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Synopsis/Summary:  40 words 

Hypoxia-inducible factor 2α (HIF2α) is up-regulated in NAFLD progression. Experiments performed in mice 

carrying hepatocyte-specific deletion of HIF2α provide the first mechanistic evidence, reinforced by 

analyses on cancer cells and human samples, that HIF2α is critical for NASH-related liver carcinogenesis.  
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ABSTRACT  (max 260 words) 

Background & Aims: Hypoxia and HIFs (hypoxia inducible factors) are involved in chronic liver 

disease progression. We previously showed that hepatocyte HIF-2α activation significantly 

contributed to NAFLD progression in experimental animals and human patients. In this study we 

investigated mechanistically, using an appropriate genetic murine model, the involvement of 

hepatocyte HIF-2α in experimental NASH-related carcinogenesis.  

Methods: The role of HIF-2α, was investigated by morphological, cellular and molecular biology 

approaches in: a) mice carrying hepatocyte-specific deletion of HIF-2α (HIF-2α-/- mice) undergoing 

a NASH-related protocol of hepatocarcinogenesis; b) HepG2 cells stably transfected to overexpress 

HIF-2α; c) liver specimens from NASH patients with HCC.   

Results: Mice carrying hepatocyte specific deletion of HIF-2α (hHIF-2α-/-) showed a significant 

decrease in the volume and number of liver tumors as compared to wild type littermates. These 

effects did not involve HIF-1α changes and were associated with a decrease of cell proliferation 

markers PCNA and Ki67. In both human and rodent NAFLD-related tumors, HIF-2α levels were 

strictly associated with hepatocyte production of SerpinB3, a mediator previously shown to 

stimulate liver cancer cell proliferation through Hippo/YAP/c-Myc pathway. Consistently, we 

observed positive correlations between the transcripts of HIF-2α, YAP and c-Myc in individual HCC 

tumor masses, while HIF-2α deletion down-modulated c-Myc and YAP expression without 

affecting ERK1/2, JNK and AKT-dependent signaling. In vitro data confirmed that HIF-2α 

overexpression induced HepG2 cell proliferation through YAP-mediated mechanisms. 

Conclusions: These results indicate that the activation of HIF-2α in hepatocytes has a critical role in 

liver carcinogenesis during NASH progression suggesting that HIF-2α-blocking agents may serve as 

putative novel therapeutic tools.  

Keywords: HIF-2α; NAFLD; NASH; hepatocellular carcinoma.   

Abstract word count: 257 
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Non-alcoholic fatty liver disease (NAFLD) is emerging as the most common cause of chronic liver 

disease (CLD) worldwide with a global prevalence of 25% in the general population and even 

higher among obese individuals and/or patients affected by Type II diabetes mellitus. (1-3)  

Approximately 20-30% of NAFLD patients can develop non-alcoholic steatohepatitis (NASH), which 

is characterized by hepatocyte injury and lobular inflammation and can progress to fibrosis, 

cirrhosis and liver failure (1,2). NAFLD patients also show a steadily rising trend to develop 

hepatocellular carcinoma (HCC) (4,5), the most common primary liver cancer (70%–90%), 

representing the 4th leading cause of cancer mortality worldwide and with a minority of patients 

surviving at 5 years from diagnosis, despite treatment.  Moreover, NAFLD-associated HCC can also 

arise in non-cirrhotic liver, (4,5) a worrisome issue considering the high prevalence of NAFLD in the 

general population and the lack of validated therapy for this disease. (1,2)  

In recent years, growing evidence has shown that hepatic hypoxia is involved in CLD progression 

and in HCC development by sustaining angiogenesis, fibrogenesis and possibly inflammatory and 

autophagy responses. (7-9) HCC is considered as one of the most hypoxic tumor with a reported 

median oxygen tension lower than 1.0%. (10,11) The cellular response to hypoxia mainly relays on 

heterodimeric transcriptional HIFs (hypoxia-inducible factors). These factors consist of an oxygen-

sensitive α-subunit (HIF-1α or HIF-2α) and a constitutive β-subunit (HIF-1β). (12,13) Although in the 

liver HIF-1α and HIF-2α can modulate common transcriptional programs, they often up-regulate 

distinct and non-overlapping responses. (12,13) Studies in HCCs with different etiology and HCC cell 

lines indicate that HIF-1α activation may contribute to tumor development by stimulating cell 

proliferation, metabolic changes, angiogenesis, invasion and metastasis. (8,10,11) Furthermore, HIF-

1α overexpression associates with a poor prognosis and HCC resistance to therapy. (10,14) 

Conversely, the contribution of HIF-2α to HCC development is less well characterized in relation to 

conflicting results concerning its impact on liver carcinogenesis, particularly on cell survival and 
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proliferation, (15-19)  and also as a consequence of using not-mechanistic/genetic in vivo 

experimental approaches. (20) Furthermore, it has been suggested that the knockdown of HIF-1α 

enhances the expression of HIF-2α and vice-versa. (19) In the setting of NAFLD, it has been shown 

that HIF-2α, but not HIF-1α, can up-regulate genes involved in fatty acid synthesis/uptake and lipid 

storage, while it down-regulates those involved in fatty acid catabolism. (21,22)  In a previous study 

we showed that hepatocyte-specific HIF-2α deletion resulted in a significant decrease of fatty liver, 

parenchymal injury, lobular inflammation in NAFLD and ameliorated the disease progression 

towards fibrosis. (23) More recently, a study performed on a limited number of NASH patients 

carrying HCC, has proposed that HIF-2α expression may be increased in NAFLD-related HCC vs HCC 

of different etiology (20). In the present study, by employing mice carrying hepatocyte conditional 

deletion of HIF-2α and additional in vitro approaches, we provide the first mechanistic and 

unequivocal evidence that HIF-2α plays a critical role in the development of NASH-related 

carcinogenesis by promoting liver cancer cell proliferation. Finally, we also provide confirming 

evidence that HIF-2α expression is up-regulated in a high percentage of human patients carrying 

NASH-related HCC.      
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Results  

Hepatocyte-specific deletion of HIF-2α reduces the development of NAFLD-associated HHCs 

In order to mechanistically investigate the role of HIF2α in the development of NAFLD-related 

primary liver cancer we employed mice carrying a hepatocyte-specific HIF-2α deletion (hHIF-2α–/– 

mice) already used in a previous study that unequivocally outlined the relevant role of HIF2α in 

either human or murine NAFLD progression. (23)  In the present study these mice and related 

control littermates were submitted to an established murine model of NAFLD-associated 

hepatocarcinogenesis based on a single injection of diethyl-nitrosamine (DEN) at 2 weeks of age 

and the subsequent induction of steatohepatitis by the administration of a choline-deficient L-

aminoacid-defined (CDAA) diet  for 25 weeks (Figure 1A). (24)  The mouse HCC arising in Wt mice 

(characterized by nuclear atypia, pleomorphism, and increased mitotic activity, resembling human 

Edmonson-Steiner G1/G2 grading) showed  diffuse parenchymal cell fat accumulation (Figure 

