
Cell Stem Cell

Article
TNF/p38a/Polycomb Signaling to Pax7 Locus
in Satellite Cells Links Inflammation
to the Epigenetic Control of Muscle Regeneration
Daniela Palacios,1,2,7 Chiara Mozzetta,1,2,7 Silvia Consalvi,1,2 Giuseppina Caretti,3,4 Valentina Saccone,1,2

Valentina Proserpio,3,4 Victor E. Marquez,5 Sergio Valente,6 Antonello Mai,6 Sonia V. Forcales,2 Vittorio Sartorelli,3

and Pier Lorenzo Puri1,2,*
1Dulbecco Telethon Institute (DTI), IRCCS Fondazione Santa Lucia and European Brain Research Institute, 00143 Roma, Italy
2Sanford-Burnham Institute for Medical Research, La Jolla, CA 92037, USA
3Laboratory of Muscle Stem Cells and Gene Regulation, NIAMS, National Institutes of Health, Bethesda, MD 20892-8022, USA
4Department of Biomolecular Sciences and Biotechnology, University of Milan, 20133 Milan, Italy
5Laboratory of Medicinal Chemistry, NCI, Frederick, MD 21720, USA
6Institute Pasteur-Fondazione Cenci Bolognetti, Department of Chemistry and Drug Technologies, University Sapienza, 00185 Roma, Italy
7These authors contributed equally to this work

*Correspondence: plpuri@dti.telethon.it or lpuri@burnham.org

DOI 10.1016/j.stem.2010.08.013
SUMMARY

How regeneration cues are converted into the epige-
netic information that controls gene expression in
adult stem cells is currently unknown. We identified
an inflammation-activated signaling in muscle stem
(satellite) cells, by which the polycomb repressive
complex 2 (PRC2) represses Pax7 expression during
muscle regeneration. TNF-activated p38a kinase
promotes the interaction between YY1 and PRC2,
via threonine 372 phosphorylation of EZH2, the enzy-
matic subunit of the complex, leading to the for-
mation of repressive chromatin on Pax7 promoter.
TNF-a antibodies stimulate satellite cell prolifera-
tion in regenerating muscles of dystrophic or nor-
mal mice. Genetic knockdown or pharmacological
inhibition of the enzymatic components of the p38/
PRC2 signaling—p38a and EZH2—invariably pro-
mote Pax7 expression and expansion of satellite
cells that retain their differentiation potential upon
signaling resumption. Genetic knockdown of Pax7
impaired satellite cell proliferation in response to
p38 inhibition, thereby establishing the biological
link between p38/PRC2 signaling to Pax7 and satel-
lite cell decision to proliferate or differentiate.
INTRODUCTION

Upon tissue injury, the cues released by the inflammatory

component of the regenerative environment instruct somatic

stem cells toward repairing the damaged area (Stoick-Cooper

et al., 2007). The elucidation of the molecular events underpin-

ning the interplay between the inflammatory infiltrate and tissue

progenitors is crucial to devise new strategies toward imple-

menting regeneration of diseased or injured tissues.
C

Regeneration of diseased muscles relies on muscle stem cells

(satellite cells [SCs]), which are activated in response to cyto-

kines and growth factors (Dhawan and Rando, 2005; Kuang

and Rudnicki, 2008). The current lack of knowledge of how

external cues coordinate gene expression in these cells

precludes their selective manipulation through pharmacological

interventions.

The inflammatory infiltrate is a transient, yet essential, compo-

nent of the SC niche and provides the source of locally released

cytokines, such as interleukin 1, interleukin 6, and TNF-a, which

regulate muscle regeneration (Gopinath and Rando, 2008;

Kuang et al., 2008). As an inducible element of the SC niche,

the inflammatory infiltrate provides an ideal target for selective

interventions aimed at manipulating muscle regeneration (Peter-

son and Guttridge, 2008). However, because local inflammation

regulates multiple events within the regeneration process, global

anti-inflammatory interventions have both positive and negative

effects on SCs (Mozzetta et al., 2009). Thus, it is important to

elucidate the intracellular signaling by which inflammatory

cytokines deliver the information to individual genes in SCs.

p38 mitogen-activated protein kinases a, b, g, and d respond

to cellular stressors, such as inflammatory cytokines. In SCs, this

group of kinases converts inflammatory cues into epigenetic

information that controls gene expression (Lluı́s et al., 2006;

Lassar, 2009). The p38a and b kinases contribute to the

assembly of the myogenic transcriptosome on the chromatin

of muscle loci, by promoting MYOD-E47 heterodimerization

(Lluı́s et al., 2005) and the recruitment of SWI/SNF chromatin

remodeling complex (Simone et al., 2004; Serra et al., 2007)

and of ASH2L-containing mixed-lineage leukemia (MLL) methyl-

transferase complex (Rampalli et al., 2007). By contrast, p38g

represses MYOD transcriptional activity by direct phosphoryla-

tion, via association with the H3-K9 methyltransferase KMT1A

(Gillespie et al., 2009). Thus, the p38 kinases can either activate

or repress gene expression in SCs, depending on the engage-

ment of specific p38 isoforms. Furthermore, chromatin-associ-

ated p38 kinases can control gene transcription by directly

targeting components of the transcription machinery (Pokholok

et al., 2006; Chow and Davis, 2006; de Nadal and Posas,
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2010), suggesting that signaling via p38 kinases plays

a general role in regulating how chromatin-modifying com-

plexes redistribute across the genome in response to extrinsic

signals.

During SC differentiation, a large subset of genes is repressed

in concomitance with the activation of muscle gene expression

(Guasconi and Puri, 2009). Gene repression in flies and

mammals is typically associated with methylation of specific

lysine residues within histone tails (H3-K27) by the methyltrans-

ferase-containing Polycomb repressive complexes 1 and 2

(PRC1 and PRC2) (Simon and Kingston, 2009). PRC-mediated

repression of developmental genes is a general mechanism

that ensures the maintenance of the undifferentiated phenotype

in embryonic stem cells (ESCs) (Boyer et al., 2006a). Derepres-

sion of developmental genes in differentiating ESCs correlates

with functional inactivation of the enzymatic activity of PRC2,

through a physical and functional interplay with a recently

described component of PRC2—the Jumonji- and ARID-

domain-containing protein, JARID2 (Pasini et al., 2010; Shen

et al., 2009; Peng et al., 2009; Panning, 2010). The repressive

activity of PRC2 is counter-balanced by trithorax group (trxG)-

associated H3-K4 methyltyransferases (Schuettengruber

et al., 2007). The coordinated activity of PRC2 and trxG

generates the simultaneous trimethylation of H3-K27

(H3K273me) and H3-K4 (H3-K43me), which typically defines the

‘‘bivalent’’ profile of developmental genes in ESCs; resolution

of such bivalency can result either in productive transcription

or permanent repression, depending on the relative levels of

H3K273me and H3-K43me (Bernstein et al., 2006). H3-K4- and

H3-K27-specific demethylases contribute to the resolution of bi-

valency in developmental genes during ESC differentiation

(Pasini et al., 2008).

Likewise, in adult somatic stem cells (i.e., SCs, keratinocytes,

and neural precursors), PRC2-mediated gene repression coordi-

nates the temporal expression of differentiation genes (Caretti

et al., 2004; Ezhkova et al., 2009; Hirabayashi et al., 2009).

PRC2 represses the expression of differentiation genes in undif-

ferentiated adult stem cells, and derepression of these genes

coincides with the downregulation of the catalytic subunit of

PRC2—the enhancer of Zeste (EZH2) (Caretti et al., 2004;

Ezhkova et al., 2009; Juan et al., 2009).

Although PRC-mediated repression of developmental and

differentiation genes in ESCs and adult stem cells, respectively,

has been extensively investigated, the contribution of PRC2 in

gene repression during terminal differentiation of adult stem

cells, such as myogenic progenitors, has been suggested

(Blais et al., 2007) but remains relatively unexplored. In partic-

ular, it is currently unknown whether in adult muscle stem cells

exposed to regeneration signals, PRC2 is redistributed to

repress genes characteristic of the undifferentiated state.

