U∇ ⇒ U∇) → U∇ and

17

Ap∇ : U∇ → (U∇ ⇒ U∇) such that

• U∇ = T(C)/' ;

• λ∇ =

([([(((σ1)))', . . . , (((σn)))'], (((σ)))')], (((
∧n
i=1 σi → σ)))'

) ∣∣∣∣∣∣
n ≥ 0,

σi ∈ T(C)(1 ≤ i ≤ n),

σ ∈ T(C)

 ;

• Ap∇ =

([(((∧ni=1 σi → σ)))'], ([(((σ1)))', . . . , (((σn)))'], (((σ)))')
) ∣∣∣∣∣∣

n ≥ 0,

σi ∈ T(C)(1 ≤ i ≤ n),

σ ∈ T(C)

 .

Notation 2. Since this section tackles various semantics facets, for sake of simplicity,

we will use a straightforward shortening notations:
∧n
i=1 σi → σ when n = 0 is just a

notation for ω → σ. Therefore, for instance
([

([], (((τ)))')
]
, (((ω → τ)))'

)
belongs to λ∇ in the

above definition. Moreover, we use θ, θ1, . . . as metavariables to denote either the empty

intersection ω or the non-empty one µ. We will use for these metavariables the same

notation we introduce for intersections in Notation 1. If θ = ω then B, x : θ is an abuse

of notation for the basis B (where implicitly we assume x 6∈ dom(B), see Notation 1).

Any essential domain is a strongly linear reflexive object in MRel indeed.

Lemma 7. Let ∇ = 〈C,'〉 be a legal essential type system. Then the essential domain

(U∇, λ∇, Ap∇) induced by ∇ is a strongly linear reflexive object in MRel.

Proof. It is not difficult to see that λ∇, Ap∇ are strongly linear by construction. We

prove that Ap∇ ·λ∇ = idU∇⇒U∇ . If (m, c) ∈ Ap∇ ·λ∇ then there is a multiset [d1, . . . , dk]

such that ([d1, . . . , dk], c) ∈ Ap∇, (m1, d1) . . . (mk, dk) ∈ λ∇ and m = m1 t . . . t mk.

Linearity implies that k = 1 and m1 is a singleton, so m = m1 is a singleton too.

Because U∇ ⇒ U∇ is Mf (U∇) × U∇, the shape of c is (
[
(((τ1)))', . . . , (((τm)))'

]
, (((τ)))')

for some τ1, . . . , τm, τ ∈ T(C). By definition
([

([(((τ1)))', . . . , (((τm)))'], (((τ)))')
]
, (((
∧n
i=1 τi →

τ)))'
)
∈ λ∇ and, moreover,

([
(((
∧n
i=1 τi → τ)))',

[
([(((τ1)))', . . . , (((τm)))'], (((τ)))')

])
is the

unique element of Apλ that can be composed with it, so it adds an element

to Ap∇ ·λ∇. Thus, elements of Ap∇ ·λ∇ are all and only elements of the shape([
([(((τ1)))', . . . , (((τm)))'], (((τ)))')

]
, ([(((τ1)))', . . . , (((τm)))'], (((τ)))')

)
.

Let ∇ be an essential type system and (U∇, λ∇, Ap∇) be the essential domain induced

by ∇. We define the map (·)∗ from types to finite multisets of U∇ as follows: ω∗ = [],

σ∗ = [(((σ)))'] and (µ1 ∧ µ2)∗ = µ∗1 t µ∗2.

Next lemma shows that our typing system provides a logical description of the cate-

gorical interpretation of terms in relational models.

Lemma 8. Let ∇ be an essential type system and let (U∇, λ∇, Ap∇) be the essential

domain induced by ∇. Then

Paolini, Piccolo and Ronchi Della Rocca 18

(1) x1 : θ1, . . . , xn : θn ` M : σ implies (θ∗1 , . . . , θ
∗
n, (((σ)))') ∈ |M|~x ;

(2) if (θ∗1 , . . . , θ
∗
n, (((σ)))') ∈ |M|~x for some θ1, . . . , θn, σ then x1 : θ1, . . . , xn : θn ` M : σ.

Proof.

(1)Let ~x be an adequate list of variable of length n. The proof is by induction on the

derivation of x1 : θ1, . . . , xn : θn ` M : σ.