1B,C) consistent with the features of the steatohepatitic HCC often detected among NAFLD 

patients. (25) Although tumor cell morphology was not appreciably modified, hematoxylin/eosin 

staining showed a reduced fatty infiltration in liver tumors from mice lacking HIF-2α (Figure 

1B,C).The analysis of HIF-2α protein levels in individual mouse HCC from Wt mice exposed to 

DEN/CDAA treatment revealed that HIF-2α expression was upregulated in cancer cells as 

compared to healthy livers of wild type mice fed with the CSAA control diet (Wt CSAA) (Figure 2A). 

hHIF-2α–/– mice submitted to DEN/CDAA protocol developed mouse HCC with a HIF-2α mRNA and 

protein content greatly lower than those from Wt mice (Figure 2B,C), as expected. Similarly, 

neoplastic cells showed a reduced expression of HIF-2α-dependent genes such as CXCR4 and EPO 

(Figure 2D-E). On the other hand, the transcripts and protein levels of HIF-1α as well as the 

transcripts levels of HIF-1α-related pro-angiogenic factors such as VEGF-A, VEGFR2 and VE-

cadherin, were not significantly different between liver tumors from hHIF-2α–/– and Wt mice 

(Figure 3A,B,C). Moreover, no significant change was observed concerning protein levels of CD105 

(endoglin), a pro-angiogenic factor, between tumors from hHIF-2α–/– and Wt mice (Figure 3D). 

These data overall suggest that hepatocyte-specific HIF-2α deletion does not result in major 

changes in angiogenic response.  Interestingly, both the number and the size of mouse HCC that 

developed in hHIF-2α–/– mice were reduced by 45% and 48%, respectively, as compared to those 

developed in the liver of Wt mice (Figure 4A,B). Additionally, the extracellular matrix of mouse 

HCCs originating in hHIF-2α–/– mice also had a significant lower prevalence of α-SMA positive 
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myofibroblasts as compared to that of the tumors arising in Wt control mice (Figure 5A). This was 

accompanied by a significant reduction in the mRNA levels of MMP-9 and α-SMA (Figure 5B,C) and 

by a trend for decreased collagen Sirius Red staining (Figure 5D), despite the differences did not 

reach statistical significance. Altogether, these data suggested that the hepatocyte-specific 

deletion of HIF-2α might affect tumor growth and impact on the formation of extracellular matrix 

within the tumor, making the microenvironment less favorable for tumor progression.  On the 

other hand, parameters related to inflammatory response were found to be significantly 

decreased in the tumors detected in  hHIF-2α–/–  mice vs those in Wt mice, including macrophage 

infiltration, detected by immunohistochemistry (IHC) (Figure 6A)  and transcript levels for F4/80 

(Figure 6B), as well as transcript levels for PD-L1 and IRF4 (Figure 6 C,D). These results, once again 

suggest that in hHIF-2α–/– mice the tumor microenvironment might be less favorable for tumor 

progression.  

 

Hepatocyte-specific HIF-2α deletion affects HCC proliferative capacity 

On the basis of the relevant reduction of both the number and the size of tumor masses that 

developed in hHIF-2α–/– mice we next investigated whether this effect might be related to a 

modulation in the proliferative capacity of cancer cells. Indeed, literature data indicate that in non-

liver tumors HIF-2α has a greater oncogenic capacity than HIF-1α, being able to promote tumor 

proliferation, stemness and radio- and chemo-resistance. (16,19,26-28) The transcriptional analysis of 

the specimens obtained from tumor and peritumoral tissue of Wt mice showed that the 

transcripts of the cell proliferation markers PCNA (proliferating cell nuclear antigen) and nuclear 

antigen Ki67 were significantly increased in the tumor masses (Figure 7A,C) and positively 

correlated with that of HIF-2α (Figure 7B,D). Consistently, the lack of HIF-2α resulted in a 

decreased PCNA and Ki67 expression in mouse HCCs, without affecting the expression of these 

markers in peritumoral areas (Figure 7A,C). IHC analysis confirmed a selective reduction in PCNA 

staining (Figure 8A) as well as a significant decrease in transcript levels for Cyclin E1 (CCNE1) and 

Cyclin E2 (CCNE2) in the tumors from hHIF-2α–/– mice  (Figure 8B).  At protein level, PCNA 

reduction was accompanied by a concomitant increase in the cellular content of the cell cycle 

inhibitors p53 and p21 (Figure 9A-C). Previous studies have evidenced that HIF-2α can positively 

regulate c-Myc expression which, in turn, directly stimulates PCNA production in HCC cells under 

hypoxic conditions, thus promoting cancer cell proliferation and HCC resistance to the tyrosine 
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kinase inhibitor Sorafenib. (29,30) Accordingly, we observed that c-Myc mRNA levels in mouse HCCs 

from Wt mice positively correlated (r=0.72; p= 0.008; 95% CI: 0.25-0.92) with those of HIF-2α 

(Figure 9D). In line with the reduction in cell proliferation, c-Myc mRNA and protein levels were 

significantly lowered in the tumors developed in hHIF-2α–/– mice (Figure 9E,F). Such an effect was 

apparently unrelated to the modulation of signal pathways involving ERK1/2, JNK and AKT (Figure 

10A-C).  

 

HIF-2α overexpression supports HepG2 cell growth in vitro   

To investigate the role of HIF-2α in HCC growth we performed cell culture experiments employing 

HepG2 cells stably transfected in order to overexpress HIF-2α (H/2α cells) as well as related 

control cells transfected with the empty pCMV6 vector (H/V6 cells). Figure 11A shows that in H/2α 

cells HIF-2α protein levels increased in a time-dependent manner along with transcripts of HIF-2α 

target genes such as the chemokine receptor CXCR4 and EPO (Figure 11B). Furthermore, BrdU 

incorporation assay, cell count and crystal violet assay indicated that H/2α cells had a more 

proliferative phenotype as compared to H/V6 cells (Figure 11C-E). This was further confirmed by 

flow cytometry analysis of cell cycle, which outlined a significant shift towards the S phase in the 

H/2α cells (Figure 11F). These changes were accompanied by increased expression of PCNA and c-

Myc oncogene in H/2α cells as compared to control H/V6 cells and by a parallel reduction in the 

levels of cell cycle inhibitor p53 and p21 (Figure 11A). 

 

HIF-2α over-expression associates to SerpinB3 production in either human or experimental 

NAFLD-associated HCC    

In order to confirm and detail the involvement of HIF2α in NAFLD-associated liver carcinogenesis 

we next performed IHC analysis on human specimens obtained from a cohort of 27 well 

characterized NAFLD-derived HCC patients (G2 and G3 grading) (Figure 12A). In these tumors HIF-

2α staining was detectable in 67% of the samples (18 out 27) with 11 samples (61%) showing 

intense positivity and 7 (39%) moderate staining (Figure 12A). Furthermore, 9 out of 11 (82%) HCC 

samples with intense HIF-2α staining in the cytoplasm were also characterized by HIF-2α nuclear 

positivity, although the number of positive nuclei varied within patients and in different areas of 

the same specimens. Weak HIF-2α nuclear positivity was occasionally seen in some samples from 
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tumors displaying moderate HIF-2α cytoplasm positivity. Conversely, the nuclei of non-

parenchymal cells, mainly inflammatory cells or myofibroblast-like cells in fibrotic septa, were 

negative for HIF-2α (Figure 12A). HIF-2α positivity was prevalent in HCCs developing in cirrhotic 

livers (14 out of 16; 88%) as compared to HCCs arising in non-cirrhotic livers (3 out of 10; 30%) and 

HIF-2α nuclear expression was strongly associated (OR=16.33; 95% CI 2.2-121.5; p=0.0085) with 

the presence of cirrhosis (Figure 12B). HIF-2α expression in HCCs was also associated with a trend 

for lower survival and an earlier tumor recurrence as compared to patients with undetectable HIF-

2α (Figure 12C,D). However, these differences did not reach the statistical significance likely 

because the limited number of patients recruited.  