Even more puzzling, the identity of the signaling that directs

the PRC2 chromatin redistribution in response to these signals

is still obscure.

In the present work, we have identified and characterized

a signal-inducible repression of Pax7 expression by PRC2, via

inflammation-activated p38 signaling, in SCs. The inflamma-

tion-activated p38/PRC2 signaling to Pax7 controls the size

and the regeneration activity of SCs and might be exploited for

pharmacological manipulation of muscle regeneration.
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RESULTS

TNF-Activated p38SignalingRegulatesPax7Expression
and Satellite Cell Proliferation
To investigate the impact of inflammation-activated signaling on

muscle regeneration, we have used a mouse model of muscular

dystrophy—mdx mice—in which compensatory regeneration of

dystrophin-deficient myofibers is elicited by repeated cycles of

degeneration/regeneration after muscle contraction. 5-week-

old mdx mice were exposed to neutralizing antibodies against

TNF-a (Infliximab). TNF-a is a cytokine that is secreted within

the regenerative environment by the inflammatory infiltrate and

regulates muscle regeneration by activating the promyogenic

p38 signaling (Chen et al., 2007). Previous work showed that

long-term treatment with TNF-a antibodies produces a beneficial

effect in mdx mice (Radley et al., 2008; Huang et al., 2009);

however, the molecular mechanism underlying this effect

remains unknown.

We observed an increased number of PAX7-positive cells

predominantly located in sublaminar position within muscles

from mdx mice that were exposed to TNF-a antibodies, as

compared to muscles from control-treated mdx mice (Figures

1A and 1B). Because Pax7 is a typical marker of SCs (Seale

et al., 2000; Montarras et al., 2005), the increased number of

PAX7-positive cells in mdx muscles exposed to TNF-a anti-

bodies indicates that TNF-activated pathway negatively regu-

lates SC number and Pax7 expression in regenerating muscles.

Among the TNF downstream cascades, the p38 pathway, which

is typically activated in SCs (Jones et al., 2005), was inhibited in

muscles isolated from anti-TNF-a-treated mdx mice (Figure 1C).

Consistently, pharmacological inhibition of p38a and b kinases

with SB 203580 (SB) replicated the effect observed with TNF-a

antibodies on Pax7 expression, whereas the inhibition of two

other TNF-a-activated cascades, such as JNK and NF-kB path-

ways, did not alter Pax7 expression (Figure S1A, upper panel,

available online). An increased expression of Pax7was detected

in myofiber-derived SCs that were isolated from mdx mice

exposed to TNF-a antibodies (Figure 1D). By contrast, the

expression of MyoD was unchanged and the differentiation

marker muscle creatine kinase (MCK) was downregulated in

SCs from mdx mice exposed to TNF-a antibodies (Figure 1D)

or in SCs exposed to SB (Figure S1A, lower panel). Consistently,

muscles from mdx mice treated with TNF antibodies showed

an increased number of smaller myofibers (Figure S1B) that

reflected a delay in the regeneration process. This effect is

presumably due to an expansion of SCswhose ability to differen-

tiate into myofibers has been transiently impaired by the inhibi-

tion of TNF-p38 signaling. The reversible nature of p38 inhibition

by TNF-a antibodies suggests that restoration of the TNF-p38

signaling in the expanded population of SCs might yield to

a more robust muscle regeneration. And this can contribute to

beneficial effect observed by long-term treatment with TNF-a

antibodies in mdx mice (Radley et al., 2008; Huang et al.,

2009). An increased number of PAX7-positive cells was also

observed in muscles of normal mice that were induced to regen-

erate by acute injury (cardiotoxin injection), upon treatment with

TNF-a antibodies (Figures S2A and S2B). Fluorescence-acti-

vated cell sorting (FACS) was used to determine the precise

identity of these cells. Figure S2C shows an increase in Pax7



Figure 1. In Vivo Treatment of mdx Mice with Anti-TNF and Ex Vivo Blockade of the p38 Pathway Expand a Population of Activated Muscle

Satellite Cells and Increase Pax7 Expression

(A) Schematic representation of the experimental design (top). Immunofluorescence staining via antibodies against LAMININ (green) and PAX 7 (red) and counter-

stained for DAPI (blue), on transversal quadriceps sections from 5-week-old mdx mice treated for 5 days with 20 mg/kg of control (upper panels) or TNF

antibodies (lower panels).

(B) The reported data represent the number of Pax7-positive cells percent fibers in the same conditions as above. For each quadricepsmore than 400 fibers were

counted and the graph represents the average of three mice per experimental group. Error bars indicate the standard deviation (**Student’s t test: p < 0.01).

(C) Levels of activated p38 inmuscles from control and anti-TNF-treatedmice weremeasured bywestern blot via an antibody that recognizes the phosphorylated

form of p38. Total p38 was used as a loading control.

(D) Real-time RT-PCR analysis of the expression of Pax7, muscle creatine kinase (MCK), andMyoD in satellite cells derived from control and treated mice. Error

bars indicate the standard deviation (**Student’s t test: p < 0.01).

(E) Coimmunostaining of myofibers isolated from the gastrocnemius of C57/Bl6 wild-type mice via antibodies against MyoD (green) and Pax7 (red) and counter-

stained for DAPI (blue). The single myofibers were maintained in culture for 72 hr either in growth medium alone (GM) or in the presence of the p38-specific

inhibitor (SB).

(F) The graph represents the quantification of the Pax7+/MyoD� and Pax7+/MyoD+ and Pax7�/MyoD+ cells per cluster, in the experimental conditions shown in

(E). Data are represented as themean percentage of positive cells per clone. 60 clones from 2 different experiments were analyzed for each experimental point for

a total 200 cell counted for each experimental point. p value < 0.01 for differences between Pax7+/MyoD� and Pax7�/MyoD+ cells in GM versus GM/SB.

See also Figures S1 and S2.

Cell Stem Cell

Signal-Dependent Repression of Pax7 by Polycomb
expression levels only in CD34/a-7integrin double-positive cells

(a combination that defines the satellite cell identity) isolated

from injured muscles of mice treated with TNF-a antibodies, as

compared to injured muscles from control mice. By contrast,

Pax3 andMyoD levels were unchanged in FACS-sorted popula-

tions from injured muscles of TNF-a antibody-treated and

control mice (Figure S2C).

Collectively, these results indicate that TNF-a-activated p38

pathway negatively controls the expansion of PAX7-positive

SCs during the regeneration stages of dystrophic muscles.
C

The effect of p38 blockade was further explored in SCs within

the myofibers isolated from normal mice. Figures 1E and 1F

show that the exposure to the p38 inhibitor SB increased the

number of PAX7-positive cells located within single myofibers.

These cells clustered beneath the basal lamina—the typical

anatomical position of SCs (Zammit et al., 2006a). The number

of PAX7/MYOD double-positive SCs did not significantly change

in these experimental conditions, but a significant increase in

PAX7-positive/MYOD-negative cells was observed upon p38

blockade (Figures 1E and 1F). This indicates an effect of p38
ell Stem Cell 7, 455–469, October 8, 2010 ª2010 Elsevier Inc. 457



Figure 2. p38 Signaling Represses Pax7 Expression and Proliferation of Satellite Cells

(A) Immunofluorescence staining against Pax7 (red) and MyoD (green) on myofiber-derived satellite cells that were allowed to delaminate in culture for 3 days in

GM1 (10% HS+0.5% CEE) and then induced to proliferate in GM2 (20% FBS+10% HS+1% CEE) in the presence or absence of SB. DAPI (blue) was used to

counterstain nuclei.

(B) Quantification of the mean percentage of Pax7+/MyoD+ and Pax7�/MyoD+ nuclei in myoblasts and myotubes in the experiments reported in (A).

(C) The expression of Pax7, Pax3, and Cyclin A2 in satellite cells cultured in the presence or absence of the p38 inhibitor SB were analyzed by real-time RT-PCR.

