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The transcriptome of single cells can reveal important information about cellular states and heterogene-
ity within populations of cells. Recently, single-cell RNA-sequencing has facilitated expression profiling of
large numbers of single cells in parallel. To fully exploit these data, it is critical that suitable computa-
tional approaches are developed. One key challenge, especially pertinent when considering dividing pop-
ulations of cells, is to understand the cell-cycle stage of each captured cell. Here we describe and compare
five established supervised machine learning methods and a custom-built predictor for allocating cells to
their cell-cycle stage on the basis of their transcriptome. In particular, we assess the impact of different
normalisation strategies and the usage of prior knowledge on the predictive power of the classifiers. We
tested the methods on previously published datasets and found that a PCA-based approach and the cus-
tom predictor performed best. Moreover, our analysis shows that the performance depends strongly on
normalisation and the usage of prior knowledge. Only by leveraging prior knowledge in form of cell-cycle
annotated genes and by preprocessing the data using a rank-based normalisation, is it possible to
robustly capture the transcriptional cell-cycle signature across different cell types, organisms and exper-
imental protocols.

� 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Recent technological advances have helped to establish
single-cell RNA-sequencing (scRNA-seq) as a robust and routine
assay, enabling the transcriptional profiling of thousands of cells
to be processed in an unbiased manner [1,2]. The application of
scRNA-seq to a wide range of different systems has already
resulted in new insights in important areas such as embryogenesis
[3] and tissue heterogeneity [4]. Indeed, scRNA-seq enables detec-
tion and quantification of transcriptional changes at the level of
single-cells, thereby unravelling dynamic aspects of the transcrip-
tional heterogeneity between cells that is not accessible using bulk
sequencing approaches. For example, scRNA-seq has helped to
identify novel cell types [5] and to reveal dynamic changes of the
transcriptome during temporal processes like cell differentiation
[6].

Importantly, the state of each individual cell is reflected by a
multitude of individual components, many of which are reflected
by transcriptome signatures. A key component and major driver
of transcriptional heterogeneity and cell decision processes is the
cell cycle. Moreover, the cell cycle is known to be linked to funda-
mental biological processes, including cell differentiation [7] and
oncogenesis [8,9]. Consequently, accurately identifying the cell
cycle stage of individual cells is needed to fully understand a num-
ber of different biological problems.

So far, information about cell cycle stage has largely been
obtained by experimental approaches. For instance, cells can be
treated with chemicals to induce cell-cycle arrest in a specific
phase [10]. Alternatively, cell sorting methods can be used to strat-
ify cells by size (counterflow centrifugation elutriation [11]) or
DNA content (e.g., Hoechst staining [12]), which facilitates enrich-
ment of cells in different stages of the cell cycle. Alternatively,
strategies based on genetic manipulation through insertion of flu-
orescent probes in genes that are differentially expressed in differ-
ent cell-cycle stages (e.g., FUCCI technique [13]) can be employed.
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However, these approaches have major drawbacks as they can be
very labour extensive and, due to their invasive nature, have the
potential to disturb the biological system substantially (e.g.,
cell-cycle arrest can have a large impact on differentiation
potential).

In the context of scRNA-seq experiments, the transcriptome
data itself provides informative cues about the cell cycle stage of
individual cells [14,15]. In particular, genome-wide transcriptome
data provides information on the expression levels of informative
cell-cycle marker genes, which have been carefully annotated in
several systems and cell types (e.g., in human, yeast and
Arabidopsis [16]). Consequently, we reasoned that these genes
can be used to infer the cell cycle phase directly from the transcrip-
tome. Such an approach would be complementary to experimental
sorting procedures and could help reduce biases that might arise
from more invasive experimental techniques. Moreover, the
cell-cycle structure of unsorted populations of cells profiled by
scRNA-seq could be investigated.