IHC analysis of NAFLD-related HCCs also showed a strict association between HIF-2α and the 

expression of SerpinB3 (SB3), a HIF-2α-dependent cysteine-proteases inhibitor that has been 

involved in stimulating proliferation, epithelial-to-mesenchymal transition (EMT) and invasiveness 

in liver cancer cells. (31)  In fact, 10 out 11 (90%) tumors positive for HIF-2α displayed intense (n=7) 

or moderate (n=3) cytoplasmic staining for SB3 (Figure 13A), whereas the remaining HIF-2α-

negative specimens were largely negative (n= 11) or weakly positive (n=5) for SB3.   In the same 

way, we found a strong linear correlation between HIF-2α and SB3 mRNAs (r=0.61; p=0.03; 95%CI 

0.06-0.87) in the individual NAFLD-related HCC induced in Wt mice (Figure 13B), while SB3 levels 

were significantly decreased at both transcript and protein levels in the tumors from hHIF-2α–/– 

mice (Figure 13C,D). 

 

YAP influences c-Myc activity in NAFLD-related HCCs 

Growing evidence points out the involvement/activation of Hippo pathway in liver carcinogenesis. 

(32-37) In particular, the Hippo-dependent transcriptional factor YAP (Yes-associated protein) has 

been shown to contribute to c-Myc activation in HCCs. (33) According to Turato and co-workers (38) 

SB3 can modulate c-Myc activity by inhibiting its degradation by calpain as well as by stimulating 

the Hippo pathway through an enhanced expression of YAP. Since we have observed that SB3 up-

upregulation was strictly linked to HIF-2α stimulation in both human and rodent NAFLD-related 

HCCs, we next investigated whether YAP might account for high expression of c-Myc in WT 

tumors. We observed that YAP transcripts in individual NAFLD-derived HCC developed in WT mice 

directly correlated (r=0.666; p=0.013; 95% CI: 0.18-0.89) with HIF-2α expression, whereas a 

significant lowering of YAP protein levels was evident in tumors from mice lacking HIF-2α (Figure 
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14A,B) in parallel with SB3 down-modulation. To better investigate the involvement of YAP in 

supporting HIF-2α-mediated carcinogenesis we went back to HepG2 cells stably overexpressing 

HIF-2α (H/2α cells).  In this setting we observed that YAP was up-regulated in a time dependent 

manner in H/2α cells (Figure 14C) and that the treatment of H/2α cells with a specific YAP siRNA 

was able to reduce the expression of c-Myc at the levels observed in control cells receiving 

scrambled siRNA (H/V6 SC) (Figure 14D), confirming involvement of YAP in c-Myc expression by 

HIF-2α.  From these data we propose that the activation of hepatocyte HIF-2α has a critical role in 

liver carcinogenesis during NAFLD evolution by promoting c-Myc activation through pathways that 

involves SB3 and Hyppo signaling.  

 

Discussion  

 Hypoxia and HIFs, particularly HIF-1α, have been proposed to play an important role in the 

progression of CLD and in the development of HCC (7-11,14) but the actual contribution of HIF-2α to 

HCC development is by far less well characterized. In particular, conflicting results have been 

reported on the impact of HIF-2α on liver carcinogenesis, particularly on cell survival and 

proliferation. (15-19) Furthermore, although a previous study has proposed HIF-2α involvement in 

NAFLD-related HCC, (20) no definitive evidence is so far available on the actual contribution of HIF-

2α in the processes leading to liver carcinogenesis.  

 In the present study we took advantage of mice carrying the selective deletion of 

hepatocyte HIF-2α (hHIF-2α–/–) to mechanistically investigate the role of HIF-2α in NAFLD-related 

HCC.  The use of these mice has previously allowed the demonstration of the critical contribution 

of hepatocyte HIF-2α in the evolution of experimental NAFLD by decreasing parenchymal injury, 

fatty liver, lobular inflammation, and the development of liver fibrosis. (23)  

In this work the induction of HCCs in hHIF-2α–/– mice by DEN/NAFLD protocol has shown that the 

lack of parenchymal HIF-2α halves the number and the size of mouse HCCs as compared to Wt 

mice.  Such an effect is associated with a parallel lowering in the expression of proliferative 

markers PCNA and Ki67 along with an induction of p21 and p53 in cancer cells, indicating that 

hepatocyte HIF-2α can directly promote cancer cell proliferation and survival. These data are 

supported by in vitro experiments revealing that HepG2 cells stably overexpressing HIF-2α (H/2α 

cells) display a more proliferative phenotype compared to control cells and a significant shift 

towards the S phase of the cell cycle. These results are in line with literature data linking HIF-2α 
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with an enhanced tumor aggressiveness through the promotion of cell proliferation, stemness and 

radio- and chemo-resistance. (27,28,39-41) Nonetheless we cannot exclude that besides the boosting 

of cell proliferation, additional mechanisms might be involved in the pro-carcinogenic action of 

HIF-2α, as we have previously observed that hepatocyte HIF-2α suppression ameliorates hepatic 

inflammation and fibrosis in NASH livers. (23) Indeed, steatohepatitis not only promotes 

carcinogen-induced HCCs, (42) but also leads to their spontaneous development in mice fed with 

NASH-inducing choline deficient diet. (43,44) Moreover, the lack of hepatocyte HIF-2α can reduce 

both the inflammatory response, as confirmed in this study in HCC from hHIF-2α–/–  mice (see 

Figure 6A-D), and the recruitment of cancer associated myofibroblasts which contribute to the 

development of a permissive tumor microenvironment. (45)  

So far, the mechanisms by which HIF-2α can support HCC growth have not been fully characterized 

because of the interplay between HIF-1α and HIF-2α observed in HCC cell lines, (46,47) and the fact 

that, depending on the cell context, HIF-2α overexpression could have anti-proliferative and pro-

apoptotic actions in HCCs. (19) HIF-2α up-regulation has been reported as a common mechanism in 

the development of HCC resistance to the multi-kinase inhibitor Sorafenib. (48) In these settings, 