Error bar indicates standard deviation from three independent experiments.

(D) Pax7 protein levels (upper panel) on satellite cells treated as in (C) were measured by western blot. Tubulin (lower panel) was used as loading control.

(E) Immunofluorescence after a BrdU pulse (4 hours) on satellite cells grown in the presence (lower andmiddle panels) or absence (upper panel) of SB and induced

to differentiate with (middle panel) or without (lower panel) the drug using antibodies against MyHC (green) and BrdU (red). Nuclei were counterstained with DAPI

(blue).

(F) Pax7, Pax3, Cyclin A2, and MCK RNA levels were measured by real-time RT-PCR in satellite cells cultured as described in (E). Error bar indicates standard

deviation from three independent experiments.

(G) Protein levels of Pax7, Cyclin A2, and Myogenin were quantified by western blot. Tubulin was used as a loading control.

(H) Coimmunostaining via antibodies against Pax7 (red) andMyoD (green) on satellite cells incubated in the presence (lower panel) or absence (upper panel) of SB

and induced to differentiate after drug withdraw. Nuclei were counterstained with DAPI (blue).

See also Figures S3 and S7.
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blockade on the segregation of SCs into PAX7-positive and

-negative populations. Alternatively, an expansion of PAX7-posi-

tive/MYOD-negative SCsmight occur at expenses of theMYOD-

positive/PAX7-negative population.

Upon myofiber culture in growth medium (GM1), SCs are

released and undergo rounds of proliferation. A unique feature

of myofiber-derived SCs consists of their ability to initiate the

differentiation program (Figure 2A) even when incubated with

defined growth factors (GM2). This property coincides with the
458 Cell Stem Cell 7, 455–469, October 8, 2010 ª2010 Elsevier Inc.
downregulation of Pax7 (Zammit et al., 2006b) and other genes

(e.g., proliferation-associated cyclins) and is reminiscent of the

differentiation of SCs in vivo, in response to regeneration cues.

SCs incubated with the p38 inhibitor SB continued to express

Pax7 and did not differentiate into myotubes (Figures 2A and

2B). In these cells the expression of Pax7, but not Pax3—the

functional ortholog of Pax7 (Buckingham, 2007)—was elevated

(Figures 2C and 2D), further indicating that Pax7 expression is

specifically controlled by the p38 signaling in SCs. Notably,



Cell Stem Cell

Signal-Dependent Repression of Pax7 by Polycomb
upon p38a/b blockade, virtually all myofiber-derived SCs ex-

pressed both MyoD and Pax7 when placed in culture and prolif-

erated in the presence of the p38 inhibitor SB (Figures 2A and

2B). The simultaneous expression of MyoD and Pax7 typically

defines a dynamic population of activated SCs that undergoes

terminal differentiation upon Pax7 downregulation (Zammit

et al., 2006b). We reasoned that if p38-mediated repression of

Pax7 was reversible, then the release of the p38 inhibition could

convert an expanded population of SCs into a higher number of

myotubes. To this purpose we have induced the simultaneous

differentiation of SCs by incubation in differentiation medium

(DM), which implements the formation of myotubes. Continuous

inhibition of p38a/b in SCs cultured in DM prevented the forma-

tion of MyHC-positive myotubes and increased the number of

proliferating (BrdU-positive) cells (Figure 2E, compare top and

middle panels) that continued to express Pax7 and cyclinA

(Figures 2F and 2G) but did not express muscle differentiation

markers, such as muscle creatine kinase (MCK) (Figure 2F) and

myogenin (Figure 2G). However, upon the release of p38 inhibi-

tion by SB withdrawal, the expanded population of SCs differen-

tiated massively and formed myotubes with an increased

efficiency, as compared to control cells (Figure 2H, bottom

panel). Interestingly, in these conditions, we still observed a frac-

tion of PAX7-positive undifferentiated cells within the population

of myotubes derived from SB-treated SCs (Figure 2H, bottom

panel). Thus, reversible inhibition of p38 pathway can be used

to implement the efficiency of satellite cell-mediated muscle

regeneration ex vivo.

Physical and Functional Interactions between p38a,
YY1, and Polycomb Repressive Complex 2 on Pax7

Promoter
We began investigating the effect of p38 pathway on Pax7

expression in SCs by using a tetracycline-regulated (Tet-off)

expression of the p38 upstream activator MKK6EE. The activa-

tion of endogenous p38 in SCs was achieved by retroviral

delivery of MKK6EE in the absence of doxycicline (Figures S3A

and S3B) and resulted in downregulation of Pax7 (Figures S3B

and S3C). The levels of Pax7 were restored to those detected

in control SCs by the p38a/b inhibitor SB (Figure S3C), further

demonstrating that p38a and/or b control Pax7 expression

in SCs.

Previous studies established that p38a controls the prolifera-

tion of adult stem cells, such as SCs and other tissue progenitors

(Perdiguero et al., 2007; Wong et al., 2009). An impaired

regeneration, accompanied by an increased number of

PAX7-positive cells, was observed in p38a-deficientmice (Perdi-

guero et al., 2007), but not in mice deficient for the expression of

p38b, p38g, and p38d kinases (Ruiz-Bonilla et al., 2008). The

increased number of PAX7-positive cells observed in p38a-defi-

cient mice is reminiscent of the phenotype observed in mice

treated with TNF-a antibodies—Figure 1 shows the magnitude

of Pax7 upregulation in mice treated with anti-TNF-a that is

identical to that observed in p38a-deficient mice by Perdiguero

et al. (2007). This strong analogy indicates that p38a kinase

selectively controls the expression of Pax7 in SCs. To definitely

address this issue, we compared the effect of RNAi-mediated

knockdown of the p38 isoforms inhibited by SB—p38a and b

(Serra et al., 2007). Only knockdown of p38a in SCs replicated
C

the effect of SB on Pax7 expression (Figure S3D). The Pax7

repression by p38a kinase probably occurs at the transcriptional

level, because p38 kinases regulate gene transcription by direct

targeting of chromatin-associated proteins (Simone et al., 2004;

Chow and Davis, 2006; Pokholok et al., 2006; Rampalli et al.,

2007). Notably, most of the previous studies reported on p38-

mediated activation of gene expression (reviewed in Lluı́s

et al., 2006; Keren et al., 2006), but no evidence exists that p38

kinases repress gene transcription at the chromatin level. We

have performed an analysis of the putative regulatory elements

of Pax7 along the evolution and found that the only conserved

region is composed of a GAGA-rich sequence and a motif con-

taining a consensus YY1 binding site located upstream of the

Pax7 promoter (Figure 3A). The combination of this two elements

form a bona fide Polycomb response element (PRE) that medi-

ates, both in Drosophila and mammals, the recruitment of

YY1-associated PRCs, which repress transcription epigeneti-

cally (Ringrose and Paro, 2004; Müller and Kassis, 2006; Sing

et al., 2009; Woo et al., 2010). The negative control of Pax7 by

PRC2 has already been suggested by the chromatin occupancy

of the PRC2 component Suppressor of Zeste 12 (SUZ12) on

Pax7 promoter to repress Pax7 expression in embryonic stem

cells (Lee et al., 2006). Thus, we explored the possibility that

PRC2 could mediate Pax7 repression in response to the activa-

tion of p38a by signals that promote myoblast differentiation. We

activated the p38 signaling in myoblasts by the ectopic expres-

sion of MKK6EE, which promotes differentiation and represses

Pax7 (see Figure S3), and we monitored the presence of endog-

enous p38a, YY1, and the enzymatic subunit EZH2 on the chro-

matin at the Pax7 gene. To this purpose, we used C2C12 cells,

because they provide abundant material for chromatin immuno-

precipitation (ChIP) and coimmunoprecipitation analyses that

cannot otherwise be obtained from SCs. The simultaneous chro-

matin occupancy by p38a, YY1, and EZH2was detected on both

PRE and on promoter region of the Pax7 gene only after

MKK6EE-mediated activation of p38 signaling (Figure 3A). Of

note, pre-existing levels of chromatin-bound YY1 and EZH2

were detected on Pax7 promoter in undifferentiated myoblasts,

possibly reflecting the regulation of Pax7 expression by

a balanced activity of PRC2 and H3K4 methyltransferases (see

also Figure 5). By contrast, p38a was not detected on the chro-

matin ofPax7 promoter in undifferentiatedmyoblasts. Chromatin

occupancy by p38a after MKK6EE-mediated activation of the

p38 signaling was indicated by a 2-fold enrichment, which was

inhibited by SB, together with the inhibition of YY1 and EZH2

chromatin binding (Figure 3A). Reciprocal coimmunoprecipita-

tion experiments from nuclear extracts showed the formation

of a complex containing endogenous p38a, YY1, and EZH2

upon MKK6EE-mediated activation of the p38 pathway (Fig-

ure 3B). Blockade of p38a by SB attenuated these interactions

(Figure 3B). In this study, we present evidence of a signal-induc-

ible formation of a nuclear complex containing components of

the p38 signaling (MKK6 and p38a) and of the PRC2-mediated

repressive machinery (YY1 and EZH2).