While strategies have been developed to remove cell cycle vari-
ation from scRNA-seq data without inferring the cell-cycle stage in
order to improve the detection of sub-populations of cells [14], and
computational analyses have been used to distinguish cycling from
quiescent cells [17], the possibility of explicitly predicting the
cell-cycle stage of cells from their transcriptome has not yet been
explored. In this paper we analyse six supervised computational
methods to predict G1, S or G2M phase given the transcriptome
of a cell. We train each algorithm on a recently published
scRNA-seq dataset where cell-cycle information is available from
experimental annotation [14], and we assess their performance
on scRNA-seq datasets generated from a variety of cell types and
organisms.
2. Material and methods

We use a supervised machine learning approach to evaluate the
ability of six algorithms to predict the unobserved cell cycle stage
of a cell from its transcriptome profile. These include five estab-
lished supervise machine learning approaches as well as a
custom-built predictor. Each algorithm was trained on the same
scRNA-seq dataset where the cell-cycle stage of each cell was
known. Additionally, different sets of cell-cycle annotated genes
were used to build each classifier. A schematic overview of our
approach is shown in Fig. 1. The six prediction algorithms’ perfor-
mance was measured using 10-fold cross-validation on the train-
ing dataset and a variety of independent datasets. The predictive
power of all classifiers was quantified by calculating the F1-score
(harmonic mean of recall and precision), which has been shown
to be an effective summary statistic for multi-class classification
[18]. In order to quantify how well the predictors perform across
all cell-cycle phases, we also calculated the macro-averaged F1
score by taking the average of precision and recall over all cell cycle
phases before computing the harmonic mean, so as to make it
independent of the number of cells in each phase in the testing
dataset.

2.1. Prediction algorithms

We compared a total of six classifiers including linear and
non-linear predictors as well as one custom method specifically
designed for in silico cell-cycle allocation. Below, we provide brief
details about the methods employed and their implementation.

2.1.1. Random forest
We used the scikit-learn implementation of random forests

(ExtraTreesClassifier) [19] and trained 500 trees by minimising
the entropy in the leaves of the individual randomized trees, con-
structed using a subset of all N features (

ffiffiffiffi

N
p

).

2.1.2. Logistic regression and lasso
Logistic regression was used, both without regularization and

with an L1 penalty (lasso) [20]. The lasso penalty was determined
using an internal 5-fold cross validation, maximising the F1 score.

2.1.3. Support vector machines
We used support vector machines with an rbf kernel with fea-

ture selection [21]. Kernel parameters were determined using a
cross-validated grid search. Due to the large number of variables,
feature selection was performed based on a univariate feature
ranking [22]. First, for each gene an ANOVA was performed and
genes were ranked according to their F-statistic. Next, the best
number of features was determined in an integrated
cross-validated grid search.

Multi-class classification was performed via a one-vs-one
scheme (scikit-learn implementation), allowing for multi-class
classification based on standard binary SVMs.

2.1.4. PCA-based classification
Recently, we showed that the first principal component (PC) of

a set of annotated cell cycle marker genes is sufficient for con-
structing a cell–cell covariance matrix, reflecting the cell cycle
induced correlation among cells [14]. We therefore evaluated a
Gaussian Naive Bayes classifier based on the first PC derived from
the set of cell cycle markers. Furthermore, we explored the addi-
tional predictive power of higher order PCs (see Supplementary
Fig. B.6). Naive Bayes classifiers assign a probability to each data
instance based on a set of features by assuming conditional inde-
pendence of the features. The Gaussian Naive Bayesian classifier
assumes a Gaussian distribution of each continuous feature (here
PC1 and higher order PCs if applicable) with mean and variance
specific to each class (here: cell-cycle phase). Mean and variance
parameters are estimated using maximum likelihood as imple-
mented in the scikit-learn framework [19].

