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Abstract

The main purpose of this paper is to determine all matrix represen-
tations of the real numbers. It is shown that every such representation
is completely reducible, while all non-trivial irreducible representations
must be of 2-dimensional and can be expressed in a unique form. It is
found that those representations are essentially determined by the ways
of embedding the real numbers into the complex numbers. This results in
a one-to-one correspondence between the equivalent classes of irreducible
representations and the equivalent classes of homomorphisms from the real
number field to the complex number field. The matrix representations of
the complex numbers are also determined.
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1 Introduction and main theorem

The main purpose of this paper is to answer the question: for an arbitrary
positive integer n, in how many different ways the real numbers can be rep-
resented by n × n real matrices such that the two basic operations, addition
and multiplication, are preserved. In other words, we aim to determine all ma-
trix representations of R. Here a representation means a ring homomorphism
between R and the ring of n × n matrices Mn(R) for an arbitrary n ∈ N. For
example, let ρ : R → M2(R) be a matrix representation of R. The restriction
of ρ to R+, which is the multiplicative subgroup of R consisting of all positive
real numbers, induces a group representation of R+. Note that R+ is a locally
compact abelian group, of which all continuous representations are well known
(cf. [5]). Hence if ρ is continuous, from the restricted group representation of
R+ it is easy to deduce that up to conjugacy ρ must be of the form

ρ(a) =

(
τ(a) 0

0 τ ′(a)

)
, ∀a ∈ R
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where τ and τ ′ are the zero map or the identity map of R. Yet if discontinuity
is granted, there exists a huge family of representations of form ρσ : R→ M2(R)
defined by

ρσ(a) =

(
σ(a)r −σ(a)i
σ(a)i σ(a)r

)
, ∀a ∈ R (1)

where σ is a discontinuous homomorphism from R to C while σ(a)r and σ(a)i
are real and imaginary parts of σ(a) respectively. The cardinality of this family
of representations is 2c where c is the cardinality of C (cf. Corollary 3.1). We will
see that up to equivalence the above representations actually provide a complete
list for all two-dimensional representations of R, which is a consequence of our
main theorem.

In order to state our main results we recall some elementary notions. Let
ρ : R → Mn(R) be a matrix representation of R for an arbitrary n ∈ N. By
identifying Mn(R) with the R-linear endomorphisms EndR(Rn), the image ρ(R)
of R under ρ can be considered as a subset of linear transformations over the
vector space Rn. Then ρ is called irreducible if there is no non-trivial proper
subspace of Rn stabilized by ρ(R). A matrix representation of R is called com-
pletely reducible if it is a direct sum of some irreducible representations. Two
n-dimensional representations ρ and ρ′ are said equivalent if there exists a non-
singular matrix X ∈ Mn(R) such that

ρ(a) = Xρ′(a)X−1, ∀a ∈ R.

We denote by ιX the inner automorphism of Mn(R) via the conjugation by X.
Denote by Hom(R,C) the set of ring homomorphisms from R to C. The

cardinality of this set is infinite (cf. [3] and [7]). Two homomorphisms σ, τ ∈
Hom(R,C) are said equivalent if σ = ατ , where α is either the identity map
or the complex conjugation of C. This is obviously an equivalent relation of
Hom(R,C). For convenience we call the the zero map and the identity map of R
the trivial representations of R.

Our main result is as follows.

Theorem 1. Let ρ : R→ Mn(R) be a matrix representation of R where n ∈ N.

1. The representation ρ is completely reducible.

2. If ρ is irreducible and non-trivial, then n = 2 and there exist a homomor-
phism σ ∈ Hom(R,C) and a non-singular matrix X ∈ M2(R) such that

ρ = ιX · ρσ (2)

where ρσ is defined by the identity (1).

