
Chapter 4
Stochastic Mortality Models
and Pandemic Shocks

Luca Regis and Petar Jevtić

Abstract After decades of worldwide steady improvements in life expectancy, the
COVID-19 pandemic produced a shock that had an extraordinary immediate impact
on mortality rates globally. This shock had largely heterogeneous effects across
cohorts, socio-economic groups, and nations. It represents a remarkable departure
from the secular trends that most of the mortality models have been constructed to
capture. Thus, this chapter aims to review the existing literature on stochastic mortal-
ity, discussing the features that these models should have in order to be able to incor-
porate the behaviour of mortality rates following shocks such as the one produced by
the COVID-19 pandemic. Multi-population models are needed to describe the het-
erogeneous impact of pandemic shocks across cohorts of individuals. However, very
few of them so far have included jumps. We contribute to the literature by describing
a general framework for multi-population models with jumps in continuous-time,
using affine jump-diffusive processes.

4.1 Stochastic Mortality Models and the COVID-19 Shock

The life expectancy of human individuals worldwide has been steadily increasing
since World War II. The Organisation for Economic Co-operation and Develop-
ment (OECD) estimates that life expectancy worldwide increased by more than
25 years in the last 70 years, moving from 45.7 years in 1950 to 72.6 in 2019.
Mortality rates have constantly been declining at all ages, spanning from infants to
the elderly. This phenomenon relies mainly on the economic progress of nations,
which improved people’s well-being, habits, nutrition, and healthcare consumption.
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Advances in medicine have allowed us to prevent and cure common and less com-
mon diseases. This progress, with different intensities, was shared by all regions and
countries in the world. Importantly, improvements in life expectancy and mortality
rates constantly exceeded the expectations. While being good news for humanity,
higher-than-expected mortality improvements generated unexpected increases in the
value of the liabilities of life insurance companies engaged in the annuity business,
of pension funds and public pension schemes. This fact led actuaries to focus on the
so-called longevity risk in the last thirty years, i.e., the risk of unexpected improve-
ments in the mortality of individuals. Modelling aims at capturing the uncertainty in
the changes of future mortality rates. Modelling longevity risk became crucial for
two reasons in particular: first, to assess the likelihood and impact of deviations from
expectations; second, to price and hedge longevity risk via risk mitigation techniques
such as the use of derivative contracts.

The seminal contribution by Lee and Carter (1992), who first described mortality
rates via stochastic processes, paved the way for extensive literature which tried to
capture the essential features observed in the mortality dynamics and project them in
future. Progressively, the literature moved from the modelling of mortality rates of
single populations to the joint modelling of the mortality of multiple socio-economic
groups and populations, which display interconnected and specific features at the
same time. Because the mortality improvements in the last 100 years in the vast
majority of countries (with some notable exceptions due to the effects of wars, as
for Italy and Germany during World War II) were following a substantially stable
trend, only a few of the proposed models considered adding jumps in the mortality
dynamics, and the application of such models has been limited. Nonetheless, the
COVID-19 pandemics in 2020 reminded us that sudden shocks to mortality rates
might occur, although with (hopefully) relatively low frequency. COVID-19 showed
us how epidemics in a highly interconnected world could spread rapidly across
continents, affecting people’s lives and health conditions. This chapter reviews the
literature on stochastic mortality models with jumps whose interest will likely surge
in the coming years. To ground our analysis, we first describe briefly in Sect. 4.2
the immediate impact that COVID-19 had on the mortality rates in 2020. This effort
helps us highlight that the 2020 shock had largely different effects:

• across countries, as some were better able to contain the spread of the virus than
others and/or because their health system was better prepared to respond to the
emergency;

• across ages and sexes, because the observed lethality of COVID-19 was higher for
males and older people;

• across socio-economic groups, especially in countries with mostly private health
systems, due to unequal wealth levels and health-care quality and consumption.

We also point out that it is, at present, unclear whether the shock to mortality rates
will have persistent effects or transitory effects only. Direct and lasting effects of
“long-COVID” and the impact that the strict lock-down measures adopted in many
countries are having on people’s habits, health, and economic situation will become
apparent in the future. Also, there were indirect effects due to the stress placed by
COVID-19 on the health systems, which had to limit to some extent non-COVID-
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related treatments of other diseases and screenings. Individuals who reduced health-
related consumption may have consequences that will become apparent after some
time.