Chromatin-bound p38a was previously shown to direct SWI/

SNF-mediated activation of muscle gene expression in differen-

tiatingmyoblasts (Simone et al., 2004). Contractile muscle genes

such asMHCIIb are repressed by PRC2 in myoblasts, and dere-

pression coincides with the EZH2 disengagement during late
ell Stem Cell 7, 455–469, October 8, 2010 ª2010 Elsevier Inc. 459



Figure 3. MKK6EE-Dependent Interactions between EZH2, YY1, and p38a on the Chromatin of Pax7 Promoter

(A) Top: Schematic representation of the PRE-containing region and the proximal promoter of Pax7 gene. Chromatin immunoprecipitation analysis (ChIP) of the

Pax7 PRE and promoter, MHCIIb promoter, and IgH enhancer were performed in C2C12 myoblasts cultured in growth medium and infected with control (C) or

adeno-MKK6EE in the absence (MK) or presence (MK/SB) of the p38 inhibitor SB. ChIP was performed with antibodies against p38, EZH2, YY1, and control IgG.

Graph shows real-time PCR values normalized against the input DNA. Error bars show standard deviation from three independent experiments. p values showing

statistical significance by the Student’s t test between control and MKK6EE are indicated (*p < 0.05).

(B) Coimmunoprecipitation from nuclear extracts of C2C12 cells infected with control (C) or adeno-MKK6 and cultured in the absence (MK) or presence (MK/SB)

of the p38 inhibitor SB. Nuclear extracts were immunoprecipitated with p38, EZH2, and YY1 antibodies or control IgG and bound proteins were revealed by

western blot via antibodies against EZH2, p38, YY1, and HA. The images are representative of three independent experiments reproducing the same result.
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differentiation stages (Caretti et al., 2004; Juan et al., 2009). We

therefore tested whether the p38a signaling to PRC2 could also

mediate EZH2 chromatin disengagement on these genes.

MKK6EE-mediated chromatin recruitment of p38a on MHCIIb

promoter was detected in myoblasts in the same experimental

conditions in which p38a was detected on the chromatin of

Pax7 genes (Figure 3A). However, on MHCIIb promoter p38a

recruitment did not coincided with the changes in EZH2 and

YY1 chromatin recruitment, consistent with the lack of expres-

sion of MHCIIb expression in these conditions (C2C12

myoblasts infected by MKK6EE and cultured in GM for 18 hr).

As a control, p38a, EZH2, and YY1 were not detected on the

chromatin of IgH enhancer (Figure 3A), which is constitutively

repressed in myoblasts, probably by a PRC2-independent

mechanism.

Collectively, the results presented above demonstrate

a signal-dependent interaction between p38a, YY1, and EZH2

on the chromatin of the Pax7 regulatory elements that coincides

with p38-mediated repression of Pax7 at early stages of

myoblast differentiation. By contrast, the p38/YY1/EZH2 interac-

tions do not appear to regulate PRC2-mediated derepression

of muscle genes at the same stage. This evidence indicates
460 Cell Stem Cell 7, 455–469, October 8, 2010 ª2010 Elsevier Inc.
that the p38 signaling to PRC2 specifically directs the repression

of genes that are typically downregulated during muscle dif-

ferentiation (e.g., Pax7), but has no direct impact on PRC2-

mediated repression of muscle genes, which are induced in

myotubes. This conclusion is also supported by our previous

evidence that p38a/b blockade by SB does not restore EZH2

depletion and the relative decrease in H3-K273me on the chro-

matin of muscles genes in differentiating myoblasts (Serra

et al., 2007).

p38a-Mediated Phosphorylation of EZH2 Enhances
the Interaction with YY1 to Repress Pax7 Expression
We next investigated the biochemical and molecular impact of

p38a kinase interaction with EZH2 and YY1. A reciprocal interac-

tion between exogenous Flag-tagged EZH2 and myc-tagged

p38a was detected upon overexpression in heterologous cell

lines, such as 293 cells, even in the absence of p38 activation

(Figures S4A and S4B), indicating that EZH2 is a potential

substrate for p38a kinase. Indeed, an in vitro kinase assay with

immunoprecipitated Flag-EZH2 incubated with recombinant

active p38a showed an incorporation of radiolabelled phos-

phate in EZH2 only in the presence of ATP, and this effect was
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Figure 4. p38 Phosphorylation of EZH2 on Threonine 372 Is Necessary for EZH2 and YY1 Interaction and for Pax7 Repression in Response to

MKK6EE

(A) In vitro kinase assaywith Flag-EZH2 immunoprecipitated fromHEK293 cells and then incubated with recombinant active p38a (upper panel), in the absence or

presence of SB or LY. Middle and lower panels show control western blots for the expression of Flag-EZH2 and p38.

(B) In vitro kinase assay via deletion constructs of EZH2 (left panel). Western blot with antibodies against Flag, as a loading control (right panel).

(C) In vitro kinase assay, comparing EZH2 WT and T372A mutant, performed as in (A) and (B) (left panel). Western blot with anti-Flag, as a loading control

(right panel).

(D) Coimmunoprecipitation from nuclear extracts of C2C12 cells stably expressing control (pBabe) or myc-tagged EZH2 WT and EZH2T372A mutant. Anti-myc

immunoprecipitates were analyzed by western blot via indicated antibodies (left panel). Input nuclear extracts before immunoprecipitation (right panel).

(E) Expression levels of the indicated proteins in nuclear extracts of the same cells as in (D), infected with control (C) or adeno-MKK6 and cultured in the absence

(MK) or presence (MK/SB) of SB. The doublet in the p38 western blot indicates super-shifted (active, phosphorylated) endogenous p38a.

See also Figure S4.
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specifically inhibited by the inclusion of SB, but not the PI3K

inhibitor LY (Figure 4A). By using Flag-EZH2 deletion mutants,

we could map the p38a-phosphorylated region within a

C-terminal fragment encompassing amino acids 320 and

752—see phosphorylation of EZH2 1–417 and 321–752 aa frag-

ments, but not EZH2 1–320 aa fragment (Figure 4B). Further

analysis identified a conserved proline-directed threonine in

position 372 as the only p38 kinase-target residue within the

phosphorylated fragment of EZH2, and replacement of this

threonine with nonphosphorylatable alanine generated a p38a

phosphorylation-resistant EZH2 point mutant—EZH2 T372A

(Figure 4C). This mutation does not impair the EZH2 ability to

interact with the other components of PRC2—SUZ12 and EED

(Figure 4D). Of note, MKK6EE-activated p38a (Figure 4E, right

panel) enhanced the interaction of endogenous YY1 with exoge-

nous EZH2 wild-type, but not with the phosphorylation-resistant

EZH2 T372A mutant, in C2C12 myoblasts (Figure 4E, left panel).