3. The above σ is unique up to equivalence. More over, there exists a one-
to-one correspondence between the equivalent classes of irreducible repre-
sentations of R and the equivalent classes of Hom(R,C)

The proof of this theorem is developed in the following sections. Mean while,
from this theorem we determine also the matrix representations for the complex
numbers (cf. Theorem 2).
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2 Preliminaries

Throughout this paper for a representation we always mean a real matrix rep-
resentation unless otherwise explained. Let ρ : R→ Mn(R) be a representation.
Then by identifying Mn(R) with EndR(Rn), Rn is a R-ρ(R) bimodule. Equiva-
lently, if we denote by Rρ the subring of Mn(R) generated by RI and ρ(R) where
I is the n × n identity matrix, then Rn is a Rρ-module in natural way. The
following property is obvious.

Proposition 2.1. A representation ρ : R→ Mn(R) is irreducible if and only if
Rn is an irreducible Rρ-module.

Recall that the radical of a module M is by definition the intersection of all
maximal submodules of M . Given a representation ρ : R → Mn(R), we denote
by Radρ(Rn) the radical of the Rρ-module Rn.

Proposition 2.2. Let ρ : R→ Mn(R) be a representation. The following state-
ments are equivalent.

1. ρ is completely reducible.

2. Rn is a semisimple Rρ-module.

3. Radρ(Rn) = {0}.

Proof. The equivalence of the the first two statements are obvious. The equiva-
lence of the last two statements comes from the fact that, since Rn is an artinian
module, it is semisimple if and only if its radical is trivial (cf. [1, p. 129]).

We need some elementary properties from linear algebra. Recall that an
element x ∈ Mn(R) is nilpotent if xm = 0 for some m ∈ N and that x is unipotent
if x − I is nilpotent, where I is the identity matrix. An element x ∈ Mn(R) is
semisimple if it is conjugated to a diagonal matrix in Mn(C).

Lemma 2.1. (Jordan-Chevalley decomposition) Let x be a non-zero element of
Mn(R).

1. There exist a unique semisimple element xs ∈ Mn(R) and a unique nilpo-
tent element xn ∈ Mn(R) such that x = xs + xn and xsxn = xnxs. More
over, there exist polynomials without constant term f(t), g(t) ∈ R[t] such
that xs = f(x) and xn = g(x).

2. If x is non-singular, there exists a unique unipotent element xu ∈ Mn(R)
such that x = xsxu and xsxu = xuxs. More over, every subspace of Rn
stabilized by x is also stabilized by xu.

The elements xs, xn and xu are called semisimple, nilpotent and unipotent
parts of x respectively. We refer to [2, p. 80] for more details of the Jordan-
Chevalley decompositions.
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Lemma 2.2. Let {x1, x2, ..., xm} be a commutative subset of Mn(R) and let xi,s
be the semisimple part of xi for 1 ≤ i ≤ m. Then an element

∑m
i=1 aixi ∈ Mn(R),

where ai ∈ R for 1 ≤ i ≤ m, is nilpotent if and only if

m∑
i=1

aixi,s = 0

Proof. It follows from the polynomial property of Jordan decomposition that
{x1,s, x2,s, ..., xm,s} is a commutative set since so is {x1, x2, ..., xm}, therefore
{a1x1,s, a2x2,s, ..., amxm,s} is also a commutative set. Note that the sum and
the multiplication of a finite number of commutative semisimple elements are
still semisimple. Then aixi,s is semisimple for all 1 ≤ i ≤ m and therefore∑m
i=1 aixi,s is also semisimple. Let xi,n be the nilpotent part of xi for all 1 ≤ i ≤

m. Then {x1,n, x2,n, ..., xm,n} is a commutative set since so is {x1, x2, ..., xm}.
Since aixi,n is nilpotent for all 1 ≤ i ≤ m,

∑m
i=1 aixi,n is also nilpotent. We

have
m∑
i=1

aixi =
m∑
i=1

ai(xi,s + xi,n) =
m∑
i=1

aixi,s +
m∑
i=1

aixi,n,

meanwhile obviously
∑m
i=1 aixi,s and

∑m
i=1 aixi,n commute with each other.