With these aspects in mind, Sects. 4.3 and 4.4 review the stochastic mortal-
ity models that account for jumps in the dynamics of mortality rates, developed
either in discrete-time or in continuous-time set-ups. Section4.3 focuses on single-
population models, while Sect. 4.4 considers multi-population ones. We believe this
last stream of literature is particularly relevant in light of the heterogeneous effects
of the COVID-19 pandemic shock on mortality rates because it can account for
common sudden shocks, which may have different impacts across countries and/or
socio-economic groups. Recognizing a gap in the literature because, to our knowl-
edge, none of the continuous-time multi-population models proposed so far have
considered the presence of jumps, in Sect. 4.5 we generalise the continuous-time
multi-population framework in Jevtić and Regis (2019) to the case of jump-diffusive
affine processes. Section4.6 provides some concluding remarks.

4.2 The Impact of COVID-19 on Mortality Rates

Up to 2020 almost uninterrupted improvements in mortality rates were observed in
all countries since the end of World War II. Figure4.1 supports this statement, by

Fig. 4.1 Life expectancy at birth in UK, US and Italy from 1946 to 2019. SourceHumanMortality
Database
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Fig. 4.2 Improvements in annual death probabilities at ages 0–90 in Italy between 2015 and 1950.
Source Human Mortality Database

portraying the time-evolution of life expectancy at birth for Italy, theUnitedKingdom
and theUnited States from1946 to 2019.Nonetheless, the figure shows that the extent
of such improvements varied temporally and by country. Mortality decline has been
heterogeneous across ages and sexes as well, as testified by Fig. 4.2, which displays
the change in conditional yearly death probabilities by age and sex for Italy between
1950 and 2015.

The year 2020, however, brought a worldwide-shared setback to mortality rates’
decrease. In the absence of yearly official 2020 data, to describe the impact of the
COVID-19 pandemic on mortality rates of several countries, we use weekly data
from the STMF (Short-TermMortality Fluctuations) dataset provided by the Human
Mortality Database. First we consider the changes in the total death rates. Figure4.3
shows their 2020weekly series for 6OECD countries (Spain, Italy, France, Germany,
theUnitedKingdom and theUnited States) and compares their valuewith the average
of the previous 5 years. The figure displays remarkable deviations from the average
for all the countries, starting from the spread of the COVID-19 diseases in March.
It highlights also that the pandemic shock affected the mortality rates in different
countries differently, both in terms of timing and severity. As for timing, with the
exception of Germany, we see total death rates spike in coincidence with the first
wave of contagions in March. While during the summer death rates were in line with
the average of the previous 5 years in all countries, with the exception of the United
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Fig. 4.3 Weekly measured total death rate for 6 countries in 2020. Source SMTF Dataset

States, we see the effects of the second wave of contagions in the fall after week 40.
As for severity, total death rates, which have been steadily decreasing overtime in
the last decades,1 increased in 2020 by 18.6% in US, 18% in Spain, 15.9% in Italy,
12.2% in Great Britain, 9.89% in France, and 5.3% in Germany compared to their
2015–2019 averages. In Table4.1 we report the percentage increase in the death rate
for the six countries considered for the three age groups—65–74, 75–84 and 85+—
which displayed the highest lethality level to the disease.We also distinguish between
males and females. The table highlights that, with few exceptions, males death rates
for all age groups deteriorated more than females’. The evidence collected in this
section is material to our discussion on stochastic mortality models. Indeed, it allows
us to stress that the pandemic shock due to the spread of the COVID-19 disease
had heterogeneous severity on different countries and age groups. Andrasfay and
Goldman (2021) document the disproportionate impact of the shock on the hispanic
America and African America sub-populations in the US, for whom the estimated
drop in life expectancy in 2020 is far more severe than for the general population.
A very important aspect which cannot be ascertained from the data as of yet is to

1 The average annual change in death rates ranges between −1% and −2% for all age classes and
countries in the sample.
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Table 4.1 Percentage increase in the 2020 death rate versus 2015–2019 average. Source Authors’
elaboration from the SFTM Dataset

Males Females

Country 65–74 (%) 75–84 (%) 85+ (%) 65–74 (%) 75–84 (%) 85+ (%)