By contrast, the kinase-deficient MKK6AA mutant, which does

not activate the p38 signaling, could not induce EZH2/YY1 inter-

action (Figure S4C). The failure of EZH2 T372A phospho mutant
C

to interact with YY1 in response to MKK6EE-activated p38a

resulted in an impaired ability to repress Pax7 expression, as

compared to the EZH2 wild-type (Figure 4E, right panel).

These results link p38a-mediated association of EZH2 with

YY1 to Pax7 repression in SCs.

PRC2 Converts the p38 Signaling to Pax7 Promoter
into Repressive Epigenetic Marks
We elucidated the functional relationship between p38 signaling

to PRC2 in SCs by monitoring the levels of H3-K273me—the

typical epigenetic mark of PRC2-mediated repression that

reflects the enzymatic activity of EZH2. ChIP analysis of histone

modifications requires much less amounts of chromatin, as

compared to the analysis of chromatin occupancy of transcrip-

tion factors or other proteins. Thus, we monitored the relative

changes in H3-K273me at the PRE (Figure 5, middle vertical

panels) and the promoter region (Figure 5, right vertical panels)

of Pax7 in undifferentiated SCs (myoblasts [MB]) and their differ-

entiated progeny (myotubes [MT]). This analysis showed

increasing levels of H3-K273me that spread over the regulatory
ell Stem Cell 7, 455–469, October 8, 2010 ª2010 Elsevier Inc. 461



Figure 5. p38-Dependent Modulation of PRC2-Mediated Histone Modifications at the Pax7 Promoter in Satellite Cells
Top: Schematic representation of the PRE-containing region (�3140/�3060), the proximal promoter (�830/�730), and distal elements (�11840/�11700) of the

Pax7 gene. ChIP analysis of the PRE-containing region, the proximal promoter, and �12 kb region of Pax7 gene was performed with antibodies against AcH3,

H3K27me3, and H3K4me3 and control IgG in satellite myoblasts (MB) cultured for 4 days in growth medium in the presence (GM/SB) or absence (GM) of the

p38a/b inhibitor SB. Note that SBwas replaced every 24 hr in theGM for the 4 days of culture. The same analysis was performed in satellite cell-derivedmyotubes

(MT) after incubation in differentiation medium (DM). Graph shows real-time PCR values normalized against the input DNA. Error bars indicate the standard devi-

ation (Student’s t test: *p < 0.05; **p < 0.01).
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elements of Pax7 during SC differentiation. We note that myo-

fiber-derived satellite myoblasts cultured in growth medium

(GM) for 4 days (the time necessary to obtain an amount of cells

sufficient to perform ChIP analysis) are composed of an

asynchronous population of cells at different stages of the differ-

entiation process. This mixed population tends to flatten the

differences in H3-K273me levels detected on Pax7 gene in MB

versus MT. Still, the dynamic enrichment in this repressive

mark at the Pax7 locus was significantly detected and culmi-

nates with an increase in H3-K273me in myotubes (Figure 5A,

middle transversal panels), which correlates with the downregu-

lation of Pax7, as typically observed in SCs undergoing terminal

differentiation. A simultaneous decrease in H3-K9-14 acetylation

and H3-K43me was detected on the chromatin at same regions of

the Pax7 locus in satellite during MB to MT transition (Figure 5A,

upper and lower panels, respectively). These data indicate that

the relative enrichment in the epigenetic marks of PRC2- and

TrxG-associated enzymatic activity—H3-K273me and H3-

K43me, respectively—regulate Pax7 expression during SC differ-

entiation. Persistent inhibition of p38a by SC exposure to SB

during MB to MT transition reversed the epigenetic pattern
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underlying Pax7 repression, with reduced levels of H3-K273me

and the consensual increase in levels of H3-K9/14 acetylation

and H3-K43me observed in SB-treated SCs (Figure 5). An anal-

ysis of Pax7 locus 12 kb upstream of the TTS showed reduced

H3-K273me and increased H3-K9-14 acetylation in response to

p38 blockade, while H3-K43me levels were undetectable in either

condition (Figure 5, left vertical panels). This result is consistent

with the notion that changes in H3-K273me and histone acetyla-

tion are spread over most of the gene locus and that changes in

H3-K43me are restricted to the proximity of the TSS.

Genetic Knockdown or Pharmacological Inhibition
of EZH2 Abolishes p38-Mediated Repression of Pax7
in SCs
To definitely establish a causal relationship between PRC2

activity and Pax7 repression in SCs, we investigated the effect

on Pax7 expression of siRNA-mediated downregulation of

Ezh2 or pharmacological blockade of EZH2 methyltransferase

activity in SCs. Previous work showed that Ezh2 expression is

high in undifferentiatedmyoblasts and drastically declines inmy-

otubes (Caretti et al., 2004). However, when we monitored Ezh2



Figure 6. Stage-Specific Upregulation of Pax7 by EZH2 Knockdown in Satellite Cells

(A) Real-time RT-PCR analysis of the expression of Ezh2 (blue line), Pax7 (pink line), myogenin (yellow line), and MCK (turquoise line) transcripts in myofiber-

derived satellite cells, during 4 days of culture in GM and further incubation in DM (Figure 5A).

(B) Satellite cells derived from wild-type C57/BL6 mice were transfected with control scramble (scr) or Ezh2 siRNA at day 3 and harvested at day 4, and the

expression levels of Ezh2, Pax7,MCK, myogenin, andMyoD RNA were detected by RT-PCR. Error bars show standard deviation from two independent exper-

iments.

See also Figure S5.
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RNA expression in myofiber-derived SCs during their 4 days of

culture in GM and further incubation in DM (Figure 6A), we

observed that Ezh2 transcripts (blue line) increase during the first

3 days of culture in GM, in coincidence with the higher prolifera-

tive activity of SCs, which express high levels of Pax7 (pink line)

and do not show detectable levels of differentiation markers,

such as myogenin (yellow line) and MCK (turquoise line). This

expression pattern indicates that in proliferating SCs, Pax7 is

not repressed by PRC2 and is consistent with the PRC2-medi-

ated repression of myogenin and MCK in undifferentiated

myoblasts and the induction of myogenin and MCK by siRNA-

or miRNA-mediated depletion of EZH2 (Caretti et al., 2004;

Juan et al., 2009). At this stage, siRNA-mediated knockdown

of Ezh2 does not change the expression levels of Pax7 (not

shown). During days 3 and 4 of culture in GM, a significant

proportion of SCs initiate to differentiate spontaneously, as

shown by the increased levels of myogenin and MCK and by

the sharp decline of Pax7 expression. Pax7 downregulation

during this transition is accompanied by PRC2-mediated depo-

sition of epigenetic marks of transcriptional repression on the

chromatin surrounding the regulatory elements of Pax7 gene

(see Figure 5). We therefore surmised that Ezh2 knockdown at

this stage could prevent Pax7 downregulation. Indeed, when

the Ezh2 knockdown by siRNA was restricted to days 3 and 4

of SC culture in GM (see transparent box in Figure 6A), we

observed an induction of Pax7 transcripts that was proportional
C

to the reduction of Ezh2 levels (Figure 6B). By contrast, MyoD

levels remained unchanged and myogenin and MCK levels

were downregulated, possibly because of the antidifferentiative

action of Pax7 (Olguin et al., 2007). The p38 signaling also directs

the SWI/SNF chromatin recruitment, via BAF60 phosphorylation

(Simone et al., 2004), and SWI/SNF is involved in both gene

activation and repression (de La Serna et al., 2006), so it is

formally possible that p38-directed SWI/SNF participates to

Pax7 repression. However, knockdown of individual BAF60

subunits a, b, and c by siRNA did not affect Pax7 expression in

myoblasts but led to a decreased expression of genes previously

shown to be direct target of BAF60a (the proliferation gene, cFos)

(Ito et al., 2001), BAF60c (the muscle contraction gene, Tnnt3)

(Lickert et al., 2004), and BAF60b (Igf2) (our unpublished data)

(Figure S5). This evidence further demonstrates that p38-SWI/

SNF and p38-PRC2 are two distinct signaling that control

activation and repression, respectively, of different subsets of

genes.