Then the uniqueness of Jordan decomposition implies that

(

m∑
i=1

aixi)s =

m∑
i=1

aixi,s.

Consequently the lemma follows from the fact that an element of Mn(R) is nilpo-
tent if and only if the semisimple part of the element vanishes.

Lemma 2.3. let G be a commutative subgroup of GLn(R) and Gu be the set
of the unipotent parts of all x ∈ G. If V is a subspace of Rn stabilized by G,
then V is also stabilized by Gu. More over, there exists a non-zero vector v ∈ V
which is fixed by every element of Gu.

Proof. It is a consequence of lemma 2.1 that each subspace V ⊆ Rn stabilized
by G must be also stabilized by Gu. More over, since G is commutative, it is
easy to check that Gu is a unipotent subgroup of GLn(R). Then the existence of
a non-trivial vector of V fixed by Gu is a consequence of Lie-Kolchin Theorem
(cf. [2, p. 87]).

Lemma 2.4. Given a representation ρ : R → Mn(R) and a non-zero element
v ∈ Rn, let

Rρv = {xv ∈ Rn|∀x ∈ Rρ}

which is a Rρ-module. Then the radical Rad(Rρv) of Rρv is trivial.

Proof. Note that the set of non-zero elements of ρ(R), denoted by ρ(R)∗, is a
commutative multiplicative subgroup of GLn(R), which obviously stabilizes the
subspace Rρv of Rn. Let ρ(R)u be the group consisting of the unipotent parts
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of all elements of ρ(R)∗. Then by Lemma 2.3, Rρv is also stabilized by ρ(R)u.
Again it follows from Lemma 2.3 that there exists a non-zero element v0 ∈ Rρv
such that

xuv0 = v0, ∀xu ∈ ρ(R)u. (3)

Let Rρv0 be the submodule of Rρv generated by v0. We claim that

Rρv0 = Rρv. (4)

In fact, consider Rρv as a R-space and let α be a non-singular R-linear transfor-
mation of Rρv such that α(v) = v0. Since v0 belongs to Rρv, we have v0 = yv
for an element y ∈ Rρ. Let λα : Rρv → Rρv be a map defined by

λα(xv) = yxv, ∀x ∈ Rρ.

Clearly λα is an endomorphism of Rρ-module since Rρ is a commutative ring.
More over, since

yxv = xyv = xv0, ∀x ∈ Rρ
we have λα(Rρv) = Rρv0. Since α−1 is also a R-linear transformation of Rρv,
in a similar way we define an endomorphism λα−1 ∈ EndRρ(Rρv). It is easy
to check that λα−1 is the inverse of λα. Hence λα is an automorphism of Rρv.
Then the identity (4) holds because

Rρv = λα(Rρv) = Rρv0.

Now we show that the radical Rad(Rρv0) of the module Rρv0 is trivial. Let J be
the Jacobson radical of the ring Rρ. Since Rρv is a finitely generated module,
we have (cf. [1, p. 172])

Rad(Rρv0) = J ·Rρv0 = RρJv0 = Jv0. (5)

For an arbitrary x ∈ J , we can write

x =

m∑
i=1

aixi, for ai ∈ R, xi ∈ ρ(R), 1 ≤ i ≤ m.

Let xi,s and xi,u be the semisimple and the unipotent parts of xi respectively.
Then xi,u ∈ ρ(R)u for all 1 ≤ i ≤ m. We have by Lemma 2.1 and the identity
(3) that

xv0 =

m∑
i=1

aixi,sxi,uv0 =

m∑
i=1

aixi,sv0

Note that all elements of J are nilpotent since Rρ is finitely generated. It follows
from Lemma 2.2 and the nilpotency of x ∈ J that

m∑
i=1

aixi,s = 0.
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Hence
xv0 = 0, ∀x ∈ J.

This implies by the identities (4) and (5) that

Rad(Rρv) = Rad(Rρv0) = {0}.