Spain 12.29 9.72 13.00 15.38 8.3 11.73

Italy 14.29 14.20 9.99 8.33 10.48 11.71

France 8.12 4.94 8.12 7.40 3.29 7.75

Germany 0.53 4.32 2.13 −0.83 3.42 0.5

Great
Britain

10.9 9.24 9.49 7.16 6.05 6.91

United
States

16.49 12.61 11.06 12.59 10.09 11.45

what extent the shock to mortality rates we observed in 2020 will cause long-lasting
effects, possibly producing a change in the observedmortality trend. Some countries,
including Germany and the United Kingdom, experienced the peak of contagions
in the first months of 2021, and hence the 2021 mortality figures are expected to be
affected by the pandemic shock as well as the 2020 one. How much of the shock
will affect mortality rates in future years is at present hard to predict. All in all,
the stylised facts and considerations presented in this section make the case for a
multi-population analysis and modelling of mortality when pandemic shocks are
specifically considered.

4.3 Stochastic Mortality Models and Pandemics:
Single-Population Models

The previous section describes the characteristics of the sudden worldwide shock to
mortality rates that occurred in 2020. This section reviews the stochastic mortality
models proposed in the literature to account for such features. We consider single-
populationmodels, distinguishing between contributions in whichmortality rates are
modelled in discrete-time and continuous-time.

4.3.1 Discrete-Time Single Population Models

The Lee-Carter (1992) model was among the first stochastic models proposed for
mortality, and today it is probably the most well-known. Mathematically can be
represented as follows:



4 Stochastic Mortality Models and Pandemic Shocks 67

ln(mx,t ) = αx + βxkt + ex,t . (4.1)

In the equation above, the central death rate for age x in year t , mx,t , is a function
of a time-varying factor kt , called the mortality index, which is common across ages
but impacts them differently through the coefficients βx ∈ R. αx is a constant age-
dependent term which represents the baseline level of mortality for age x . Model
estimation, which is traditionally achieved by applying a two-stage procedure, cap-
tures sudden jumps in mortality through the changes in the kt values. However, at
least two considerations are in order. First, mortality changes captured through kt
affect the different ages through βx independently of the magnitude of the change.
This prevents the model from capturing the age-specificities of pandemic or war-
related shocks, as pointed out by Liu and Li (2015). Second, when forecasting, it is
necessary to select a model for the kt series. The modelling choice will obviously
impact how past observations shape the distributional properties of future mortality
rates. The standard solution is to employ a random walk with drift to model kt :

kt = μ + kt−1 + σ Zt , (4.2)

where μ is the drift term and Zt is a standard normal. This choice rules out the
presence of jumps and their occurrence in projections. Usually, in line with this rea-
soning, outliers, such as the 1918 Spanish flu-related spike, are either excluded by
the estimation process or they are dealt with using ad-hoc interventions (see Li and
Chan 2005). Someworks have generalised the Lee-Carter model and its most notable
extensions (such as the one proposed by Renshaw and Haberman (2006) accounting
for cohort effects) to specifically account for jumps in annual mortality rates. Milido-
nis et al. (2011) introduced a regime switching model, which can capture both jumps
and changes in the mortality volatility pattern via the different regime states. Wang
et al. (2013) extended the Renshaw and Haberman (2006) model, considering jump
processes for the error term. Chen and Cox (2009), building on the continuous-time
model proposed by Cox et al. (2006), modified the process kt in Eq. (4.2) to include
a jump component. They proposed two specifications, both based on the inclusion
of a jump occurring with probability p and producing a shock Yt ∼ N (m, s2). One
assumes that jumps generate permanent shifts to the mortality index, which is thus
modelled as:

kt = kt−1 + μ − pm + σ Zt + Yt Nt , (4.3)

where Nt is a Bernoulli distribution which takes value 1 with probability p and 0
otherwise. An alternative specification assumes that jumps have transitory effects,
lasting one period only:

kt = kt−1 + μ + σ Zt + Yt Nt − Yt−1Nt−1, (4.4)