HIF-2α promoted cell survival by stimulating the signaling of TGF-α/ EGFR pathway and by inducing 

cyclin D1, β-catenin and c-Myc expression. (48) Here we show that, at variance with what observed 

in HCC spheroids, (46) the up-regulation of HIF-2α in NAFLD-derived HCCs does not affect HIF-1α 

levels. Moreover, in both HepG2 cells and mouse HCCs HIF-2α expression associates with a 

stimulation in c-Myc production. Such an effect does not seem to involve signaling through AKT, 

ERK1/2, JNK pathways, but appears mediated by YAP signaling. We observed, in fact, that YAP and 

HIF-2α transcript levels were positively correlated, and that hepatocyte HIF-2α deletion 

significantly affected both YAP and c-Myc content of murine tumors. Moreover, in tumors from 

hHIF-2α–/– mice, we detected a significant decrease of transcript levels of CCNE1 and CCNE2, two 

cyclins that have been described to have an important role for HCC progression and to 

synergistically impair overall survival in HCC patients (49). In line with these findings, YAP is up-

regulated in H/2α cells. The capacity of YAP to sustain c-Myc activity in HCCs is consistent with the 

report by Xiao et al. (33) who observed that c-Myc and YAP proteins are closely correlated in human 

liver cancers with YAP promoting c-Myc transcriptional output through c-Abl. Furthermore, Ma 

and coworkers have recently reported that HIF-2α stimulates colon cancer cell growth by up-

regulating YAP activity through a mechanism independent from Src, PI3K, ERK1/2, or MAPK 

pathways. (40) On these bases, we propose that HIF-2α activation can promote HCC growth by 
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sustaining YAP/c-Myc interaction. Such a hypothesis does not exclude other pro-tumorigenic 

actions of HIF-2α as, for instance, the stimulation of long non-coding RNA NEAT1 (Nuclear-

Enriched Abundant Transcript 1) enzyme, which has recently been implicated in sustaining EMT 

and migration of HCC cells. (41) Concerning the mechanisms by which HIF-2α can modulate YAP, we 

have previously shown a role for SB3.(38) Although SB3 is virtually undetectable in normal human 

livers, its expression is well evident in liver biopsies from patients with CLD and in a fraction of 

HCCs. (50,51) In HCC cells SB3 is specifically regulated by HIF-2α, (31) while, on its turn, SB3 enhances 

HIF-2α transcriptional activity by promoting its stabilization through the conjugation with NEDD8 

(Neural precursor cell Expressed Developmentally Downregulated-8) induced by NAE1 (NEDD8-E1 

activating enzyme). (26)  

 

Data obtained in human NAFLD-related HCC specimens support the observations in experimental 

models.  We have detected HIF-2α over-expression in two third of human HCC developing in 

NAFLD patients with a strong positive association (OR=16.33) between HIF-2α nuclear localization 

and HCC development in cirrhotic livers, essentially confirming data from a previous study.(20) Of 

interest, HIF-2α activation and nuclear staining is appreciable already at the early stage of the 

disease (F0-F1) in about 70% of the NAFLD patients and a similar prevalence is maintained with 

disease progression to fibrosis/cirrhosis (F3-F4). (23) Our data also suggest that sustained high HIF-

2α expression associates with a trend for shorter survival and earlier tumor recurrence in line with 

the poor patient outcome observed in others HIF-2α expressing tumors (27,28,39) and in agreement 

with the decreased survival previously reported in NAFLD-related HCC patients. (20)   

Additional data obtained in the cohort of NAFLD-related HCC analyzed in this study indicate that 

intranuclear HIF-2α associated with an enhanced expression of SB3. Such a prevalence of SB3 

positivity in human HCC is higher than that of 22% previously observed in a group of HCCs with 

other etiologies, mainly viral, (38) indicating that SB3 induction represents a specific response to 

HIF-2α activation in NAFLD-associated HCCs. Consistently, SB3 is significantly down-regulated in 

mouse HCCs from hHIF-2α-/- mice in parallel with the lowering of both YAP and c-Myc.  This 

suggests that indeed SB3 might be involved in modulating HIF-2α/YAP/c-Myc axis in order to 

sustain cell growth in NAFLD-associated HCCs. Nonetheless, we cannot exclude alternative 

mechanisms since, for example, the orphan G protein-coupled receptor GPRC5A has been shown 

to mediate HIF-2α/YAP interaction in colon cancer cells. (52)  
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In conclusion, our results indicate that HIF-2α over-expression seems to be a specific feature in 

NAFLD-related HCCs and might significantly contribute to sustain the tumor development in 

NAFLD patients. These observations, along with the notions that interference with HIF-2α 

counteract HCC resistance to Sorafenib (53) and radiation treatment, (54) suggest the possibility of 

using HIF-2α-blocking drugs as a therapeutic intervention for a tumor that, at present, has few 

curative options.  

 

Material & Methods 

Materials: 

Enhanced chemiluminescence (ECL) reagents and nitrocellulose membranes (Hybond-C extra)  

were from Amersham Pharmacia Biotech Inc. (Piscataway, NJ, USA). The following antibodies were 

used: anti-HIF-1α (NB100-479)  and anti-HIF-2α (NB100-122) from Novus Biologicals (Cambridge, 

UK); anti CD105 (PA5-12511), anti PCNA (PA5-27214) and anti-SB3 (PA5-30164)  from 

ThermoFisher Scientific (Rockford, IL, USA); anti-α-SMA (M0851) was from DAKO (Agilent, St Clara, 

CA, USA); anti-SB3 (GTX32866) from GeneTex (Irvine, Ca, USA); anti-F4/80 (14-4801-82) from E-

Bioscience (Affymetrix, St Clara, CA, USA); anti-YAP(sc-15407), anti-c-MYC (sc-788), anti-SB3 

(sc21767), anti-p53 (sc-6243), anti-p21 (sc-817), anti-ERK (sc-94), anti-JNK (sc-571), anti-vinculin 

(sc-73614), anti-p-Akt1/2/3 (sc-7985-R), anti-Akt1/2/3 (sc-8312) from Santa Cruz Biotechnology; 

anti-P-ERK (#4696), anti-P-JNK (#9255) from Cell Signaling Technology; anti-β-actin (A5441) from 

Sigma Aldrich. HiPerfect Transfection Reagent was from Qiagen, Lipofectamine 2000 (Invitrogen-

Life Technologies), Plasmid DNA purification NucleoBond XtraMIDI (Macherey-Nagel, Germany), 

pCMV6-Entry vectors (Origene, Rockville, MD).  

 

Human Subjects  

For this study we analyzed liver specimens from 27 NAFLD patients with HCC (Edmonson-Steiner 

G2 and G3 grade) referring to the Division of Gastro-Hepatology of the University of Turin. All 

samples were collected at the time of resection or transplantation. All subjects gave informed 

consent to the analysis and the study protocol, conformed to the ethical guidelines of the 1975 

Declaration of Helsinki, was approved by the ethics’ committee of the Azienda Ospedaliera 
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Universitaria Città della Salute, Torino, Italy. The clinical and biochemical features of the patients 

are reported in Table 1.  