• Case (var). Let M be xi with 1 ≤ i ≤ n, so |xi|~x = πi. The conclusion of (var)

must have the shape xi : σ ` xi : σ. Since we treat the canonical bijection between

Mf (S1) ×Mf (S2) and Mf (S1&S2) as an equality (as done in Bucciarelli et al.

(2007)), we have that πi = {([], . . . , []︸ ︷︷ ︸
i−1

, [(((σ)))'], [], . . . , []︸ ︷︷ ︸
n−i

), (((σ)))') | σ ∈ T(C)} is the

relation projecting the argument indexed xi when applied to a suitable list of

arguments. Thus the proof is immediate.

• The case ('∇) is trivial.

• Case (→ E).Let M ≡ PQ, and suppose x1 : θ1, . . . , xn : θn ` PQ : σ. By

the shape of rule (→ E) we have that x1 : θ01, . . . , xn : θ0n ` P : σ1 ∧
. . . ∧ σk → σ and x1 : θj1, . . . , xn : θjn ` Q : σj for all 1 ≤ j ≤ k

(k ≥ 1) such that θi =
∧k
j=0 θ

j
i . So by inductive hypothesis, we have both

((θ01)∗, . . . , (θ0n)∗, (((
∧k
j=1 σj → σ)))') ∈ |P|~x and ((θj1)∗, . . . , (θjn)∗, (((σj)))') ∈ |Q|~x.

Note that ~x adequate for PQ implies ~x is adequate both for P and Q. Since

|PQ|~x = ev · 〈Ap ·|P|~x, |Q|~x〉 and ((θ01)∗, . . . , (θ0n)∗, (
∧k
j=1 σj)

∗, (((σ)))') ∈ Ap ·|P|~x by

definition of Ap, then ((
∧k
j=0 θ

j
1)∗, . . . , (

∧k
j=0 θ

j
n)∗, (((σ)))') ∈ |PQ|~x.

• Case (→ I). Let M ≡ λxn+1.P and suppose x1 : θ1, . . . , xn : θn ` λxn+1.P :

σ1∧ . . .∧σk → σ (k ≥ 1). Therefore, x1 : θ1, . . . , xn : θn, xn+1 : σ1∧ . . .∧σk ` P : σ.

By inductive hypothesis we have (θ∗1 , . . . , θ
∗
n, σ

∗
1 t . . .tσ∗k, (((σ)))') ∈ |P|~x,xk+1

. So we

can easily conclude by definition of λ∇.

• The case (→ Iω) and (→ Eω) are similar to the previous two sub-points, just

considering k = 0, i.e. reading ω in place of empty intersections.

(2)The proof is by induction on M.

• M ≡ x. Suppose |x|~x = πi = {([], . . . , []︸ ︷︷ ︸
i−1

, [(((τ)))'], [], . . . , []︸ ︷︷ ︸
n−i

), (((σ)))') | σ '∇ τ}, So we

can conclude by applying rule (var) immediately followed by rule (').

• M ≡ PQ. Suppose (θ∗1 , . . . , θ
∗
n, (((σ)))') ∈ |PQ|x1,...,xn = ev · 〈Ap ·|P|~x, |Q|~x〉. This means

that there are θ′1, . . . , θ
′
n, τ, σ1, . . . , σk, θ

j
i (0 ≤ i ≤ n, 0 ≤ j ≤ k) such that

((θ′1)∗, . . . , (θ′n)∗, (((τ)))') ∈ |P|~x, ((((τ)))', ([(((σ1)))', . . . , (((σk)))'], (((σ)))')) ∈ Ap∇ such that

τ '∇ σ1 ∧ . . . ∧ σk → σ , ((θj1)∗, . . . , (θjn)∗, (((σj)))') ∈ |Q|~x (0 ≤ j ≤ k) with

θi = θ′i ∧ θ1i ∧ . . .∧ θki (0 ≤ i ≤ n). By induction we have x1 : θ′1, . . . , xn : θ′n ` P : τ

and x1 : θj1, . . . , xn : θjn : Q : σj (0 ≤ j ≤ k). So by applying rule (') we have

x1 : θ′1, . . . , xn : θ′n ` P : σ1 ∧ . . . ∧ σk → σ. If k ≥ 1 then the proof follows by

applying the rule (→ E), otherwise by applying the rule (→ Eω).