2.1.5. Pairs
We developed a classification algorithm based on the idea of the

relative expression of ‘‘marker pairs’’, which is also exploited in top
scoring pairs classifier, developed for classifying cancer types
based on microarray data [23–25]. The algorithm selects pairs of
genes whose relative expression has a sign that changes with the
cell-cycle phase. These pairs can then be used to quantify the evi-
dence that a given cell is in G1, S or G2M phase, as described in the
Appendix A. Since only the sign of the relative expression of gene
pairs in the same cell is used, this method does not require any
normalisation for sequencing depth.

2.2. Selection of cell-cycle marker genes

To establish a set of cell cycle annotated genes, we combine all
genes annotated to cell cycle in the Gene Ontology database
(GO:0007049) [26] along with the 600 top-ranked genes from
CycleBase [27,16]. Furthermore, we construct an informative set
of cell cycle marker genes, by excluding those genes whose varia-
tion was below the technical noise in the training dataset (see
Section 2.3). In addition, we demonstrate the benefits of using prior
knowledge by evaluating the performance of a classifier based on
the complete, unbiased set of expressed genes.

2.2.1. Data post-processing
To obtain gene expression values that are comparable across a

wide range of protocols, we used a rank normalisation approach:
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Fig. 1. Overview of our approach. The transcriptional profiles of individual cells are taken as input and information on cell cycle markers is extracted (left). The expression
profiles of these genes in a training dataset are then used to train an algorithm (top) that can predict the cell cycle stage of individual cells in independent datasets.
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for each cell we ranked the expression values (FPKM, RPKM or nor-
malised with size factors as in the respective primary publication)
of the set of genes used for training from lowest to highest. We
then used these rank-normalised gene-expression values as input
for all algorithms. In addition, we explored an alternative normal-
isation strategy where the data from each cell was normalised with
the total number of reads mapped to the gene set used for
prediction.
2.3. Training data set

We trained all classifiers on a recently published single-cell
RNA-seq dataset comprised of 182 mouse embryonic stem cells
(mESCs) with known cell-cycle phase [14]. In brief,
Rex1-GFP-expressing mESCs (Rex1-GFP mESCs) were cultured
using serum-free NDiff 227 medium (Stem Cells Inc.) supple-
mented with 2i inhibitors. Hoechst staining (Hoechst 33,342;
Invitrogen) was optimised for Rex1-GFP mESC, and cells were
sorted using FACS for three different cell-cycle phases (G1, S and
G2M phase). Next, single-cell RNA-seq was performed using the
C1 Single Cell Auto Prep System (Fluidigm; 100–7000). We nor-
malised the raw read counts using two different size factors
derived from endogenous genes and ERCC spike-ins as proposed
by Brenecke et al. [28]. After normalisation of both endogenous
genes and ERCC spike-ins with their respective size factors and
estimation of technical noise using ERCC spike-ins, we identified
a set of 6635 genes with variation above the technical background
level (FDR < 0.1) by following the approach proposed in [28]. To
establish a set of informative cell-cycle marker genes, we deter-
mined the intersection of annotated cell cycle marker genes with
the set of variable genes in the Hoechst-stained mESCs. We further
reduced the set of informative cell cycle genes by determining the
set of genes with variation above the technical background level
for an additional single-cell RNA-seq dataset [12]. This resulted
in a smaller set of 405 genes. The rank-normalised expression of
these informative cell cycle markers for 182 cells constitutes the
training data.

2.4. Datasets with cell cycle information

We tested the performance of all predictors on a variety of inde-
pendent data-sets with known ground truth.

2.4.1. Mouse mESCs data (Quartz-seq protocol)
We used the normalised gene expression data from the primary

publication [12]. In brief, mESCs were FACS sorted into G1, S and
G2M phases based on their Hoechst 33,342-stained cell area.
Next, seven S, eight G2M and 20 G1 cells were sequenced using
the Quartz-seq protocol and gene expression was normalised to
FPKM values. Due to the lack of spike-ins, we estimated the
amount of technical (null) noise expected for genes with variable
levels of expression using a log-linear fit between the expression
mean and the squared coefficient of variation between cells
[14,28]. This approach resulted in a total of 5546 highly variable
genes.