Collectively, these data show a stage-dependent effect of

Ezh2 depletion on muscle genes and Pax7 expression. At earlier

times, when EZH2 occupies the chromatin of muscle genes,

Ezh2 knockdown derepressed these genes (as shown in Caretti

et al., 2004; Juan et al., 2009). A the onset of differentiation, when

EZH2 occupies Pax7 regulatory sequences, but not muscle

genes, Ezh2 knockdown induces Pax7 expression, which in

turn antagonizes muscle differentiation.
ell Stem Cell 7, 455–469, October 8, 2010 ª2010 Elsevier Inc. 463



Figure 7. Pharmacological Blockade of PRC2 Increases Pax7 Expression in Satellite Cells Both In Vivo and Ex Vivo

(A) Schematic representation of the experimental design. In brief, 5-week-old mdx mice were treated intraperitoneally with dZNep (1 mg/kg). After 5 days mice

were sacrificed and satellite cells were isolated and cultured in growing conditions (GM) for 7 days.

(B) Protein levels of Ezh2 in satellite cells derived from control or dZNep-treated mdx mice were evaluated by western blot. Tubulin is shown as a loading control.

(C) Real-time RT-PCR analysis of Pax7,MCK, and cyclinA2 on satellite cells obtained as in (A). Error bars show standard deviation from four independent exper-

iments. p values showing statistical significance by the Student’s t test are indicated (*p < 0.05).

(D) Satellite cells derived from wild-type C57/BL6 mice were isolated and incubated in growth medium in the absence (C) or presence of SB and the Ezh2 inhib-

itors MC1947 (47) and MC1948 (48) and the expression of Pax7 and MyoD was detected by coimmunostaining. Nuclei were counterstained with DAPI.

(E) Western blot showing the levels of Pax7 in the same conditions as in (D). Gapdh was used as a loading control.

(F) Real-time RT-PCR analysis of Pax7, cyclinA2,MCK, and Ezh2 on satellite cells treated as in (D). Error bar indicates standard deviation from three independent

experiments.

See also Figure S6.
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We further addressed the role of PRC2 in the regulation of

Pax7 expression during muscle regeneration in vivo by injecting

young mdx mice with the S-adenosylhomocysteine hydrolase

inhibitor 3-Deazaneplanocin A (DZNep) (Figure 7A). Pharmaco-

logical inhibition of PRC2 by this compound results in the elimi-

nation of EZH2 and other PRC2 components (Tan et al., 2007;

and our data nor shown). We treated mdx mice with dZNep for

5 days (Figure 7A), which is equivalent to the time of treatment

with TNF antibodies (see Figure 1). After the exposure to dZNep,

we isolated the myofibers for ex vivo evaluation of PRC2

blockade in primary SCs. In these cells, the levels of EZH2

were drastically reduced by the exposure to dZNep (Figure 7B)

as previously reported (Tan et al., 2007). SCs derived from
464 Cell Stem Cell 7, 455–469, October 8, 2010 ª2010 Elsevier Inc.
mice exposed to dZNep expressed higher levels of Pax7 and

cyclin A and lower levels of the differentiation marker MCK

(Figure 7C).

A number of new soluble compounds that are structurally

unrelated to dZNep and share the ability to inhibit the methyl-

transferase activity of EZH2 (see Tables S1 and S2 in Supple-

mental Experimental Procedures) were screened for their ability

to replicate the biological effect of p38 inhibition on SCs. Among

them, MC1946, MC1947, and MC1948 were first selected by

virtue of their effect on SC number. We further focused on

MC1947 and MC1948 because of their ability to expand

a population of PAX7-positive SCs and to induce Pax7 and

cyclin A expression, while inhibiting MCK expression, that was
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reminiscent of the effect of SB (Figures 7D–7F). Furthermore,

SCs retained the ability to differentiate into myotubes sur-

rounded by undifferentiated SCs upon drug withdrawal—

a feature also observed with SB (Figure 2). Despite these over-

lapping effects, it was evident that p38 inhibition by SB showed

a more pronounced effect on SC number (see Figure 7D; Fig-

ure S6A). By contrast, the EZH2 inhibitors MC1947 and

MC1948 only moderately expanded the number of SCs

(Figure 7D; Figure S6A, upper panel). The common ability of

p38 and EZH2 inhibitors to decrease H3-K273me levels at the

Pax7 regulatory elements (Figure S6B) reflects their impact on

the p38-PRC2 signaling to Pax7 at different levels and accounts

for their shared ability to increase Pax7 expression. However,

MC1947 and MC1948, but not SB, caused a reduction of the

global H3-K273me levels (Figure S6C), indicating that the effect

of p38 blockade on H3-K273me is restricted only to those loci,

such as Pax7, which are targeted by the p38-PRC2 signaling.

The shared ability of p38 and PRC2 inhibitors to increase Pax7

expression in SCs relates to their effect on the epigenetic profile

that governs the transcription of bivalent genes, as a result of the

concerted action of H3-K4 and H3-K27 methyltransferases and

demethylases (Pasini et al., 2008). According to this model, p38-

dependent repression of Pax7 entails the simultaneous engage-

ment of PRC2 and H3-K4 demethylases to achieve selective

enrichment of H3-K273me at the Pax7 locus. Conversely, the

induction of Pax7 expression observed upon blockade of either

p38a or EZH2 enzymatic activity results from the simultaneous

enrichment in H3-K43me and decrease in H3-K273me levels at

the Pax7 regulatory elements. However, it is unclear whether

the control of H3-K4methylation is directly regulated by a parallel

p38 signaling to H3-K4 methyltransferases/demethylases or is

autonomously regulated by the enzymatic activity of p38-

directed PRC2. To address this issue, we evaluated the effect

of the inhibition of EZH2 enzymatic activity on H3-K43me levels

at the Pax7 locus in conditions permissive for p38-mediated

recruitment of PRC2—that is, in differentiating SCs. Under these

experimental conditions, EZH2 inhibition byMC1947 or MC1948

led to increased H3-K43me levels on Pax7 regulatory regions

(Figure S6D). This evidence identifies two distinct levels of epige-

netic regulation at the Pax7 locus by the p38-PRC2 signaling.

One level reflects an ‘‘extrinsic’’ regulation of Pax7 by the regen-

eration-activated p38 signaling to PRC2; therefore, p38

blockade prevents PRC2 chromatin binding and EZH2-medi-

ated H3-K273me. A second level of control relates to the

‘‘intrinsic’’ ability of chromatin-bound PRC2 to regulate H3-K4

methylation and reveals an ‘‘autonomous’’ control of the epige-

netic profile of Pax7 by the enzymatic activity of chromatin-asso-

ciated methyltransferases and demethylases. This model is

consistent with the ability of p38 and EZH2 inhibitors to generate

a common epigenetic profile at the Pax7 locus. However, simul-

taneous inhibition of EZH2 and p38a in SCs did not result in

a synergistic effect on Pax7 expression (Figure S6E), supporting

the concept that p38 and EZH2 act on the same pathway.

Pax7 Mediates the Effect of p38 Signaling on Satellite
Cell Proliferation
We next investigated the impact of Pax7 expression on p38-

mediated control of SC proliferation, because p38-mediated

phosphorylation of EZH2 reduces its ability to repress Pax7 in
C

SCs (Figure 4E). Previous works demonstrated that PAX7

contributes to SC proliferation and survival (Relaix et al., 2006;

Collins et al., 2009). Efficient knockdown of Pax7 was obtained

by delivery of siRNA (siPax7) in SCs derived from single myofib-

ers (Figure S7A, left panel). Pax7 knockdown resulted in

a reduced number of SCs (Figures S7B and S7C), which dowre-

gulated proliferation markers, such as cyclin E1, as compared to

control-transfected (siC) cells (Figure S7A, right panel). More-

over, SCs in which Pax7 levels were reduced by siRNA did not

expand in response to p38 blockade, as control cells did, but

maintained the ability to differentiate in response to the activa-

tion of p38 by the upstream activator MKK6 (Figures S7B and

S7C). This evidence demonstrates that Pax7 expression medi-

ates the ability of p38 blockade to expand the number of SCs,

thereby supporting the biological link between p38a/PRC2

signaling to Pax7 and muscle-stem cell decision to proliferate

or differentiate (see also Figure 2).