• M ≡ λy.P. Suppose (θ∗1 , . . . , θ
∗
n, (((τ)))') ∈ |λy.P|~x. This means that

([([(((σ1)))', . . . , (((σk)))'], (((σ)))')], (((τ)))') ∈ λ∇ such that τ ' σ1 ∧ . . . ∧ σk → σ

19

and (θ∗1 , . . . , θ
∗
n, (σ1 ∧ . . . ∧ σk)∗, σ) ∈ |P|~x,y for some σ, σ1, . . . , σk. By induc-

tion we have x1 : θ1, . . . , xn : θn, y : σ1 ∧ . . . ∧ σk ` P : σ. If k ≥ 1 then

we apply the rule (→ I), otherwise we apply the rule (→ Iω). We obtain

x1 : θ1, . . . , xn : θn ` λy.P : σ1 ∧ . . . ∧ σk → σ. We conclude by rule (').

Two λ-models M = 〈D, ◦, J·KM〉 and M′ = 〈D′, ◦′, J·KM′〉 are isomorphic if there is a

bijective function h : D′ → D such that, for all terms M the equality JMKMρ = h(JMKM
′

ρ′)

holds, where ρ(x) = h(ρ′(x)).

Theorem 4 (Soundness). If ∇ is a legal essential type system then M∇ =

〈T(∇), ◦∇, J·KM∇〉 and MU∇ = 〈Fin(UV ar∇ , U∇), ◦U∇ , J·KU∇〉 are isomorphic.

Proof. The proof follows quite easily by Lemma 7 and 8. To be precise, our corre-

spondence holds only after few inessential settlements. A pre-typing embeds a finite list

of variable (including, at least, all involved variables carrying non-empty information,

i.e. different from ω) in our typing-interpretations. On the other hand, the categorical

interpretation does not include the adequate list of variables in the interpretation. We

overcome this issue, by considering integral part of the the categorical interpretation the

involved adequate list of variables. A second minor issue is that the categorical interpre-

tation ranges over sets of type-quotient while the logical interpretation ranges over set of

types closed by '. This point can be straightforwardly overcome by smashing each set

of quotients in its union.

In order to prove completeness, we show that a strongly linear categorical model in

MRel induces an essential type system whose corresponding λ-model is isomorphic with

it.

Lemma 9. Let (U, λ,Ap) be a strongly linear reflexive object. Then there exists an

essential type system ∇ = (C,') and two isomorphisms (·)] : U ⇒ U → U∇ ⇒ U∇ and

(·)[: U → U∇ such that the following diagram commutes

U ⇒ U
λ //

(·)]

��

U

(·)[

��

Ap // U ⇒ U

(·)]

��
U∇ ⇒ U∇

λ∇ // U∇
Ap∇ // U∇ ⇒ U∇

Proof. Let (U, λ,Ap) be a strongly linear reflexive object. We define ∇ = (C,') in the

following way:

• let C be a set being in bijection with the set U through the function (·)3 : U → C;

• ' being the least congruence on T(C) such that, for all ([([a1, . . . , an], a)], b) ∈ λ, if

n ≥ 1 then a31 ∧ . . . ∧ a3n → a3 ' b3 otherwise ω → a3 ' b3.

First, let us define (·)[from U to U∇ = T(C)/' element-wise a[= (((a3)))', for each a ∈ U .

Injectivity of (·)3 implies injectivity of (·)[. Moreover, (·)[is surjective, because T(C)/'
contains an element of C in each class of equivalence, because Ap ·λ = IdU⇒U .

Let us now prove that ∇ = (C,') is an essential type system. Suppose σ1 ∧ . . . ∧

Paolini, Piccolo and Ronchi Della Rocca 20

σn → σ and τ1 ∧ . . . ∧ τm → τ be two types in the same ' equivalence class. Since

(·)[: U → T(C)/' is a bijection, there are (unique) ([a1, . . . , an], a), ([b1, . . . , bm], b) ∈
U ⇒ U such that σi ∈ a[i , σ ∈ a[, τj ∈ b[j and τ ∈ b[. Since λ is total, we have

([([a1, . . . , an], a)], a′), ([([b1, . . . , bm], b)], b′) ∈ λ for some a′, b′ ∈ U . It is easy to check

that a′ = b′ if and only if σ1 ∧ . . . ∧ σn → σ ' τ1 ∧ . . . ∧ τm → τ (i.e. whenever they

belong to the same equivalence class).