2.4.2. Human leukemia cells (bulk)
We analysed data from bulk human myeloid leukemia cells

[11]. Cells were assigned to cell-cycle stages (G1, S and G2M) using
centrifugal elutriation and mRNA expression was quantified using
RNA-seq.

2.4.3. Bulk mESCs
mESCs were stained with Hoechst 33,342 and FACS sorted for

cell cycle stages (G1, S and G2M). Approx 150,000–300,000 cells
from an asynchronous population and from each cell cycle frac-
tions (G1, S and G2M) were used for bulk mRNA sequencing, with
libraries being generated using the Illumina TruSeq Stranded RNA



A. Scialdone et al. / Methods 85 (2015) 54–61 57
Sample preparation kit. All libraries were prepared and sequenced
using the Wellcome Trust Sanger Institute sample preparation
pipeline. Sequencing quality control and data quality checks were
performed by the Sanger Sequencing facility. Downstream data
analysis (Alignment, Mapping and counting reads) was performed
as described [14].

2.5. Datasets without cell cycle information

2.5.1. Liver cells
We tested the algorithms on two independently generated sets

of individually sequenced liver cells, one previously published [29],
one generated for this study (see Appendix A). Since most liver
cells do not proliferate (see, e.g., [30]), they are expected to be in
G1 phase.

2.5.1.1. Smart-seq protocol. We used normalised gene expression
data of five liver cells from the primary publication [29]. All cells
were sequenced using the Smart-seq protocol.

2.5.1.2. C1 protocol. In addition we generated the individual tran-
scriptomes of 70 liver cells using the Fluidigm C1 platform. In brief,
a suspension of cells was prepared from the liver of a 14-week old
B6CastF1 (C57Bl/6 J mother � CAST/Ei father) female mouse and
loaded onto a 10–17 lm C1 Single-Cell Auto Prep IFC (Fluidigm),
and cell capture was performed according to the manufacturer’s
instructions (see Appendix A for the detailed protocol).

Paired-end reads were mapped simultaneously to the M. muscu-
lus genome (Ensembl version 38.75) and the ERCC sequences using
GSNAP (version 2014-05-15) with default parameters. Htseq-count
[31] was used to count the number of reads mapped to each gene
(default options).

2.5.2. Blastomeres
We applied our algorithm to the transcriptomes of a total of 30

individual cells dissociated from early, mid and late 2-cell stage
mouse embryos and sequenced using the Smart-seq protocol
[29]. Most of these cells are expected to be in G2 phase, as blas-
tomeres from 2-cell stage embryos have a very short G1 phase
and spend more than half of their cell-cycle in G2 phase [32,33].

2.5.3. T-cells
2.5.3.1. Single-cell RNAseq data. Finally, we applied our approach to
81 T-cells [34]. We used normalised gene expression data as in
[14]. We evaluated our algorithm by comparing the fraction of cells
assigned to individual cell-cycle phases in silico to the respective
fractions obtained from flow cytometry analysis of Ruby-stained
T-cells.

2.5.3.2. Flow cytometry analysis. Untouched Naive CD4 + cells were
purified from Il13-eGFP homozygous spleens from six week old
mice and stained with CellTrace Violet proliferation dye
(Invitrogen). After 3.5 days of activation in standard condition for
TH2 polarisation (anti-CD28 (4 lg=ml, eBioscience) and anti-CD3
(1 lg=ml, eBioscience)) and IL-4 (10 ng=ml, R&D Systems) cells
were stained with Vybrant DyeCycle™ Ruby (Invitrogen) stain to
visualise DNA content and analysed on a BD LSR II Fortessa.