DISCUSSION

Although the instructive role of the inflammatory component of

adult stem cell niche is well documented, the intracellular

signaling that converts the inflammatory cues released in the

regenerative environment into the epigenetic information that

coordinates gene expression in adult stem cells is unknown.

Our data uncover the existence of a signaling mechanism link-

ing the regeneration cues released by the inflammatory infiltrate

within the satellite cell niche to the epigenetic modifications that

repress the expression of Pax7 in SCs undergoing terminal

differentiation. Key components of this signaling are the p38a

kinase and the enzymatic subunit of PRC2, EZH2. This evidence

illustrates a model of signal-directed chromatin recruitment of

PRC2 to promote muscle stem cell differentiation that is different

from the most commonly studied model of PRC-mediated gene

repression to maintain pluripotency in embryonic stem cells.

The signal-inducible repression of a lineage-specific gene

(Pax7) by PRC2 during muscle stem cell differentiation extends

the role of PRC2 in coordinating gene expression during skeletal

myogenesis. Previous work demonstrated that in undifferenti-

ated myoblasts, PRC2-mediated repression precludes the

unscheduled expression of muscle genes (Caretti et al., 2004).

Our data show that when PRC2 is released from muscle genes,

it relocates to loci that are typically repressed in differentiated

myotubes—e.g., Pax7. The chromatin redistribution of PRC2 in

differentiating SCs is regulated by the p38a kinase, which

promotes the formation of a complex containing p38a, EZH2,

and YY1, via direct phosphorylation of EZH2.

The different effect of chromatin-associated p38 kinases

observed at regulatory sequences of muscle genes versus

Pax7 probably reflects the different composition of the chro-

matin-associated complexes. Differentiation-activated p38a is

recruited to the Pax7 promoter via interaction with EZH2—

a direct substrate for phosphorylation-mediated association

with YY1—to repress gene expression. On muscle-specific

genes, p38a and/or b are recruited via interactions with compo-

nents of the muscle transcriptosome, including BAF60 (Simone

et al., 2004), E47 (Lluı́s et al., 2005), and MEF2 (Rampalli

et al., 2007), which promote transcription. On these genes,

the EzH2/YY1 complex dissociates from the chromatin, via
ell Stem Cell 7, 455–469, October 8, 2010 ª2010 Elsevier Inc. 465
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a differentiation-dependent (Caretti et al., 2004; Juan et al., 2009)

but p38-independent mechanism.

Pax7 transcription is tightly regulated through development

and adult life, to restrict its expression mainly to muscle progen-

itors, with detectable levels of Pax7 also in the neural tube and

adult brain. Pax7 expression is silenced by PRC2 in embryonic

stem cells and in most of the somatic cells (Lee et al., 2006;

Boyer et al., 2006b; Bracken et al., 2006) and in human embry-

onal carcinoma F9 cells (Squazzo et al., 2006). Derepression of

Pax7 coincides with the specification of embryonic muscle

progenitors and adult SCs (Relaix et al., 2005; Buckingham

and Relaix, 2007). Genetic evidence shows that Pax7 is impli-

cated in the specification (Seale et al., 2000) and in the renewal

and maintenance (Oustanina et al., 2004) of SCs and is neces-

sary and sufficient to induce the myogenic phenotype in resident

stem cells within adult skeletal muscles (Seale et al., 2004).

However, the contribution of Pax7 to the regeneration of adult

muscles has been questioned by recent studies (Lepper et al.,

2009). Pax7 controls a number of satellite cell activities prior to

differentiation, including renewal, maintenance of lineage iden-

tity, and survival (Relaix et al., 2006; Oustanina et al., 2004).

At the onset of muscle differentiation, Pax7 transcription is again

repressed (Zammit et al., 2006b), because its expression would

otherwise antagonize the activation of the differentiation pro-

gram (Olguin et al., 2007).

Although recent studies have begun to identify downstream

targets and effectors of PAX7 in SCs (McKinnell et al., 2008;

Hu et al., 2008; Kumar et al., 2009), the upstream signaling that

controls Pax7 expression in SCs in response to extrinsic signals

is poorly characterized (Kuang and Rudnicki, 2008). Previous

works indicated a role of b-catenin in self-renewal of SCs, impli-

cating b-catenin/GSK3b signaling as a potential upstream regu-

lator of Pax7 expression (Perez-Ruiz et al., 2008). Myostatin- and

Megf10-activated signaling and the Notch pathways have also

been implicated in the control of Pax7 expression in SCs (McFar-

lane et al., 2008; Holterman et al., 2007; Conboy and Rando,

2002). The p38a-directed repression of Pax7 by PRC2, reported

here, illustrates a novel signal-inducible mechanism of PRC2-

mediated gene repression during cellular differentiation that

differs from the constitutive repression of developmental genes

described in ESCs.

The link between p38-mediated arrest of cell proliferation in

differentiating SCs and PRC2-dependent silencing of Pax7

suggests an antiproliferative function of PRC2 that is in apparent

conflict with the widely observed tumor-promoting activity of

Polycomb proteins (Bracken and Helin, 2009; Sparmann and

van Lohuizen, 2006). However, recent works have also indicated

an antiproliferative function of PRC2, via silencing of mitogenic

signaling, such as JAK/STAT and Notch pathways in Drosophila

(Classen et al., 2009; Martinez et al., 2009; Merdes and Paro,

2009). Thus, it is possible that in certain cell types and in

response to specific cues, PRC2 exerts an antiproliferative func-

tion, by silencing the expression of genes directly involved in cell

cycle regulation. Future studies should identify Pax7 down-

stream genes that promote SC proliferation, such as Id3—

a recently identified direct transcriptional target of Pax7 (Kumar

et al., 2009).

In sum, the p38-PRC2 signaling to the Pax7 locus uncovered

by this study provides an unanticipated framework that links
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regeneration cues to the epigenetic modifications leading to

repressive chromatin during satellite cell differentiation. Given

the importance of pharmacological tools that can expand

muscle stem cells in vitro before transplantation (Sacco et al.,

2008), we anticipate that interventions targeting the p38-PRC2

signaling to Pax7 will be the focus of future efforts toward

enhancing the ability of muscle stem cells to regenerate

diseased muscles, such as in muscular dystrophies.

EXPERIMENTAL PROCEDURES

Mice and In Vivo Treatments

All the experiments were performed in C57/Bl6 or mdx mice. For the experi-

ments with anti-TNF, intraperitoneal injection of Infliximab (Centocor)

(20 mg/kg) or control antibody was performed and mice were sacrificed

5 days later. For the experiments with dZNep, animals were injected intraper-

itoneally with 1 mg/kg of 3-Deazaneplanocin A or the same volume of vehicle

(PBS). Three days after the first injection, a second dose was inoculated and

mice were sacrificed 2 days later.

All experimental procedures were approved by the internal Animal Research

Ethical Committee according to the Italian Ministry of Health and complied

with the NIH Guide for the Care and Use of Laboratory Animals.

Satellite Cell Isolation and Culture

Single muscle fibers were isolated by standard procedures. In brief, the hind

limbmuscles were digested with collagenase and single myofibers were either

cultured in GM1 (DMEM supplemented with 10% horse serum [GIBCO], 0.5%

chick embryo extract [MP biomedicals], and penicillin-streptomycin [GIBCO])

at 37�C in suspension for 72 hr and then fixed for immunofluorescence or

plated on matrigel (Sigma, 1 mg/ml ECM gel) -coated dishes for satellite cell

culture. Three days later, the fibers were removed and the medium replaced

with proliferation medium (GM2: 20% FBS, 10% horse serum, 1% chick

embryo extract in DMEM). After 4–5 days, the medium was replaced with

differentiation medium (DM: 2% HS and 0.5% chick embryo extract in

DMEM). SB203580 (Calbiochem, final concentration 5 mM), SP600 (10 mM),

PDTC (100 nM), MC1947 (10 mM), andMC1948 (10 mM) were added when indi-

cated and replaced every 24 hr. BrdU (Amersham) was added to the medium

(diluted 1:800) 4 hr prior to harvesting the cells.