Lemma 7 implies that U∇ is a strongly linear reflexive object in MRel, since ∇ is an

essential type system. We define the map (·)] : U ⇒ U → U∇ ⇒ U∇ as ([a1, . . . , an], a)] =

([a[1, . . . , a
[
n], a[).

Finally we check that the above diagram commutes. Since functions are also re-

lations, we can view the maps (·)[and (·)] as linear morphisms of MRel and that

composition of linear morphisms in MRel behaves exactly as relational composition.

Now let ([([a1, . . . , an], a)], (((σ)))') ∈ (·)[· λ: this means that there is a′ ∈ U such

that ([([a1, . . . , an], a)], a′) ∈ λ and (a′)3 ∈ (((σ)))'. By definition of ', we have that

a31 ∧ . . .∧ a3n → a3 ∈ (((σ)))'. By definition of λ∇, we have ([([a1, . . . , an], a)]], (((σ)))') ∈ λ∇.

So ([([a1, . . . , an], a)], (((σ)))') ∈ λ∇ · (·)]. Thus (·)[· λ ⊆ λ∇ · (·)]. The converse can be

proved in a similar way. The right-hand-side of the diagram commutation can be proved

in a similar way.

Essential type assignment systems supply a complete logical characterization of

strongly linear relational λ-models .

Theorem 5 (Completeness). Let M be a λ-model induced by a strongly linear re-

flexive object of MRel. Then there is an essential type system ∇ such that the model

M∇ is isomorphic to M.

Proof. By Lemma 9 we can build a legal type system inducing a reflexive object in

MRel whose model is isomorphic to M.

8. Essential models induce sensible theories

Let us recall the notion of solvability in λ-calculus Barendregt (1984).

Definition 12. A term M is solvable if and only if there are variables x1, ..., xn and terms

N1, ..., Np such that (λx1...xn.M)N1...Np =β I, where I = λx.x is the identity function.

In a language without ground data types, like the λ-calculus, solvable terms represent

meaningful programs (see Barendregt (1984)). Solvable terms are completely character-

ized from both a syntactical and operational point of view. Let us recall that the general

shape of a term is λx1 . . . xn.ζM1 . . . Mm, for some m,n ≥ 0 and some terms Mi, 1 ≤ i ≤ m,

where ζ, the head, is either a variable or a redex (λx.Q)N. If the head is a variable, then

the term is in head normal form. A term is solvable if and only if either it is in head

normal form or the procedure of reducing at every step the head redex eventually stops.

A term is unsolvable when it is not solvable.

Definition 13. A λ-theory is sensible when it equates all unsolvable terms.

21

We prove that all the λ-theories induced by essential λ-models are sensible, i.e., they

equate all unsolvable terms. This proof is an example of the use of types for proving

semantical properties.

First, we prove that all solvable terms can be typed.

Lemma 10. Let ∇ be a essential type system and M be a term. If M is solvable then it

can be typed by the system `∇, i.e. there is B and σ such that B `∇ M : σ.

Proof. We prove that all head normal forms can be typed in `∇, thus the proof follows

by Theorem 1. Let M ≡ λx1...xn.xM1...Mm and let B be the basis such that dom(B) = {x} and

B(x) = ω → ...→ ω︸ ︷︷ ︸
m

→ σ, for some σ. Then B `∇ xM1...Mm : σ (by rules (var) and (→E)).

Then, if x ∈ FV(M), by rule (→I) we can derive B `∇ λx1...xn.xM1...Mm : ω → ...→ ω︸ ︷︷ ︸
n

→ σ,

otherwise, if x = xp for some p (1 ≤ p ≤ n), we can derive `∇ λx1...xn.xM1...Mm :

ω → ...→ ω︸ ︷︷ ︸
p−1

→ (ω → ...→ ω︸ ︷︷ ︸
m

→ σ)→ ω → ...→ ω︸ ︷︷ ︸
n−p−1

→ σ.

For type assignment systems endowed with idempotent intersections, a proof of the con-

verse would need sophisticate arguments, like computability or reducibility candidates.

In fact, a proof of solvability has the same logical complexity than a proof of strong

normalization. In our system the non-idempotency of intersections carries on quanti-

tative information on derivations, allowing a very simple proof, made by induction on

the derivation. The first observation that non idempotent intersection allows for simpler

proofs comes from Terui (2006), who applied it to a proof of strong normalization.