The authors claimed that this second choice is more appropriate, because the most
severe shocks observed over the last century, such as the pandemic flu of 1918 and
the tsunami of 2004 had negligible permanent effects. Whether this will remain
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true for the COVID-19 pandemic shock is an open question. While epidemiological
similarities with the Spanish flu may suggest that development, the severe downturn
experiencedby the economiesworldwidemayproduce long-termconsequences jeop-
ardising the steady decrease in the mortality index that we have observed so far over
previous decades. From the modelling point of view, this may imply changes in the
mortality trends, as discussed by Sweeting (2011). The models proposed by Chen
and Cox (2009) can be estimated via Conditional Maximum Likelihood. If applied
to the US data from 1900 to 2003, the models estimate the probability of observing
a jump in kt to be around 4% under both specifications. When a jump occurs, in
the transitory-effect model, the sudden increase in kt it produces is 4 times greater
(in absolute value) than its annual negative drift. The importance of accounting for
jumps in the mortality index is confirmed by Özen and Şahin (2020), who improved
the model fit by allowing for a non-constant mean time between jump arrivals using
renewal processes. In theworkswe have reviewed so far, jumps affected themortality
index. Thus, jump-driven shocks do not have age-specific effects different from the
Brownian shock captured by the no-jump equivalent mortality index. To overcome
this issue, Liu and Li (2015) specify the model as follows:

lnmx,t = αx + βxkt + Nt Jx,t + ex,t , (4.5)

where Jx,t is a time-dependent response to the presence of a jump. Jx,t can then be
specified as being an age-dependent response to a common shock or as being fully
age-specific. The authors provide evidence that accounting for age-specific jump
responses is important to improve the model fit. Given the evidence of Sect. 4.2, such
a feature appears crucial when including the COVID-19 shock in the data.

4.3.2 Continuous-Time Single-Population Models

Before the Lee-Carter model was extended to account for jumps, jumps had already
been introduced in continuous-time mortality models. Indeed, although introduced
byMilevsky and Promislow (2001) almost 10 years later than Lee and Carter (1992),
continuous-time stochasticmortalitymodelswith jumpswere proposed just fewyears
later by Biffis (2005) and by Luciano and Vigna (2008). In the continuous-time
framework, the time to death of individuals is modelled as the first jump time of a
time-inhomogeneous Poisson process with stochastic intensity. The main advantage
of such a framework is that, if themortality intensity process is chosenwithin the class
of affine processes—as in Biffis (2005) and Luciano and Vigna (2008)—survival
probabilities are available in closed form. Moreover, the mortality model can be
coupled with standard financial risk models to obtain prices of fairly evaluated life
insurance policies and their hedges (see Luciano et al. 2012). More formally, a
mortality intensity μx

t for an individual aged x at time 0 is affine if it is assumed to
be an affine function of a jump-diffusive affine process Xt such that:
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dXt = δ(t, Xt )dt + σ(t, Xt )dW
x
t + d J x

t , (4.6)

where Wx
t is a standard Brownian motion, J x

t is a pure-jump process, and δ(·),
σ(·)σ T (·), and the jump-arrival intensity have an affine dependence on Xt . The
symbol T denotes matrix transposition. Within this set-up, the survival probability
up to time T , Sx (t, T ), under some technical conditions, can be obtained as:

Sx (t, T ) = E

[
e− ∫ T

t μx
s ds

]
= eα(t,T )+β(t,T )·Xt , (4.7)

where α(·) and β(·) solve a system of Ordinary Differential Equations (ODEs) which
depend on the model specification. These processes are very flexible and easy to cal-
ibrate. They have been extensively applied in the pricing (Wills and Sherris 2010),
hedging (Luciano et al. 2012) and portfolio choice (Menoncin and Regis 2020) con-
texts. Luciano and Vigna (2008) showed that for several generations, in the Italian
population, accounting for jumps improves the model fit, in particular when the
intensity follows a Gaussian process. However apart from the analysis in Luciano
and Vigna (2008), most of the literature restricts the application of the affine frame-
work to purely diffusive processes (Schrager 2006; Jevtić et al. 2013, for instance).
An exception is Luciano et al. (2008), where the dependent lives of couples are con-
sidered. Hainaut and Devolder (2008) took instead a different approach, based on
the use of pure-jump Lévy processes.

4.4 Stochastic Mortality Models and Pandemics:
Multi-population

Pandemic shocks have the crucial characteristic of manifesting themselves globally
in a short time frame, affecting themortality patterns ofmany populations (countries)
and sub-groups within populations. Capturing the heterogeneity and the dependence
of such impacts across different groups is a non-trivial task, which requires the use
of multi-population models.

Multi-population models have started emerging in the mid-2000s to capture the
joint evolution of mortality dynamics across countries and/or socio-economic groups
within the general population. In this section, we review the most prominent, high-
lighting that only two contributions, up to our knowledge, included jumps in a multi-
population setting.