Lemma 2.5. Let R be a R-subalgebra of Mn(R). If R is an integral domain,
then it is a division ring.

Proof. We show that every non-zero element s ∈ R has an inverse in R. Denote
by R[s] the subalgebra of R generated by RI and s. Note that s is algebraic
over R because

dimRR[s] ≤ dimRMn(R) <∞.

Let f(x) ∈ R[x] be minimal polynomial of s over R and denote by (f(x)) the
ideal of R[x] generated by f(x). Then we have an isomorphism

R[s] ∼= R[x]/(f(x)).

We claim that f(x) is irreducible, which implies by above isomorphism that
R[s] is a field and consequently s−1 ∈ R[s] ⊆ R. In fact if otherwise there exist
non-constant polynomials g(x), h(x) ∈ R[x] such that f(x) = g(x)h(x). Then

g(s)h(s) = 0.

However, since both g(x) and h(x) have degree strictly less than that of f(x),

g(s) 6= 0, h(s) 6= 0.

This is contrary to the assumption that R is an integral domain. Thus we obtain
that R is a division ring.

Lemma 2.6. Let ρ : R→ Mn(R) be an irreducible representation. Then Rρ is a
field. In particular, if ρ is non-trivial, there exists an isomorphism β : C→ Rρ
such that β(a) = aI for all a ∈ R.

Proof. Since Rn is an irreducible Rρ-module, it comes from Proposition 2.1 and
Schur’s lemma that EndRρ(R

n) is a division ring. It is obvious that both RI
and ρ(R) are contained in EndRρ(R

n). Hence we have

Rρ ⊆ EndRρ(R
n).

This means that Rρ is an integral domain. Then it follows from Lemma 2.6
that Rρ is a field since it is commutative. In particular, if ρ is non-trivial, then
ρ(R) is not contained in RI. Hence Rρ is a non-trivial field extension of finite
degree over RI. This implies that Rρ has to be isomorphic to C which is the
unique non-trivial field extension of finite degree over R. The existence of an
isomorphism as β is obvious.
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Denote by CMn(R)Rρ the centralizer of Rρ in Mn(R).

Lemma 2.7. Let ρ : R→ Mn(R) be a non-trivial and irreducible representation.
Then

CMn(R)Rρ = Rρ. (6)

Proof. By identifying Mn(R) with EndR(Rn) we have

Rρ ⊆ CMn(R)Rρ = EndRρ(Rn).

On the other hand, for an arbitrary s ∈ CMn(R)Rρ, the subring Rρ(s) of CMn(R)Rρ
generated by Rρ and s is a commutative R-subalgebra. Note that CMn(R)Rρ is
a division ring since so is EndRρ(Rn) by Schur’s lemma. It follows from Lemma
2.5 that Rρ(s) is a field. More over, since s must be algebraic over RI, Rρ(s) is
an algebraic extension of the field Rρ. This implies that Rρ(s) = Rρ since Rρ
is isomorphic to C by Lemma 2.6. Then s belongs to Rρ. Hence we have

CMn(R)Rρ ⊆ Rρ

from which follows the identity (6).

Lemma 2.8. If a representation ρ : R → Mn(R) is non-trivial and irreducible,
then n = 2.

Proof. It follows from the double center theorem of simple algebras (cf. [4,
p. 232]) that

dimRRρ · dimRCMn(R)Rρ = dimRMn(R) = n2.

Note that by Lemma 2.6 and Lemma 2.7 we have

dimRCMn(R)Rρ = dimRRρ = 2.

This implies that n = 2.

3 Proof of Theorem 1 and miscellaneous results

The proof of Theorem 1.1. Given a representation ρ : R → Mn(R), we have the
R-space Rn becoming a Rρ-module where Rρ is the subalgebra of Mn(R) defined
at the beginning of Section 2. Let {v1, v2, . . . , vn} be a R-basis of Rn. Then we
have

Rn =

n⊕
i=1

Rvi =

n∑
i=1

Rρvi.