As we show in Section 2, the subject reduction property is based on the substitution

property. We prove that the property of substitution has a quantitative version. Let |Π|
be the number of rules (→E) used in the derivation Π, i.e., the number of nodes of the

derivation tree.

Lemma 11 (Weighted Substitution). If Π � B, x : σ1 ∧ ... ∧ σn `∇ M : τ and Πi �

Bi `∇ N : σi (1 ≤ i ≤ n) then ∆ � B
∧

1≤i≤n Bi `∇ M[N/x] : τ (n ≥ 0), where |∆| <
|Π|+

∑
1≤i≤n |Πi|.

Proof. The proof is by induction on the derivation Π. All the cases come directly by

induction, the only not obvious one is the case the last rule of Π is (→E). While proving

this case, we will use the same notations as in the proof of Lemma 2. Let the last rule

be:

Π′ � B0, x : τ1 ∧ ... ∧ τp `∇ P : π1 ∧ ... ∧ πm → σ
(
Π′j � B

j
1, x : τ j1 ∧ ... ∧ τ jqj `∇ Q : πj

)
1≤j≤m(

B0
∧

1≤j≤m B
j
1

)
, x : σ1 ∧ ... ∧ σn `∇ PQ : σ

(→E)

where σ1∧ ...∧σn = τ1∧ ...∧τp∧τ11 ∧ ...∧τ1q1∧ ...∧τ
m
1 ∧ ...∧τmqm . So n = p+Σ1≤j≤mqj , and

σi coincides either with τr or with τhk , for some r, h, k (1 ≤ r ≤ p, 1 ≤ h ≤ m, 1 ≤ k ≤ qh).

Let Bh `∇ N : τh (1 ≤ h ≤ p) and B
j
kj
`∇ N : τ jkj (1 ≤ j ≤ m, 1 ≤ kj ≤ qj). By induction

we have that

(1)∆′ � B0
∧

1≤h≤p Bh `∇ P[N/x] : π1 ∧ ... ∧ πm → σ, where |∆′| < |Π′|+
∑

1≤j≤p |Πj |,

Paolini, Piccolo and Ronchi Della Rocca 22

(2)∆j�B
j
1

∧
1≤kj≤qj B

j
kj
`∇ Q[N/x] : πj (1 ≤ j ≤ m), where |∆j | < |Π′j |+

∑
1≤kj≤qj |Πkj |.

Then it follows that ∆ � B0
∧

1≤h≤p Bh
∧

1≤j≤m(Bj
∧

1≤kj≤qj B
j
kj

) `∇ P[N/x]Q[N/x] =

PQ[N/x] : σ by rule (→ E), where

|∆| = |∆′|+
∑

1≤j≤m

|∆j |+ 1

< |Π′|+
∑

1≤j≤p

|Πj |+
∑

1≤j≤m

(|Π′j |+
∑

1≤kj≤qj

|Πkj |) + 1

= |Π′|+
∑

1≤j≤n

|Πj |+
∑

1≤j≤m

|Π′j |+ 1

= |Π|+
∑

1≤j≤n

|Πj |

Thus the proof follows.

Remember that it is possible that some subterms of the subject of a derivation are not

typed in a derivation itself, thanks to rule (→ Eω). But the head has a special status.

Property 1. If M is such that Π � B `∇ M : σ, for some B and σ, then there is a

subderivation of Π whose subject is the head of M.

Proof. The proof can be done by induction on M, by using Lemma 1.

Lemma 12. If Π�B `∇ λx1 . . . xn.(λx.Q)NM1 . . . Mm : σ then there is a derivation Σ�B `∇
λx1 . . . xn.Q[N/x]M1 . . . Mm : σ, such that |Σ| < |Π|.

Proof. The proof comes directly from Lemma 11 and Property 1.

So we can conclude the desired result.

Theorem 6. For every essential type theory ∇, the λ-theory induced byM∇ is sensible.