4.4.1 Discrete-Time Models

Li and Lee (2005) applied the original Lee-Carter model to describe the mortality
rates of multiple countries jointly. The model they proposed assumes a common
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mortality index driving the mortality rates of different populations. Several papers
extended this set-up to account for issues such as (semi)-coherence (i.e. long-run con-
vergence of the mortality rates of several populations, see Li et al. 2017), Bayesian
estimation (see Antonio et al. 2015), cointegration (see Yang andWang 2013; Jarner
and Jallbjørn 2020), factor-based approaches (see Chen et al. 2015). To our knowl-
edge, only Zhou et al. (2013) and Özen and Şahin (2021) considered two-population
models with jumps in the discrete-time framework. Zhou et al. (2013) modelled
jointly the dynamics of two populations, assuming that:

lnm j
x,t = α j

x + β j
x k

j
t , j = 1, 2, (4.8)

where m j
x,t denotes the central death rate for the individual aged x at time t and

belonging to population j . They define

k j
t = k̂ j

t + N j
t Y

j
t , (4.9)

where k̂ j
t is the stochastic effect free of jumps, N j

t is the counting process for jumps
at time t in themortality of population j , whose range is {0, 1} andwhose distribution
may be dependent across populations, and Y j

t is the severity of a jump at time t for
the j-th population. Jumps have transitory (one-period only) effects. While imposing
a stationary AR(1) process on k̂(1)

t − k̂(2)
t , the framework allows for different—but

possibly dependent—jump times, frequencies and severities. The model, applied to
the populations of Sweden and Finland, is shown to fit the data well, better than the
corresponding no-jump process, because it is able to better capture the presence of
outliers, such as the 1918 spike due to the Spanish flu. Recently, Özen and Şahin
(2021) introduced jumps in a two-population model, modelling jumps in one of the
two populations through a renewal process and linking the other population using a
Common Age effect model.

4.4.2 Continuous-Time Models

In continuous-time, only a few papers have focused on two-population or multi-
population models. Recently, building on the seminal contribution by Dahl et al.
(2008), three papers have proposedmulti-population continuous-timemortalitymod-
els. De Rosa et al. (2021) proposed a two-population model that describes the
dependence structure among populations and cohorts within them. The stochas-
tic mortality intensities there follow a square-root process, which guarantees non-
negativity. Similarly, Sherris et al. (2020) introduced a model in which common and
idiosyncratic Gaussian factors drive the mortality surface of two populations. Jevtić
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and Regis (2019) described a general set-up for multi-population continuous-time
stochasticmortalitymodels using affine processes. All theseworks considered purely
diffusive processes. To our knowledge, no multi-population model in continuous-
time proposed so far includes jumps. In the next section, to fill this gap, we present
an extension of the general framework in Jevtić and Regis (2019) to jump-diffusive
affine processes.

4.5 A Continuous-Time Multi-population Model
with Jumps

We propose here a continuous-time multi-population model with jumps. Consider
the following setting. The mortality intensity of an individual aged x + t at time t
belonging to population j , with j = 1, ..., M , is defined as:

μ
j
x+t := g j

0 (x + t, t, x) + g j
1(x + t, t, x)X j

t , (4.10)

where X j
t is a stochastic process inR

N , g j
0 (x + t, t, x) is a base-line level ofmortality

for the individual and g j
1(x + t, t, x) is the vector of responses of X j

t . Here, X
j
t is

described by the following stochastic differential equation:

dX j
t = A j (X j

t , t)dt + �(X j
t , t)dWt + dZt , (4.11)

where W t is a vector of standard Brownian Motions and Zt is a pure-jump process.
Notice that Wt and Zt are in principle the same across populations. In Jevtić and
Regis (2019) the different populations j and ages within them are modelled jointly
by assuming that they respond differently to a set of common Brownian noises. To
that setting, we add a jump component. Notice that the age-specific and population-
specific responses g j

1 allow for a very rich description of the heterogeneous effects
of Brownian and jump shocks. If functions A j (·), ��T (·) and the jump intensity
λ(X j

t ) of process Zt have an affine dependence on X j
t , the survival probabilities

S j
x (t, T ) can be computed analytically. Suppressing time-dependence for notational

convenience, we assume that:

• A j = K0 + K1 · X j ;
• (��T )i j = (H0)i j + (H1)i j · X j ;
• λ = l0 + l1 · X j ;
• θ(·) defines the “jump transform” that determines the jump-size distribution.