Note that since Rρvi is a finitely generated module with trivial radical by Lemma
2.4, it has to be semisimple (cf. [1, p. 129]) for all 1 ≤ i ≤ n. Therefore as a
sum of semisimple submodules, Rn is also semisimple. This is equivalent to the
complete reducibility of ρ by Proposition 2.2.
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The poof of Theorem 1.2. Suppose that ρ : R → Mn(R) is irreducible and non-
trivial. Then it follows from Lemma 2.8 that n = 2. More over, it comes from
Lemma 2.6 that there exists an isomorphism β : C → Rρ such that β(a) = aI
for all a ∈ R. Let µ : C → M2(R) be the canonical ring homomorphism defined
by

µ(z) =

(
zr −zi
zi zr

)
, ∀z ∈ C (7)

where zr and zi are real and imaginary parts of z respectively. The composition
µβ−1 is a R-algebra homomorphism from Rρ to M2(R). Note that Rρ is a simple
R-subalgebra of M2(R) by Lemma 2.6. Then by Noether-Skolem Theorem (cf.
[4, p. 230]) there exists a non-singular matrix Y ∈ M2(R) such that µβ−1 is just
the restriction of the inner automorphism ιY of M2(R) which is the conjugation
via Y . Denote by σ the composition β−1ρ. It is easy to check that the following
diagram is commutative.

R ρ−−−−→ M2(R)

σ

y yιY
C µ−−−−→ M2(R)

Then we have, for all a ∈ R,

ρ(a) = ι−1
Y µσ(a) = Y −1

(
σ(a)r −σ(a)i
σ(a)i σ(a)r

)
Y.

By setting X = Y −1, we obtain the identity (2) of Theorem 1.

In order to prove Theorem 1.3 we need some properties of endomorphisms
as well as representations of complex numbers. Note that the properties and the
discussion used for proving Theorem 1.1 and 1.2 are extendable to the repre-
sentations of complex numbers by simply substituting C for R in the argument.
The substitution leads to a description of the matrix representations of complex
numbers, which is similar to that of real numbers.

Theorem 2. Every matrix representation ρ : C → Mn(R) is completely re-
ducible. More over, if ρ is irreducible, then n = 2 and there exists a σ ∈ End(C)
such that

ρ = ιXµσ

where ιX is the inner automorphism of M2(R) via the conjugation by a non-
singular matrix X and µ is the homomorphism defined by the identity (7).

Proof. This is analogous to the proofs of Theorem 1.1 and 1.2.

We consider Hom(R,C). It is a trivial fact that each homomorphism σ ∈
Hom(R,C) can be extend to an endomorphism of C.

Lemma 3.1. Let C be a field which is isomorphic to C. Then each homomor-
phism σ ∈ Hom(R, C) has exactly two extensions σ̄, σ̄′ ∈ Hom(C, C) and, more
over, σ̄ = σ̄′ε where ε is the complex conjugation.
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Proof. This comes from the fact that, for the imaginary i, the extensions of
σ have only two possible images {i,−i} since the minimal polynomial of i is
x2 + 1 ∈ Q[x].

Two endomorphisms β, τ ∈ End(C) are said equivalent if β = ατα′, where
α and α′ are the identity map or the complex conjugation. This is clearly an
equivalent relation for End(C). The following property is obvious.

Proposition 3.1. The extension of each element of Hom(R,C) to an element
of End(C) induces a one-to-one correspondence between the family of equivalent
classes of Hom(R,C) and that of End(C).

Proposition 3.2. Each irreducible representation ρ : R → M2(R) has exactly
two extensions ρ̄ : C → M2(R). In precise, if ρ = ιXρσ for some X ∈ GL2(R)
and σ ∈ Hom(R,C), then ρ̄ is either ιXµσ̄ or ιXµσ̄ε, where σ̄ ∈ End(C) is an
extension of σ and ε is the complex conjugation.