Cell Lines and Plasmids

Cell lines and plasmids are described in the Supplemental Information.

RNA Interference

Downregulation of Pax7 expression in myofiber-derived satellite cells was

achieved by RNAi with the oligonucleotide siPax7-GGUAACAUCCCAG-

CUUUACTT (Silencer Pre-designed siRNA from Ambion) and according to

the Dharmafect3 (Dharmacon) transfection protocol. Unrelated oligonucleo-

tide siC-AAGTAAGCTGATGAAAGACTG was used as a control.

Knockdown of p38a and b and of EzH2 in satellite cells was performed as

previously described (Serra et al., 2007; Caretti et al., 2004).

Adenoviral Infections and Retroviral Infections

Adenoviral constructs have been described elsewhere (Simone et al., 2004).

The viruses were amplified by transfection of 293 packaging cells and satellite

cells or C2C12 myoblasts were infected with control or AdMKK6EE for 1 hr in

serum-free medium before being placed in growth medium.

In Vitro Kinase Assay

HEK293T cells were transfected with pCMV FlagMycEZH2 WT, deletion

mutants, or EZH2T372A mutant plasmids by calcium phosphate method.

1.5 mg of total extracts were incubated with Flag M2 agarose beads (Sigma)

for 2 hr at 4�C and extensively washed in lysis buffer, and the immunoprecip-

itated material was eluted in lysis buffer containing 150 ng/ml 3XFlag peptide

(Sigma).

200 ng of immunopurified proteins were incubated with 100 ng of recombi-

nant active p38a (Cell Signaling) in the presence of 60 mMMgCl2, 60 mM ATP,
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50 mM Tris-HCl (pH 7.5), 12 mM DTT, and phosphatase inhibitors (Calbio-

chem), supplemented with 0.7 mCi of [g-32P]ATP at room temperature for

15 min. Reactions were stopped with Laemmli Buffer and resolved by SDS-

PAGE; phosphorylated proteins were visualized by autoradiography. Protein

loading was checked by western blot, with Flag (Sigma, M2) and p38a (Cell

Signaling) antibodies.

Histology and Immunofluorescence

Quadriceps muscles were cut transversally, fixed in 4% PFA for 20 min, and

permeabilized with 100% methanol for 6 min at �20�C. Inmunostaining with

anti-PAX7 (Developmental StudiesHybridomaBank, DSHB) and anti-LAMININ

(Sigma) was performed overnight at 4�C after antigen retrieval with 100 mM

sodium citrate and blocking first with a solution containing 4% BSA in PBS

and then with anti-mouse AffiniPure Fab fragment (Jackson, 1:100) to avoid

unspecific binding. Cy2-conjugated anti-rabbit (Jackson) and Biotin-conju-

gated anti-mouse (Jackson) secondary antibody followed by another incuba-

tion with Cy3-conjugated streptavidin (Jackson) were used to reveal LAMININ

and PAX7 signal. Nuclei were visualized by counterstaining with DAPI.

Images were acquired with a Leica confocal microscope and edited with

Photoshop software. Fields reported in the figures are representative of all

examined fields. Average number of PAX7-positive cells per hundred fibers

was obtained by counting multiple areas in several sections. Mean of the

average number of cells in three mice per experimental group are shown.

The cross-sectional area (CSA) was calculated with the Image J software

downloaded from http://rsb.info.nih.gov/ij.

Single myofibers were fixed with 2% PFA for 20 min, permeabilized with

0.5%Triton/PBS, and blockedwith 20%goat serum 1 hr at room temperature.

Satellite cells were fixed with 4% PFA for 20 min, permeabilized with 0.25%

triton, and blocked with 4% BSA in PBS 1 hr at room temperature. Immunos-

taining with anti-PAX7, anti-MYOD (Santa Cruz, SC-760), anti-BrdU (BD,

347580), and MyHC was performed O/N at 4�C and cy2 or cy3 conjugated

secondary antibodies were then used.

Western Blot and RT-PCR

The levels of endogenous PAX7, MyHC (MF20, DSHB), MYOGENIN (DSHB),

CYCLINA2 (Santa Cruz, SC-596), EZH2 (AC22, Cell Signaling), LAMIN A/C

(Cell Signaling), and TUBULIN (Thermo Fisher, MS581P1) were detected by

western blot analysis on total cell or nuclear extracts after lysis in 50 mM

Tris-HCl (pH 8.0), 125 mM NaCl, 1 mM DTT, 5 mM MgCl2, 1 mM EDTA, 10%

glycerol, and 0.1%NP-40 supplemented with 1mMPMSF and protease inhib-

itor mix. Anti-phospho p38 (Promega, V1211) and anti-p38 (Santa Cruz, SC-

535) were used to detect phosphorylated and total p38 overexpressed

proteins in C2C12 were detected by anti-MYC (Santa Cruz, SC-789) and

anti-HA (Santa Cruz, SC-805) immunoblotting.

Total RNA was extracted with Trizol, and 0.5–1 mg were retro-transcribed

with the Taqman reverse transcription kit (Applied Biosystems). Real-time

quantitative PCR was performed to analyze relative gene expression levels

with SYBRGreenMaster mix (Applied Biosystems) and according tomanufac-

turer indications. Primers sequences are described in the Supplemental Infor-

mation.

Coimmunoprecipitation Studies

Endogenous CoIPs on nuclear cell extracts of C2C12 cells were performed by

standard procedures. In brief, nuclear extracts were precleared with protein G

agarose for 1 hr at 4�C, immunoprecipitated with p38a (kindly provided by

T. Sudo), YY1 (Santa Cruz, SC-281), or EZH2 (Diagenode) antibodies for 3 hr

at 4�C, and incubated with protein G agarose. Inmunoprecipitates were exten-

sively washed with the lysis buffer, resuspended in Laemmli buffer, separated

on polyacrylamide gels, and transferred to nitrocellulose membranes. Precip-

itated proteins were revealed by western blot with p38 (Cell-Signaling), EZH2

(AC22, Cell Signaling), YY1 (Santa Cruz, SC-7341), and HA (Santa Cruz) anti-

bodies.

Chromatin Immunoprecipitation

ChIP assay was performed as previously described (Simone et al., 2004). The

following antibodies were used: anti-acetylated histone 3 (Upstate), anti-tri-

methyl lysine 27 histone 3 (Upstate), anti-trimethyl lysine 4 histone 3 (Upstate),

anti-EZH2 (Diagenode), anti-p38a, anti-YY1 (Santa Cruz, SC-281), and anti-
C

MYC (Santa Cruz, SC-789). Normal rabbit IgG was used as a ‘‘no antibody’’

control. Real-time PCR was performed on input samples and equivalent

amounts of immunoprecipitated material with the SYBR Green Master Mix

(Applied Biosystems). Relative recruitment is calculated as the amount of

amplified DNA normalized to input and relative to values obtained after normal

rabbit IgG immunoprecipitation, which were set as the background (one unit).

Primers used are indicated in Supplemental Information.

Ezh2 Inhibitors

The small molecules MC1946, MC1947, and MC1948 were prepared accord-

ing to the reported procedure (Mai et al., 2007). Detailed information about the

chemistry is indicated in the Supplemental Information.

Statistical Methods

Where indicated statistical significance was determined by the Student’s t test

(*p < 0.5; **p < 0.01; ***p < 0.001).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

seven figures, and two tables and can be found with this article online at

doi:10.1016/j.stem.2010.08.013.
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