 

Animal experimentation 

Mice carrying a hepatocyte-specific deletion of HIF-2α (hHIF-2α-/- mice) were obtained by breeding 

HIF-2αfl/fl C57BL/6 mice with mice on the same genetic background expressing the Cre-

recombinase under the control of the Albumin promoter (Alb/Cre+/+ mice) (Jackson Laboratories, 

Bar Harbor, Maine, USA). (23) NAFLD-associated liver carcinogenesis was induced, in male hHIF-2α-/- 

mice (n=6) and related control sibling littermates not carrying HIF-2α deletion (Wt, n=9), with an 

established experimental protocol involving a single administration of DEN (diethyl nitrosamine, 

25 mg/kg bw, i.p.) at the age of 2 weeks followed by the feeding with a CDAA (choline-deficient L-

aminoacid-defined) diet (Laboratorio Dottori Piccioni, Gessate, Italy) for 25 weeks starting from 

the age of 6 weeks. (24)  At the time of the sacrifice the livers of the animals were collected, 

measured, photographed and the number of visible HCC tumor masses on the surface of the livers 

were counted and measured with a caliper. For each animal the two biggest tumor masses were 

isolated and collected for specific analysis. In preliminary experiments eight weeks old male hHIF-

2α-/- mice (n=8) and related control sibling littermates not carrying HIF-2α deletion (Wt, n=8) were 

fed with the corresponding choline sufficient diet (CSAA) for 12 or 24 weeks. The experiments 

complied with national ethical guidelines for animal experimentation and the experimental 

protocols were approved by the Italian Ministry of Health. 

 

Cell lines and culture conditions  

HepG2 cells (American Type Culture Collection, USA) were used and maintained in Dulbecco's 

modified Eagle's medium supplemented with 10% fetal-bovine serum, 100 U/ml penicillin, 100 

μg/ml streptomycin and 25 μg/ml amphotericin-B, as previously reported. (31) The pCMV6-based 

mammalian expression vectors, empty (used as a control) and encoding HIF-2α (OriGene, 

Rockville, MD), were used in order to generate and select HepG2 cells stably overexpressing HIF-

2α (31). HepG2 cells were seeded and then transfected 24 hr later with 10 μg of each vector using 

Lipofectamine 2000 (Invitrogen, Carlsbad, CA). HIF-2α expression of the generated stable 
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transfectants was carefully characterized, after which the cell lines carrying the empty vector 

(H/V6) and overexpressing HIF-2α (H/2α) were then used for the experiment described. 

H/2α and control cells containing the empty pCMV6 vector (H/V6) were grown in Dulbecco’s 

modified Eagle’s medium under normoxic conditions to obtain the desired sub-confluence level 

(65-70%).  

 

Western Blot analysis   

Total cell/tissue lysates, obtained as previously described (23,26,31), were subjected to sodium 

dodecyl sulfate-polyacrylamide gel-electrophoresis on 12%, 10% or 7.5% acrylamide gels, 

incubated with desired primary antibodies, then with peroxidase-conjugated anti-mouse or anti-

rabbit immunoglobulins in Tris-buffered saline-Tween containing 2% (w/v) non-fat dry milk and 

finally developed with the ECL reagents according to manufacturer’s instructions. Sample loading 

was evaluated by reblotting the same membrane with antibodies raised against β-actin or vinculin. 

 

Quantitative real-time PCR (Q-PCR)  

RNA extraction, complementary DNA synthesis, quantitative real-time PCR (Q-PCR) reactions were 

performed on cells samples, murine liver specimens and on two HCC tumor masses isolated from 

each murine liver as previously described (23,26). mRNA levels were measured by Q-PCR, using the 

SYBR® green method as described. (23) More details and oligonucleotide sequences of primers used 

for Q-PCR are available in Table 2.     

Immunohistochemistry, Sirius Red staining and histo-morphometric analysis  

Paraffin-embedded human liver specimens and/or murine liver specimens used in this study were 

immuno-stained as previously reported. (23,26,31) Briefly, paraffin sections (4 μm thick), mounted on 

poli-L-lysine coated slides, were incubated with the monoclonal antibody against HIF-1α (dil. 1:100 

v/v), HIF-2α (dil. 1:200 v/v), α-SMA (dil. 1:400, v/v), PCNA (dil. 1:400 v/v), F4/80 (dil. 1:500 v/v), 

SB3 (dil. 1:50 v/v). After blocking endogenous peroxidase activity with 3% hydrogen peroxide and 

performing microwave antigen retrieval, primary antibodies were labeled by using EnVision, HRP-

labeled System (DAKO) and visualized by 3’-diaminobenzidine substrate. Collagen deposition was 
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evidenced by Picro-Sirius Red staining as previously described (23) and quantification of fibrosis in 

the murine liver was performed by histo-morphometric analysis using a digital camera and a bright 

field microscope to collect images that were then analyzed by employing the ImageJ software. 

 

Cell proliferation assays  

Proliferation of H/V6 or H/2α cells was evaluated by crystal violet assay by seeding cells in a 96-

well plate at a density of 104 cells per well up to 72 hrs. At the desired time, the medium was 

removed, and the cells were washed twice with phosphate-buffered saline, once with distilled 

water and then stained with 0.5% (w/v) crystal violet solution for 20 min. After washing with 

water, the crystal violet was solubilized with 50 μl of 10% acetic acid solution, and absorbance was 

measured at 595–650 nm using a microplate reader (SpectraMAX M3; Molecular Devices, 

Sunnyvale, CA, USA). The proliferative capacity of H/V6 or H/2α cells was further confirmed by 

Bromo deoxyuridine (BrdU) incorporation assay using a colorimetric kit supplied by Roche 

Diagnostic (11647229001). 

 

Cell cycle analysis 

Cell cycle analysis was performed essentially as recently reported. (26) Briefly, H/V6 and H/2α cells 

were seeded in culture plates (105 cells per well, 35 mm Ø), up to 72 hrs. At indicated time point 

cells were trypsinized, centrifuged at 1000 rpm for 10 min and fixed with ethanol (ET-OH 70%), 

then treated with RNAse for 30 min (final concentration 0.4 mg/ml) and stained with propidium 

iodide (final concentration 0.184 mg/ml). The cell cycle was analysed by flow cytometry (Accuri C6 

flow cytometer, Becton & Dickinson, Milan, Italy) and quantified with FCS Express 4 Flow Research 

Edition software.  

 

YAP Silencing by Small RNA Interference 

RNA interference experiments to knockdown YAP expression in H/V6 or H/2α were performed 

using siRNA duplex and HiPerfect Transfection reagent (Qiagen Italia, Milano, Italy) according to 
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manufacturer’s instructions up to 72 hrs, as previously described. (34) The following target 

sequence was used: 

YAP: 5’CAGGTGATACTATCAACCAAA 3’ 

 

Data analysis and statistical calculations    

Statistical analyses were performed by GraphPad Prism 6.01 statistical software (GraphPad 

Software, San Diego, CA, USA) using one-way ANOVA test with Tukey’s correction for multiple 

comparisons, Student’s t test or Mann-Whitney test for non-parametric values. Significance was 

taken at the 5% level. Normality distribution was assessed by the Kolmogorov-Smirnov algorithm. 