Then, following Duffie et al. (2000), the survival probability of an individual aged
x at time t can be computed analytically as:

S j
x (t, T ) = E

[
e− ∫ T

t μx+t+sds
]

= eα(t,T )+β(t,T )·X j
t , (4.12)
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where α(t, T ) and β(t, T ) solve the following system of ODEs:

β̇(t) = g j
1(x + t, t, x) − KT

1 β(t) − 1

2
β(t)T H1β(t) − l0(θ(β(t)) − 1) (4.13)

α̇(t) = g j
0 (x + t, t, x) − K0 · β(t) − 1

2
β(t)T H0β(t) − l1(θ(β(t)) − 1). (4.14)

The solution to this system of equations depends on the specification taken by
Eqs. (4.10) and (4.11). Under particular conditions, the solution is available in closed
form. For instance, this applies to multi-cohort extensions of the jump processes
proposed in Luciano and Vigna (2008) for the single-cohort case. Indeed, when the
continuous part of (4.11) follows a multi-dimensional Ornstein-Uhlenbeck-process
or a Feller-process and jumps are compound Poisson with constant intensity l and
exponentially distributed size, g j

0 = 0 and g j
1 = 1, the system of equations above

has an analytical solution. More generally, such a solution may be approximated
analytically. A pure-jump factor through (4.11) may be considered, in particular, to
allow for population-specific and age-specific responses to sudden shocks, which
may not otherwise be well captured by purely-diffusive model specifications.

4.6 Conclusions

This chapter reviewed the literature on stochasticmortalitymodels featuringmultiple
populations and jumps, which can better capture the effects of pandemic shocks and
their heterogeneous intensity across countries, cohorts, socio-economic groups. On
top of that, the chapter proposes a modelling framework based on continuous-time
jump-diffusive processes. The framework is flexible and rich enough to describe
the observed differential mortality across groups and capture the cohort-specific and
population-specific effects of jumps. It has the advantage of providing closed-form
expressions for the survival probabilities of ages within sub-populations. Addition-
ally, it can be coupled with standard financial risk models to provide valuation and
management tools for insurance and reinsurance products affected by mortality risk.
However, the affine framework may be restrictive when it comes to the jump com-
ponent modeling relative to pure-jump specifications, such as the one proposed by
Hainaut and Devolder (2008). Also, model estimation, depending on the model spec-
ification, may require particular care. We postpone it to further research and future
data availability.
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S. Özen, Ş Şahin, A two-population mortality model to assess longevity basis risk. Risks 9(2), 44
(2021)

A.E. Renshaw, S. Haberman, A cohort-based extension to the Lee–Carter model for mortality
reduction factors. Insur. Math. Econ. 38(3), 556–570 (2006)

D. Schrager, Affine stochastic mortality. Insur. Math. Econ. 38(1), 81–97 (2006)
M. Sherris, Y. Xu, J. Ziveyi, Cohort and value-based multi-country longevity risk management.
Scand. Actuarial J., 1–27 (2020)

P.J. Sweeting, A trend-change extension of the Cairns-Blake-Dowdmodel. Ann. Actuarial Sci. 5(2),
143–162 (2011)

C.-W.Wang, H.-C. Huang, I.-C. Liu, Mortality modeling with non-Gaussian innovations and appli-
cations to the valuation of longevity swaps. J. Risk Insur. 80(3), 775–798 (2013)

S. Wills, M. Sherris, Securitization, structuring and pricing of longevity risk. Insur. Math. Econ.
46(1), 173–185 (2010)

S.S. Yang, C.-W. Wang, Pricing and securitization of multi-country longevity risk with mortality
dependence. Insur. Math. Econ. 52(2), 157–169 (2013)

R. Zhou, J.S.-H. Li, K.S. Tan, Pricing standardized mortality securitizations: a two-population
model with transitory jump effects. J. Risk Insur. 80(3), 733–774 (2013)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	4 Stochastic Mortality Models and Pandemic Shocks
	4.1 Stochastic Mortality Models and the COVID-19 Shock
	4.2 The Impact of COVID-19 on Mortality Rates
	4.3 Stochastic Mortality Models and Pandemics: Single-Population Models
	4.3.1 Discrete-Time Single Population Models
	4.3.2 Continuous-Time Single-Population Models

	4.4 Stochastic Mortality Models and Pandemics: Multi-population
	4.4.1 Discrete-Time Models
	4.4.2 Continuous-Time Models

	4.5 A Continuous-Time Multi-population Model with Jumps
	4.6 Conclusions
	References