3. Results and discussion

3.1. Predictive power and generalizability

3.1.1. Single-cell data
First, we assessed the performance of the different prediction

algorithms as well as all sets of marker genes using a
cross-validation approach. In this ‘‘holdout’’ experiment a fraction
of the training data is removed when fitting the model, which is
then applied to the withheld data to assess its performance. This
resulted in high precision and recall for all cell cycle phases
(Fig. 2a–c) for all classifiers and gene sets, indicating that all mod-
els fit the data well and are able to generalise well when applied to
the same type of data (i.e., mESCs cultured in 2i + LIF).

3.1.1.1. Poor generalizability to independent test data for many
methods but PCA and pairs method. To assess how well the different
approaches generalise to independent data sets, we tested the six
predictors derived on an independent test set of 35 mESCs
sequenced using a different protocol (Quartz-seq) and cultured in
a different medium (serum; see Fig. 2d–f). Two general features
are shared by all predictors: all of them perform worst on S phase
prediction (see also below), and their overall predictive power sub-
stantially increases when they are trained on cell-cycle annotated
genes (Fig. 2e and f), which indicates the importance of the inclu-
sion of prior information. The best performance on the indepen-
dent mESC test set was achieved by the PCA-based Naive Bayes
Classifier and the custom predictor (the ‘‘Pairs’’ method) which
had similar predictive power. As all methods yielded good perfor-
mance on the cross-validation, this indicates that all methods but
PCA and Pairs overfit to the training data without being able to
generalise to cells from different conditions. For the large set of
all variable genes, this over-fitting-effect is particularly strong
and occurs for all methods, again reflecting the importance of using
prior knowledge.

3.1.1.2. Alternative normalisation strategy results in poor
generalizability. We also assessed the influence of the normalisa-
tion step by training the predictors on the total read count nor-
malised gene expression data. This resulted in a notable decrease
in performance and highlights the importance of robust normalisa-
tion strategies which hold for different experimental protocols
(Supplementary Fig. B.3).

3.1.1.3. Feature importance. In order to assess the relevance of indi-
vidual genes for classification, we analysed the loadings on PC1 for
the PCA-based method and assigned a score to the pairs of genes
for the pairs method (following the approach introduced in [23];
see Appendix B.3 and Figs. B.4 and B.5).

While the majority of the most relevant genes are well known
markers for specific cell-cycle phases (e.g., Plk1, Aurka, etc.), we
could identify several genes that were not previously annotated
to any particular stage of the cell cycle but were among the most
important for classification. For example, Tmem2 and Tex14,
which have the highest negative loadings on PC1 (i.e., the two
strongest G1 markers) were not annotated with a specific peak
time or phenotype in Cyclebase.

3.1.2. Bulk data
We also applied each approach to predict cell-cycle stage from

bulk RNA-seq datasets where all cells had been cell-cycle staged.
These datasets are fundamentally different from single-cell tran-
scriptomics, and most of the predictors we tested are only able
to distinguish G1 phase from G2M phase (Fig. 3). Indeed, correct
allocation of cells in the S-phase is challenging, mainly because
of less specific transcriptional patterns (see Supplementary
Fig. B.2). Nevertheless, the PCA-based and the pairs predictor cor-
rectly allocate all samples to their true cell-cycle phase, including
those in the S-phase.

Consequently, we concluded that of the six predictors evaluated
and the gene sets used, the PCA-based and the pairs approaches
trained on cell-cycle annotated genes had the best overall

valentina
Highlight

valentina
Highlight

valentina
Highlight

valentina
Highlight

valentina
Highlight



A B C

D E F

Fig. 2. Validation on data with known cell-cycle phase. a–c, F1 scores from internal cross validation for different gene sets; F1 score for G1 phase is shown in green, for S-
phase in orange and for G2M phase in blue. Red lines represent the macro-averaged F1 score. A, all variable genes, B, all annotated cell-cycle genes, C, all variable cell-cycle
genes. D–F, F1 scores on independent test set. D, all variable genes, E, all annotated cell-cycle genes, F, all variable cell-cycle genes.
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performance and, importantly, had the strongest ability to distin-
guish S-phase cells.