Associations were estimated using Pearson correlation and Fisher's exact test for the contingency 

analysis.  Kaplan–Meier curves of survival and time to recurrence were estimated using log-rank 

(Mantel–Cox) test. The data from cell culture experiments represent means ± SEM of at least three 

independent experiments. 

All authors had access to the study data and had reviewed and approved the final manuscript. 
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Figure Legends  

Figure 1.  Experimental NAFLD/NASH-related HCC: the DEN-CDAA murine model. Graphic 

representation of the rodent model of NAFLD-associated hepatocarcinogenesis based on a single 

injection of diethyl-nitrosamine (DEN) at 2 weeks of age and the subsequent induction of 

steatohepatitis by the administration of a CDAA diet for 25 weeks (A). Hematoxylin Eosin staining 

performed on paraffin-embedded HCC tumor masses from wild type mice (Wt) (n = 9) or from 
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hepatocyte specific HIF-2α knock-out mice (hHIF-2α–/–) (n = 6). Original magnification as indicated. 

(B,C) 

 

Figure 2. Validation of the DEN-CDAA hepatocyte-specific deletion of HIF-2α murine model.  WB 

analysis of HIF-2α performed in healthy liver of 8 wild type mice fed with control diet (Wt CSAA) or 

in HCC tumor masses from 5 wild type mice treated with the DEN-CDAA protocol (Wt DEN-CDAA) 

(A). HIF-2α expression analyzed by Q-PCR (B) or WB analysis (C) in HCC tumor masses from 9 wild 

type mice (Wt) or from 6 HIF-2α knock-out mice (hHIF-2α–/–). qPCR analysis of CXCR4 (D) and EPO 

(E) transcripts performed in Wt or in hHIF-2α–/–. The mRNA values are expressed as fold increase 

over control values after normalization to the TBP gene expression. Results are expressed as 

means ± SD. Boxes include the values within 25th and 75th percentile, whereas horizontal bars 

represent the medians. The extremities of the vertical bars (10th-90th percentile) comprise 80% of 

the values. Statistical differences were assessed by Student’s t test or Mann-Whitney test for non-

parametric values (B,D,E). For the WB analysis, BIORAD Quantity One software was use to perform 

the densitometric analysis. Equal loading was evaluated by re-probing membranes for Vinculin or 

β-actin. Statistical differences were assessed by Student’s t test or Mann-Whitney test for non-

parametric values (A, C). 

 

Figure 3. Hepatocyte-specific deletion of HIF-2α does not affects HIF-1α  expression. Liver 

expression of HIF-1α  evaluated by quantitative real-time PCR (Q-PCR) (A) and 

immunohistochemical analysis (B) in HCCs from 9 wild type mice (Wt) or from 6 HIF-2α knock-out 

mice (hHIF-2α–/–). Original magnification as indicated. Gene expression of VEGF, FLK1 and ve-

cadherin evaluated by quantitative real-time PCR (q-PCR) in HCC tumor masses from 9 Wt mice or 

from 6 hHIF-2α–/– mice (C). The mRNA values are expressed as fold increase over control values 

after normalization to the TBP gene expression. Results are expressed as means ± SD. Boxes 

include the values within 25th and 75th percentile, whereas horizontal bars represent the 

medians. The extremities of the vertical bars (10th-90th percentile) comprise 80% of the values. 

Statistical differences were assessed by Student’s t test or Mann-Whitney test for non-parametric 

values. ns: not significant (C). WB analysis of cd105 protein levels in HCCs from 7 Wt mice or from 

5 hHIF-2α–/– mice (D). For the WB analysis, BIORAD Quantity One software was use to perform the 

densitometric analysis. Equal loading was evaluated by re-probing membranes for β-actin. 
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Statistical differences were assessed by Student’s t test or Mann-Whitney test for non-parametric 

values. ns: not significant. 

 

Figure 4. Hepatocyte-specific deletion of HIF-2α significantly affects development of 

experimental liver tumors. Reduction of number and of neoplastic mass measured in HCC tumors 

(indicated by arrows) from 9 wild type mice (Wt) or 6 from HIF-2α knock-out mice (hHIF-2α–/–)  (A, 

B). Results are expressed as means ± SD. Boxes include the values within 25th and 75th percentile, 

whereas horizontal bars represent the medians. The extremities of the vertical bars (10th-90th 

percentile) comprise 80% of the values. Statistical differences were assessed by Student’s t test 

(B). 

 

Figure 5. Hepatocyte-specific deletion of HIF-2α significantly affects liver fibrosis. Liver fibrosis 

was evaluated morphologically in HCC tumor masses from 9 Wt mice or from 6 hHIF-2α–/– mice, by 

IHC analysis of α-SMA (A) and by Sirius Red Staining (D). ImageJ software analysis was performed 

to evaluate the amount of fibrosis. Data in graphs are expressed as means ± SEM.  Statistical 

differences were assessed by Student’s t test or Mann-Whitney test for non-parametric values. ns: 

not significant. Original magnification as indicated (A,D). qPCR analysis of α-SMA (B) and MMP9 (C) 

transcripts performed in in HCC tumor masses from 9 Wt mice or from 6 hHIF-2α–/– mice. The 

mRNA values are expressed as fold increase over control values after normalization to the TBP 

gene expression. Results are expressed as means ± SD. Boxes include the values within 25th and 

75th percentile, whereas horizontal bars represent the medians. The extremities of the vertical 

bars (10th-90th percentile) comprise 80% of the values. Statistical differences were assessed by 

Student’s t test or Mann-Whitney test for non-parametric values. ns: not significant (B,C). 

 

Figure 6. Hepatocyte-specific deletion of HIF-2α significantly affects the inflammatory response. 

IHC analysis of F4/80 performed on paraffin-embedded HCC tumor masses from 9 Wt mice or 

from 6 hHIF-2α–/– mice (A). ImageJ software analysis was performed to evaluate the amount of 

F4/80 positive areas. Data in graphs are expressed as means ± SEM.  Statistical differences were 

assessed by Student’s t test or Mann-Whitney test for non-parametric values. Original 

magnification as indicated (A). qPCR analysis of F4/80 (B), PD-L1 (C), IRF-4 (D) transcripts 
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performed in in HCCs from 9 Wt mice or from 6 hHIF-2α–/– mice. The mRNA values are expressed 

as fold increase over control values after normalization to the TBP gene expression. Results are 

expressed as means ± SD. Boxes include the values within 25th and 75th percentile, whereas 

horizontal bars represent the medians. The extremities of the vertical bars (10th-90th percentile) 

comprise 80% of the values. Statistical differences were assessed by Student’s t test or Mann-

Whitney test for non-parametric values (B,C,D). 

 

Figure 7. HIF-2α expression positively correlates with markers of HCC proliferative capacity. 

qPCR analysis of PCNA (A) and Ki67 (C) transcripts performed in peritumoural tissue or HCC tumor 

masses from 9 wild type mice (Wt) or from 6 HIF-2α knock-out mice (hHIF-2α–/–). The mRNA values 

are expressed as fold increase over control values after normalization to the TBP gene expression. 