Note that, thanks to the isomorphism between essential and relational models, we

proved in the same time that all the models of the family of (strongly linear) relational

models induce sensible lambda-theories. This result has been already suggested in Carraro

et al. (2010), as consequence of the fact that relational models of resource λ-calculus

satisfying the Taylor expansion all induce sensible theories. But they do not supply any

proof, and moreover the bridge between models of resource calculus and models of λ-

calculus depends on the interpretation of the differential operations. So we think it is

interesting to see a very simple proof of it. We remark that the sufficient conditions to

check if a model in MRel induces a (maximal consistent) sensible λ-theory, provided

by Manzonetto (2009), does not imply this property for all essential models. In fact,

in Manzonetto (2009) only extensional theories are taken into account, while essential

models can induce also non extensional theories (just, consider infinite type-constants

and the minimal legal type theory).

A similar technique has been used in Pagani and Ronchi Della Rocca (2010b) for

charactering solvability in the resource λ-calculus.

23

9. Conclusions

We defined the class of essential λ-models based on intersection types. The class of

essential models is described by a parametric intersection type assignment system, where

the intersection is not idempotent and the parameters are the set of type constants and

a type theory, i.e., a congruence on types preserving the number of components of an

intersection type. Moreover we proved that this class is isomorphic to a class of λ-models

based on set and relations, considered by Bucciarelli et al. (2007), characterized by a

strongly linear reflexive object.

Instances of essential type assignment systems already present in the literature, namely

in Coppo et al. (1981) and de Carvalho (2009). These two systems are almost equivalent,

being the latter just a redefinition of the former. Both can be viewed as a particular

instance of our parametric type assignment system, obtained by choosing an infinite set

of type constants, equipped with the minimal type theory. Both are studied using the

classical interpretation of terms by the set of types derivable for them, that provides λ-

algebras. Once equipped by the interpretation with pre-typings, both induce a λ-model

whose theory is the theory of Böhm trees.

The isomorphic correspondence between essential models and (strongly linear) rela-

tional models allows to recover another instance of our parametric system, obtained

choosing a single type constant a, equipped with the type theory induced by the equiv-

alence a ' ω → a. The corresponding relational model has been studied in Bucciarelli

et al. (2007), and the induced λ-theory has been proved to be H∗ by Manzonetto (2009).

It can be interesting to investigate on the existence of essential models inducing further

meaningful λ-theories: it will be the topic of a further work.

Moreover, we would like to to design essential models of the resource calculus, starting

from the type assignment systems defined in Pagani and Ronchi Della Rocca (2010b,a).

Acknowledgments.

Simona Ronchi Della Rocca would like to thanks Antonio Bucciarelli, Thomas Ehrhard

and Giulio Manzonetto for the interesting discussions about the topic of this paper.

References

Abramsky, S. (1991). Domain theory in logical form. Annals of Pure and Applied Logic, 51(1-

2):1–77.

Amadio, R. and Curien, P.-L. (1998). Domains and Lambda-Calculi, volume 46 of Cambridge

Tracts in Theoretical Computer Science. Cambridge University Press.

Asperti, A. and Longo, G. (1991). Categories, Types, and Structures: An Introduction to Cate-

gory Theory for the Working Computer Scientist. The MIT Press.

Barendregt, H. (1984). The Lambda Calculus: Its Syntax and Semantics, volume 103 of Studies

in logic and the foundation of mathematics. North-Holland, revised edition.

Bernadet, A. and Lengrand, S. (2011a). Complexity of strongly normalising λ-terms via non-

idempotent intersection types. In FOSSACS’11, volume 6604 of Lecture Notes in Computer

Science, pages 88 – 107. Springer.

Bernadet, A. and Lengrand, S. (2011b). Filter Models: Non-idempotent Intersection Types,

Paolini, Piccolo and Ronchi Della Rocca 24

Orthogonality and Polymorphism. In CSL’11, volume 12 of Leibniz International Proceedings

in Informatics (LIPIcs), pages 51–66.

Bucciarelli, A., Ehrhard, T., and Manzonetto, G. (2007). Not enough points is enough. In

CSL’07, volume 4646 of Lecture Notes in Computer Science, pages 298–312. Springer.

Bucciarelli, A., Kesner, D., and Ronchi Della Rocca, S. (2014). The inhabitation problem for

non-idempotent intersection types. In IFIP/TCS, Roma,1-3 September 14, volume 8705 of

Lecture Notes in Computer Science, pages 341–354. Springer.