3.2. Application to datasets without ground truth

We next applied the PCA-based approach to a variety of data-
sets including liver cells, T-cells and blastomeres to predict their
cell-cycle phases (see Appendix B for the application of the pairs
method to the same datasets). For all data sets, scatter plots with
G1 and G2M score of individual cells with decision boundaries
are shown in Fig. 4.

3.2.1. Liver cells
As expected, given the non-proliferative state of most liver cells

[30], all profiled liver cells were allocated with a high degree of
confidence to G1 phase (Fig. 4a; blue colour). This applied to cells
profiled in two independent laboratories, suggesting that the
PCA-based predictor is relatively robust to technical biases that
may arise during sample preparation.

3.2.2. Blastomeres
The cell cycle of blastomeres from 2-cell stage embryos takes

about � 20 h to complete, with the S-phase starting � 1 h after
the first mitosis [32] and lasting approximately � 6 h. G2 phase
is very long and its length varies between � 12 and � 16 h [33].
Apart from a few cells allocated to G1, most of the blastomeres
analysed were predicted to be in S phase by the PCA-based method
(see Fig. 4a), and in G2M phase by the pairs method (see Fig. B.1.A),
which agrees better with our prior expectations. Despite the differ-
ence in allocation probabilities, the G2M scores from the two
methods have a high rank correlation (Fig. B.8), suggesting that
in the PCA-based approach, due to the weak signal for the S phase,
the probability for a cell being in S is less reliable than the G1/G2M
probability and can also result in a badly calibrated score, in partic-
ular for cell types other than those in the training set. The pairs
method is less affected by this issue, possibly due to the higher
robustness of the signal captured by the relative rankings of pairs
of genes [23,24].
3.2.3. T-cells
This dataset includes TH2 polarised cells at different stages of

differentiation, which can be in any of the three cell-cycle phases
as confirmed by our flow cytometry analysis of a set of
Ruby-stained cells (51%, 14% and 35% allocated to G1, S and G2M
phase respectively, see Fig. 4b). By analysing the scRNA-seq dataset
with the PCA-based method, we found 65.4%, 27.1% and 7.4% in G1,
S and G2M phase respectively (similar percentages are obtained
with the pairs method, see Appendix B.1). The method successfully
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Fig. 3. Application of the different prediction algorithms to bulk data with known cell-cycle stage for all six predictors. Bulk samples from mESCs are shown as diamonds,
bulk samples from human myeloid leukemia cells are shown as triangles. Colours indicate true cell-cycle phase as in Fig. 2: G1 phase is shown in green, S-phase in orange and
G2M phase in blue A, PCA-based method, B, random forest, C, lasso, D, logistic regression, E, SVM, F, pairs. All predictors but the pairs method were trained on the informative
set of annotated cell cycle genes, the pairs predictor was trained on all annotated cell cycle genes.

BA

Fig. 4. Application of the PCA-based approach to data without known cell-cycle stage. A, scatter plot of predicted G1 score and G2M score for single cells from the early, mid
and late blastomere (yellow, pink, green circles) as well as individual liver cells from two different studies (dark blue circles and triangles). B, Scatter predicted G1 score and
G2M score for the single T-cells. Top, bar plot showing relative fraction of cells predicted to be in G1, S and G2M phase. Inset, density plot of Ruby staining showing the
relative fractions of cells in G1, S and G2M phase.
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predicts the cycling nature of these cells, with a relevant propor-
tion of cells allocated to S and G2M phase. The difference with
the flow cytometry analysis can be explained by, e.g., poor
resolution of S in the flow cytometry and possible biases in the cap-
ture and processing of single cells for RNA-seq, which can affect the
relative percentages of cells in the different phases.
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4. Conclusions