Results are expressed as means ± SD. Boxes include the values within 25th and 75th percentile, 

whereas horizontal bars represent the medians. The extremities of the vertical bars (10th-90th 

percentile) comprise 80% of the values. Statistical differences were assessed by one-way ANOVA 

test with Tukey’s correction for multiple comparisons or Student’s t test (A,C). Relationship 

between HIF-2α and PCNA (B) or Ki67 (D) mRNA in HCCs from 9 wild type mice. The values 

represent the relative mRNA content. The correlation analysis was performed with Pearson r test. 

 

Figure 8. Hepatocyte-specific HIF-2α deletion impact on HCC proliferative capacity. IHC analysis 

of PCNA performed on paraffin-embedded HCC tumor masses from 9 Wt mice or from 6 hHIF-2α–

/– mice (A). ImageJ software analysis was performed to evaluate the number of PCNA-positive 

nuclei per microscopic field. Data in graphs are expressed as means ± SEM.  Statistical differences 

were assessed by Student’s t test. Original magnification as indicated (A). qPCR analysis of CCNE1 

and CCNE2 (B) transcripts performed in in HCCs from 9 Wt mice or from 6 hHIF-2α–/– mice. The 

mRNA values are expressed as fold increase over control values after normalization to the TBP 

gene expression. Results are expressed as means ± SD. Boxes include the values within 25th and 

75th percentile, whereas horizontal bars represent the medians. The extremities of the vertical 

bars (10th-90th percentile) comprise 80% of the values. Statistical differences were assessed by 

Student’s t test or Mann-Whitney test for non-parametric values (B). 
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Figure 9. Hepatocyte-specific HIF-2α deletion impact on HCC proliferative capacity. WB analysis 

for PCNA (A), p21 (B), p53 (C) and c-Myc (F) performed in HCCs from 6 wild type mice (Wt) or from 

5 HIF-2α knock-out mice (hHIF-2α–/–). BIORAD Quantity One software was use to perform the 

densitometric analysis (data are expressed as Fold Change relative to the normalized Wt 

expression). Equal loading was evaluated by re-probing membranes for β-actin. Statistical 

differences were assessed by Student’s t test or Mann-Whitney test for non-parametric values 

(A,B,C,F). Relationship between HIF-2α and c-Myc (D) mRNA in HCCs from 9 wild type mice. The 

values represent the relative mRNA content. The correlation analysis was performed with Pearson 

r test. qPCR analysis of c-MYC (E) transcript performed in HCCs from 9 Wt mice or from 6 hHIF-2α–

/– mice. The mRNA values are expressed as fold increase over control values after normalization to 

the TBP gene expression. Results are expressed as means ± SD. Boxes include the values within 

25th and 75th percentile, whereas horizontal bars represent the medians. The extremities of the 

vertical bars (10th-90th percentile) comprise 80% of the values. Statistical differences were 

assessed by Student’s t test or Mann-Whitney test for non-parametric values (E). 

Figure 10. Hepatocyte-specific HIF-2α deletion affects HCC proliferative capacity without the 

involvement of ERK, JNK, AKT signal pathways. Western blotting analysis of P-AKT (A), P-ERK (B), 

P-JNK (C) in HCC tumor masses from 9 wild type mice (Wt) or from 6 HIF-2α knock-out mice (hHIF-

2α–/–). BIORAD Quantity One software was use to perform the densitometric analysis. Equal 

loading was evaluated by re-probing membranes for the relative non-phosphorylated protein AKT, 

ERK, JNK and βActin or vinculin. Results are expressed as means ± SD. Boxes include the values 

within 25th and 75th percentile, whereas horizontal bars represent the medians. The extremities 

of the vertical bars (10th-90th percentile) comprise 80% of the values. Statistical differences were 

assessed by Student’s t test or Mann-Whitney test for non-parametric values. ns: not significant. 

 

Figure 11. HIF-2α overexpression support HepG2 cell growth in vitro. WB (Western Blotting) 

analysis of HIF-2α, c-Myc, PCNA, p53, p21 levels performed on HepG2 stably transfected in order 

to overexpress HIF-2α (H/2α) or in control HepG2 cells transfected with empty vector (H/V6) at 

different time point. Equal loading was evaluated by re-probing membranes for β-actin. BIORAD 

Quantity One software was use to perform the densitometric analysis (data are expressed as Fold 

Change relative to the normalized H/V6 expression (A). Q-PCR (Quantitative real-time PCR) 

analysis of CXCR4 and EPO transcripts in H/2α or in H/V6 cells at different time point. Data in 
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graphs are expressed as means ± SEM. Statistical differences were assessed by one-way ANOVA 

test with Tukey’s correction for multiple comparisons or Kruskal-Wallis test for non-parametric 

values (B). Cell count performed with BrDU Incorporation assay (C), Burker chamber (D) and 

Crystal Violet (E) techniques performed on H/2α or H/V6 at different time point. Bar graph chart 

showed the relative quantity of G1, G2 and S ratio in H/2α cells compared to the H/V6 control cells 

as mean ± SD, resulted from cell cycle analysis by flow cytometry with FCS Express 4 Flow Research 

Edition software (F). These experiments were repeated three separate times, and similar results 

were obtained. 

 

Figure 12. Expression of HIF-2α in human NAFLD/NASH-related HCC patients. IHC analysis of HIF-

2α performed on paraffin-embedded human liver specimens from NAFLD/NASH-related HCC 

patients (n = 27, grade G2-G3). Original magnification as indicated. HIF-2α expression was semi-

quantitatively scored blinded, by a pathologist (A). Odds ratio meta-analysis is calculated by 

Fisher's exact test to evaluate the strength of the association between HIF-2α expression and HCC 

cirrhotic setting (B). Kaplan–Meier curves of survival (C) and time to recurrence (D) according to 

HIF-2α expression. Statistical analysis was performed using log-rank (Mantel–Cox) test. 

 

Figure 13. SB3 expression correlates with HIF-2α expression in NAFLD/NASH-related HCC 

patients.  IHC analysis of HIF-2α (left panel) or SB3 (right panel) performed on paraffin-embedded 

human liver specimens from NAFLD/NASH-related HCC patients (n = 27, grade G2-G3). Original 

magnification as indicated. SB3 expression was semi-quantitatively scored blinded, by a 

pathologist (Mann-Whitney’s U test) (A). Relationship between HIF-2α and SB3 mRNA in HCC 

tumor masses from 9 wild type mice. The values represent the relative mRNA content. The 

correlation analysis was performed with Pearson r test (B). qPCR (C) and WB (D) analysis for SB3 

performed in HCC tumor masses from 9 wild type mice (Wt) or from 6 HIF-2α knock-out mice 

(hHIF-2α–/–) (C,D). For the WB analysis, BIORAD Quantity One software was use to perform the 

densitometric analysis. Equal loading was evaluated by re-probing membranes for β-actin. 

Statistical differences were assessed by Student’s t test or Mann-Whitney test for non-parametric 

values (D). The mRNA values are expressed as fold increase over control values after normalization 

to the TBP gene expression. Results are expressed as means ± SD. Boxes include the values within 

25th and 75th percentile, whereas horizontal bars represent the medians. The extremities of the 

Jo
urn

al 
Pre-

pro
of



30 
 

vertical bars (10th-90th percentile) comprise 80% of the values. Statistical differences were 

assessed by Student’s t test or Mann-Whitney test for non-parametric values (C). 