Proof. The existence of extensions for ρ is obvious. Note that every extension ρ̄
of ρ is irreducible since so is ρ. Denote by Rρ̄ the subring of M2(R) generated by
RI and ρ̄(C). Then R2 is an irreducible Rρ̄-module. Since, by Schur’s lemma,
EndRρ̄(R2) is a division ring which contains the R-subalgebra Rρ̄ of M2(R), it
follows from Lemma 2.5 that Rρ̄ is a field extension of degree 2 over RI. Note
that by the same lemma Rρ is also an extension of degree 2 over RI and that
Rρ̄ ⊇ Rρ. We obtain that Rρ̄ = Rρ. Then by Lemma 3.1 ρ has only two possible
extensions. In consequence, the second assertion of the lemma is obvious.

The proof of Theorem 1.3. Given a non-trivial and irreducible representation
ρ : R → M2(R), suppose that there exist X,Y ∈ GL2(R) and σ, τ ∈ Hom(R,C)
such that

ρ = ιXρσ = ιY ρτ .

Set T = Y −1X. Then the above identity implies that

ιT ρσ = ρτ . (8)

Note that each extension of an element of Hom(R,C) either fix the imaginary i or
send i to −i. For convenience we denote by σ̄ ∈ End(C) the extension of σ such
that σ̄(i) = i and similarly by τ̄ the extension of τ which fixes the imaginary
i. Since ρτ has two extensions µτ̄ and µτ̄ε by Proposition 3.2, the identity (8)
implies that either

ιT σ̄ = τ̄ (9)

or
ιT σ̄ = τ̄ ε. (10)

Suppose that the first identity (9) holds. By applying to the imaginary i
from both sides of the identity we have an equation

T

(
0 −1
1 0

)
T−1 =

(
0 −1
1 0

)
.
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This implies that

T =

(
a −b
b a

)
for some a, b ∈ R. In particular, since all matrices of ρσ(R) have same form as
that of T , it is easy to check that

ιT ρσ(a) = ρσ(a), ∀a ∈ R

which means that ρσ = ρτ by the identity (8). We obtain hence σ = τ in this
case.

If the second identity (10) holds, by applying to i from both sides we have
an equation

T

(
0 −1
1 0

)
T−1 =

(
0 1
−1 0

)
.

This implies that

T =

(
a b
b −a

)
=

(
0 1
1 0

)
·
(
b −a
a b

)
for some a, b ∈ R. If we denote by S the matrix

(
0 1
1 0

)
, then

ιT ρσ(a) = ιSρσ(a) = ρεσ(a), ∀a ∈ R.

We obtain again by the identity (8) that εσ = τ , which means that both σ and
τ belong to the same equivalent class. Thus we complete the proof of Theorem
1.

We observe from Theorem 1.3 that the cardinality of the equivalent classes
of the irreducible representations of R is the same as that of Hom(R,C), which
is equal to the cardinality of End(C) by Proposition 3.1. Note that the set of
functions from C to itself has cardinality cc since |C| = c and that the cardinality
of automorphisms Aut(C) is 2c. We have

2c = |Aut(C)| ≤ |End(C)| ≤ cc = 2ℵ0c = 2c

which means that the cardinality of End(C) is 2c. Hence the irreducible repre-
sentations of R can be quantified as follows.

Corollary 3.1. Let c represents 2ℵ0 . The cardinality of the family of equivalence
classes of irreducible representations of R is 2c.

Remark. Among various applications of the matrix representations of R, we
mention its connection with so-called ”abstract” representations of Lie groups
where the continuity is not an assumption imposed on the actions of Lie groups
on real spaces (see for instance [6]). An example is that each discontinuous
irreducible representation ρ of R induces a discontinuous irreducible represen-
tation of a Lie group ρ̄ : SL2(R) → GL4(R) where ρ̄ is obtained by applying ρ
to the entries of each matrix in SL2(R), which sheds light on determining all
discontinuous actions of SL2(R) on real spaces.
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