We evaluated six computational methods for predicting the
cell-cycle stage of single cells from their transcriptome. To train
the algorithms, we used a scRNA-seq dataset where cells had been
previously sorted by their cell-cycle phase, and exploited available
databases of genes known to be involved in cell cycle progression
(GO and cyclebase [16]) to optimise the set of predictors. We quan-
tified the predictive power of all methods for a wide range of single
cells as well as bulk data from different organisms (mouse and
human) and show that a parameter-free PCA-based approach and
the custom predictor (the ‘‘Pairs’’ method) performed best and cor-
rectly allocated cells from all data sets to their cell-cycle phase.

In order for our method to be broadly applicable to a wide range
of experimental protocols, we used a rank-based approach to nor-
malise our data, resulting in a good performance on a large variety
of data-set. We also explored total count normalisation where each
cell was normalised by the total number of reads mapped to the
genes used as input for the predictors. This resulted in a notable
decrease in performance for all methods, which may be explained
by two factors. First, the cell-cycle signature is considerably
weaker without rank normalisation (Supplementary Fig. B.3c and
B.2). Second, rank-based normalisation robustly preserves the
cell-cycle related information across different experimental proto-
cols and, particularly in combination with PCA, results in a highly
regularized cell-cycle allocator with good generalizability across
data sets. In contrast, more sophisticated approaches such as ran-
dom forest or SVM in combination with total count normalised
data, easily overfit to a specific data-set.

Similarly, the strong regularization enforced by the PCA
explains the good performance of the PCA-based predictor on all
datasets. All predictors achieve very high F1-scores in the
cross-validation, which indicates that the predictors do not overfit
within the training set and would generalise well to similar
data-sets generated using the same cell type and experimental
protocol. However, in order to be useful in practice, it is crucial that
a predictor will also generalise well to different cell types, experi-
mental conditions and sequencing techniques. Here we show that
only the PCA-based predictor and the pairs method achieve a
strong enough regularization to robustly capture a generalizable
cell-cycle signature in the transcriptome. Interestingly, the signal
captured by the pairs method based on the relative rankings of
pairs of genes is probably the most robust and generalizable (see
also [23,24]), as it is shown by the analysis of the 2-cell stage
blastomeres.

Between the three phases, the S phase proved to be the most
challenging to identify. This can be explained by the least specific
transcriptional signature of S-phase markers at the single-cell level
(Supplementary Fig. B.2) along with the poor resolution of S phase
in flow cytometry data affecting both training and testing datasets.

While the dataset we used for training only provided informa-
tion on cell-cycle phase, without being able to monitor the pro-
gress within a given stage, the methods we tested assign a
continuous score to each cell that can potentially provide informa-
tion at higher temporal resolutions. For instance, while most of
2-cell stage blastomeres are allocated to G2M by the pairs method
(see Fig. B.1.A), the average G2M score is lowest for early blas-
tomeres and highest for late blastomeres, possibly reflecting the
progress of cells within the G2M stage. However, more data is
needed to assess how valid this is across different cell types.

In silico allocation of cells to specific cell-cycle phases can be
important for a range of applications. By integrating the knowledge
of cell transcriptome with cell-cycle phase it will be possible to
reveal interactions between cell cycle and other cellular processes.
Furthermore, cell-cycle allocation can be crucial for the correct
interpretation of single-cell data, since many genes have been
shown to correlate with cell cycle, and these correlations can mask
the existence of cell sub-populations [14] especially in rapidly
cycling cells (e.g., cancer or stem cells), where a greater fraction
of variability is attributable to cell cycle.

Accession codes

mESc and liver data have been deposited at ArrayExpress:
E-MTAB-3749 and E-MTAB-3707. The code for the implementation
of the cell-cycle predictors is available on GitHub: https://github.-
com/PMBio/cyclone.
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