Carraro, A., Ehrhard, T., and Salibra, A. (2010). Exponentials with infinite multiplicities. In

Dawar, A. and Veith, H., editors, CSL’10, volume 6247 of Lecture Notes in Computer Science,

pages 170–184. Springer.

Coppo, M., Dezani-Ciancaglini, M., Honsell, F., and Longo, G. (1984). Extended type structure

and filter lambda models. In Logic Colloquim’82, pages 241–262.

Coppo, M., Dezani-Ciancaglini, M., and Venneri, B. (1981). Functional characters of solvable

terms. Zeitschrift für mathematische Logik und Grundlagen der Mathematik, 27(1):45–58.

De Benedetti, E. and Ronchi Della Rocca, S. (2013). Bounding normalization time through

intersection types. In Paolini, L., editor, Proceedings of Sixth Workshop on Intersection Types

and Related Systems (ITRS 2012), Electronic Notes in Theoretical Computer Science, pages

48–57. Cornell University Library.

de Carvalho, D. (2009). Execution time of lambda-terms via denotational semantics and inter-

section types. CoRR, abs/0905.4251. Available also as INRIA report RR 6638.

Di Gianantonio, P., Honsell, F., and Lenisa, M. (2008). A type assignment system for game

semantics. Theoretical Computer Science, 398:150–169.

Ehrhard, T. (2012). Collapsing non-idempotent intersection types. In CSL’12, volume 16 of

Leibniz International Proceedings in Informatics (LIPIcs), pages 259–273.

Hindley, J. R. and Longo, G. (1980). Lambda calculus models and extensionality. Zeitschrift

für mathematische Logik und Grundlagen der Mathematik, 26:289–310.

Honsell, F. and Ronchi della Rocca, S. (1990). Reasoning about interpretation in qualitative

lambda-models. In IFIP 2.2, pages 505–521.

Honsell, F. and Ronchi Della Rocca, S. (1992). An approximation theorem for topological

lambda models and the topological incompleteness of lambda calculus. Journal of Computer

and System Sciences, 45(1):49–75.

Kfoury, A. J. (2000). A Linearization of the Lambda-Calculus and Consequences. Journal of

Logic and Computation, 10(3):411–436.

Kfoury, A. J. and Wells, J. B. (2004). Principality and type inference for intersection types

using expansion variables. Theoretical Computer Science, 311(1-3):1–70.

Koymans, C. P. J. (1982). Models of the lambda calculus. Information and Computation,

52(3):306–323.

Mairson, H. and Neergaard, P. M. (2004). Types, potency, and idempotency: why nonlinearity

and amnesia make a type system work. In ICFP’04, pages 138–149.

Manzonetto, G. (2009). A general class of models of H?. In MFCS’09, volume 5734 of Lecture

Notes in Computer Science, pages 574–586. Springer.

Manzonetto, G. (2012). What is a categorical model of the differential and the resource lambda-

calculi? Mathematical Structures in Computer Science, 22(03):451–520.

Pagani, M. and Ronchi Della Rocca, S. (2010a). Linearity, non-determinism and solvability.

Fundamenta Informaticae, 103:358–373.

Pagani, M. and Ronchi Della Rocca, S. (2010b). Solvability in resource lambda-calculus. In

FOSSACS’10, volume 6014 of Lecture Notes in Computer Science, pages 358–373.

25

Paolini, L., Piccolo, M., and Ronchi Della Rocca, S. (2009). Logical semantics for stability. In

MFPS’09, volume 249 of Electronic Notes in Theoretical Computer Science, pages 429–449.

Ronchi Della Rocca, S. and Paolini, L. (2004). The Parametric λ-Calculus: a Metamodel for

Computation. Texts in Theoretical Computer Science: An EATCS Series. Springer-Verlag.

Selinger, P. (2002). The lambda calculus is algebraic. Journal of Functional Programming,

12(6):549–566.

Terui, K. (2006). Intersection types for computational complexity. In Workshop on Implicit

Computational Complexity (as part of GEOCAL’06), Marseille, February 2006.

Urzyczyn, P. (1999). The emptiness problem for intersection types. Journal of Symbolic Logic,

64(3):1195–1215.

	Introduction
	-algebras and -models
	The class of Essential Type Assignment Systems
	Essential Logical Models
	Justifying the interpretation choice
	MRel and its models
	Logical characterization of a family of MRel models
	Essential models induce sensible theories
	Conclusions