 

Figure 14. HIF-2α expression directly correlates with YAP. Relationship between HIF-2α and YAP 

mRNA in HCCs from 9 wild type mice. The values represent the relative mRNA content. The 

correlation analysis was performed with Pearson r test (A). WB analysis for YAP performed in HCCs 

from 9 wild type mice (Wt) or from 6 HIF-2α knock-out mice (hHIF-2α–/–). For the WB analysis, 

BIORAD Quantity One software was use to perform the densitometric analysis. Equal loading was 

evaluated by re-probing membranes for β-actin. Statistical differences were assessed by Student’s 

t test or Mann-Whitney test for non-parametric values (B). WB analysis of YAP protein levels 

performed on HepG2 stably transfected in order to overexpress HIF-2α (H/2α) or in control HepG2 

cells transfected with empty vector (H/V6) at different time point. Equal loading was evaluated by 

re-probing membranes for Vinculin (C). WB analysis of YAP and c-Myc protein levels performed on 

H/2α or in control H/V6, treated or not (SC) with a specific YAP siRNA (siYAP). Equal loading was 

evaluated by re-probing membranes for β-actin. BIORAD Quantity One software was use to 

perform the densitometric analysis (data are expressed as Fold Change relative to the normalized 

H/V6 expression) (C,D). 

 

 

Table 1 

Clinical and biochemical characterization of NAFLD carrying HCC patients investigated. 

Demographic Data 

Patients Number (Male/Female) 27 (25/2) 

Age (Years) 71 (49-86) 

BMI 28.2 (22.3-34.6) 

Clinical Data 

Hypertension 88.9% 
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Dyslipidemia (TG>150/HDL<40M / <50 F) 70.4% 

Diabetes mellitus 85.2% 

CHILD A (59.3%) 

Resection  9/14 (64.3%) 

OLT  6 (22.2%) 

MELD 9 (6-14) 

Biochemical Data 

Triglycerides (mg/dL n.v. 50-150) 111 (77-155) 

AST (U/L– n.v. 5–40) 37 (17-83) 

ALT (U/L n.v. 5–40) 37 (13-86) 

-GT  (U/L n.v. 5–45) 111 (14-307) 

Bilirubin (U/L) 0.9 (0.3-2.5) 

AFP (ng/mL n.v. <10) 131.6 (1-2919) 

Albumin (g/L) 4.1 (3.3-4.8) 

Histological Data 

Steatosis score 0 (18.5%) 

1 (70.4%) 

2 (11.1%) 

3 (3.7%) 

Ballooning score 1 (45.5%) 

Fibrosis score 1 (40.9%) 

Cirrosis 59.3% 

NAS score 1-3 (27.3%) 

Oncological Data 

N° of Nodules 1 (1-3) 
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Dimension (mm) 73 (7-180) 

Edmondson-Steiner Grading (1-4) 9 (6-14) 

The values are expressed as median and inter-quartile range (IQR). For histological scores the 

range of variability is included.   

BMI, body mass index; AST, alanine aminotransferase; ALT, aspartate aminotransferase; γ-GT, 

gamma-glutamyl transpeptidase; n.v., normal value 

 

Table 2 

                                      Oligonucleotide sequences of primers used for Q-PCR. 

Primer Sense Reverse 

murine CNNE1 5’ CCCTGGGATGATAATTCAGC 3’ 5’ TCTGGGTGGTCTGATTTTCC 3’ 

murine CNNE2 5’ TCTGTGCATTCTAGCCATCG 3’ 5’ GTCATCCCATTCCAAACCTG 3’ 

murine C-MYC 5’ CTGTGGAGAAGAGGCAAACC 3’ 5’ TTGTGCTGGTGAGTGGAGAC 3’ 

human CXCR4 5’ TCCATTCCTTTGCCTCTTTTGC 3’ 5’ ACGGAAACAGGGTTCCTTCAT 3’ 

murine CXCR4 5’ TGGAACCGATCAGTGTGAGT 3’ 5’ TTGCCGACTATGCCAGTCAA 3’ 

murine Cyp2e1 5’ TGGGGAAACAGGGTAATGAG 3’ 5’ GTGCACAGCCAATCAGAAAG 3’ 

human EPO 5’ GAGCCCAGAAGGAAGCCATC 3’ 5’ GCGGAAAGTGTCAGCAGTGA 3’ 

murine EPO 5’ CAGCCACCAGAGACCCTTC 3’ 5’ ACATCAATTCCTTCTGAGCTCCC 3’ 

murine FLK1 5’ GGCGGTGGTGACAGTATCTT 3’ 5’ GTCACTGACAGAGGCGATGA 3’ 

murine F4/80 5’ GTACAGATGGGGGATGACCAC 3’ 5’ GACTGAGTTAGGACCACAAGGTGAG 3’ 

human GAPDH 5’ TGGTATCGTGGAAGGACTCATGAC 3’ 5’ ATGCCAGTGAGCTTCCCGTTCAGC 3’ 

murine HIF1-α 5’ TCAAGTTCAGCAACGTGGAAG 3’ 5’ TATCGAGGCTGTGTCGACTG 3’ 

murine HIF2-α 5’ AGAGCTGAGGAAGGAGAAATC 3’ 5’ ATGTGTCCGAAGGAAGCTG 3’ 

murine IRF-4 5’ GCAGCTCACTTTGGATGACA 3’ 5’ CCAAACGTCACAGGACATTG 3’ 

murine Ki67 5’ CATGCAAACCCTCACACTTG 3’ 5’ GCTGGTTCCAATTTCTGAGC 3’ 
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murine MMP9 5’ CGTCGTGATCCCCACTTACT 3’ 5’ AACACACAGGGTTTGCCTTC 3’ 

murine PCNA 5’ CTGTGCAAAGAATGGGGTGAA 3’ 5’ AGCAAACGTTAGGTGAACAGG 3’ 

murine PD-L1 5’ AATGCTGCCCTTCAGATCAC 3’ 5’ TCAGCGTGATTCGCTTGTAG 3’ 

murine SB3 5’ TTTTACACAAGTCCTTTGTGGAGG 3’ 5’ CTGGACACATGGAAGAGACACCAC 3’ 

murine TBP 5’CACATCACAGCTCCCCACCA 3’ 5’AGCGGAGAAGATGCTGGAAAC 3’ 

murine VE-cadherine 5’ ATTGAGACAGACCCCAAACG 3’ 5’ TTCTGGTTTTCTGGCAGCTT 3’ 

murine VEGF-A 5’ CAGGCTGCTGTAACGATGAA 3’ 5’ TTTCTTGCGCTTTCGTTTTT 3’ 

murine YAP 5′ TCAGACAACAACATGGCAGGA 3′ 5′ TTCATGGCTGAAGCCGAGTT 3′ 

murine αSMA 5’ CTGACAGAGGCACCACTGAA 3’ 5’ CATCTCCAGAGTCCAGCACA 3’ 
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