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ABSTRACT. We analyze a purely dynamic model of public debt stabilization
under ambiguity. We assume that the debt to GDP ratio is described by a ran-
dom variable, and thus it can be characterized by investigating the evolution
of its density function through iteration function systems on mappings. Am-
biguity is associated with parameter uncertainty which requires policymakers
to respond to such an additional layer of uncertainty according to their am-
biguity attitude. We describe ambiguity attitude through a simple heuristic
rule in which policymakers adjust the available vague information (captured by
the empirical distribution of the debt ratio) with a measure of their ignorance
(captured by the uniform distribution). We show that such a model generates
fractal-type objects that can be characterized as fixed-point solutions of iter-
ated function systems on mappings. Ambiguity is a source of unpredictability
in the long run outcome since it introduces some singularity features in the
steady state distribution of the debt ratio. However, the presence of some
ambiguity aversion removes such unpredictability by smoothing out the singu-
larities in the steady state distribution.

1. Introduction. Uncertainty and randomness are important determinants of eco-
nomic activities and macroeconomic dynamics, and thus do affect and need to be
accounted for in the design of macroeconomic policy [7, 33, 31, 1]. Recent phenom-
ena, including the financial crisis, the climate change and the outbreak of epidemics,
have renewed the concerns about the drastic short and long run consequences of
random shocks on macroeconomic outcomes, and in particular on economic growth.
In order to facilitate the policymaking process, it is thus essential to understand
the implications of different kinds of uncertainty on economic activities, going well

2020 Mathematics Subject Classification. Primary: 28A80; Secondary: 91B64.

Key words and phrases. Dynamical systems, global attractor, generalized fractal transform,
fixed point equation, iterated function systems on density functions, ambiguity, public debt.

* Corresponding author: Fabio Privileggi.

5873


http://dx.doi.org/10.3934/dcdsb.2021070

5874 D. LA TORRE, S. MARSIGLIO, F. MENDIVIL AND F. PRIVILEGGI

beyond the typical scenario analysis employed in economic growth theory. Indeed,
in the economic growth literature randomness is typically modeled by assuming
that the occurrence of shocks is associated with some variable taking on some spe-
cific value with a specific probability. However, in reality parameter values are to
a large extent unknown and thus policymakers need to formally take into account
such a parameter uncertainty in their policy decisions [5, 6, 17, 4]. How to effec-
tively deal with such information-based uncertainty in macroeconomic modeling is
still an open question but it clearly requires dealing with ambiguity. With some
exception in the field of economic growth [10], most of the attempts to address am-
biguity issues focus on monetary and fiscal countercyclical policy [19, 9, 18]. Our
paper aims to contribute to this literature by developing a novel approach based on
iteration function systems on density functions in the context of economic growth
and public debt stabilization. Unlike extant works which focus on how optimal
policymaking is affected by ambiguity, we concentrate on a purely dynamic setting
in order to characterize the policymaker’s reaction to ambiguity by the means of a
heuristic rule which allows us to identify the implications of ambiguity attitude on
the steady state outcome and to investigate its eventual fractal properties.

Our paper is therefore related to the literature on the fractal nature of the steady
state in macroeconomic models, which mainly focuses on economic growth setups.
Several works analyze how random shocks in economic growth models may even-
tually generate trajectories converging to invariant measures supported on fractal
sets, and thus how their steady states can thus be characterized in terms of their
fractal features [30, 26, 27, 28, 29]. Most of the papers focus on one- and multi-
sector growth frameworks driven by different forms of capital accumulation in which
stochasticity affects productivity [21, 22, 24], while only few are those in which ran-
domness influences some other macroeconomic variable, like polluting emissions
[32, 23]. Such studies show that the support of the invariant measure may take the
form of different fractal sets, including the famous Cantor set, the Sierpinski gasket
and the Barnsley’s fern. All these works assume that uncertainty is entirely cap-
tured by the occurrence of a limited number of alternative scenarios, each of which
takes place with a known probability, and thus cannot analyze the implications of
ambiguity on steady state outcomes.

The works on ambiguity go back to Ellsberg [11] who firstly shows that people
tend to neatly distinguish between known (i.e., unambiguous or objective) proba-
bilities and unknown (i.e., ambiguous or subjective) probabilities. The definition
of ambiguity is not unique and different types of ambiguities have been considered
in literature (see [8, 12] for concise surveys), but in general terms “ambiguity is un-
certainty about probability created by missing information that is relevant and could
be known” [15]. Agents’ reaction to such an ambiguity is referred to as ambiguity
attitude, which, as shown in experimental studies, may change from aversion to
attraction [16]. Different types of ambiguity attitude may play an important role
in driving macroeconomic dynamics, but to the best of our knowledge the only
attempt to analyze its consequences in an economic growth setup is represented
by Cozzi and Giordani [10], who introduces ambiguity in a Schumpeterian growth
framework to describe the innovation process showing that ambiguity aversion plays
a detrimental role on economic performance. We contribute to this literature by
analyzing the implications of ambiguity and ambiguity attitude on the steady state
of stochastic growth models by focusing in particular on their implications for public
debt.
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Specifically, different from extant literature which focuses on traditional economic
growth models, we embed a simplified growth setup into a model of public debt sta-
bilization to investigate the impact of ambiguity on debt dynamics. We analyze a
purely dynamic setting in which fiscal policy instruments are determined through
a rule of thumb such that the debt dynamics is exogenously given and generated
through an iterated function system on density functions. The level of public debt
is no longer described by a number but, instead, it is modeled through a random
variable and then by means of its density function. Public debt can be modeled as a
random variable to take into account the uncertainty associated with the formation
of expectations in modern economies, which by determining the cost of borrow-
ing crucially determines the evolution of debt. Different from previous works in
which the noise is modeled by a Bernoulli process [22, 24], we do not make any
specific assumption on the underlying stochastic process and thus our results are
more widely applicable. Apart from the uncertainty associated with the formation
of expectations in the financial market which per se makes public debt a random
variable, we consider an additional layer of uncertainty related to vague information
about the relevant parameter values. This introduces ambiguity in the sense that
policymakers need to develop some subjective assessments to forecast the values of
such parameters. This implies that its empirical distribution provides only partially
reliable information regarding the evolution of public debt, and thus policymakers
may need to respond to this additional layer of uncertainty according to their am-
biguity attitude. We describe ambiguity attitude through a simple heuristic rule
in which policymakers adjust the empirical distribution of the debt ratio with a
measure of their ignorance, captured by the uniform distribution. We show that
ambiguity is a source of unpredictability since it introduces some singularity fea-
tures in the steady state distribution of the debt ratio and as such the equilibrium
outcome is extremely uncertain. However, the presence of some ambiguity aversion
removes such unpredictability by smoothing out the singularities in the steady state
distribution thus reducing the degree of uncertainty associated with the equilibrium
outcome. Therefore, ambiguity aversion plays an important role since it allows for
the reduction of the variability in the evolution of public debt.

The paper is organized as follows. Section 2 discusses the mathematical tools
that we will employ in our analysis, presenting the theories of generalized fractal
transforms, of iterated function systems on maps and density functions. Section 3
presents our debt stabilization model in its simplest form (in which ambiguity is not
taken into account) to clarify how the debt dynamics allows us to infer the evolution
of its density. Section 4 introduces ambiguity related to the fact that parameter
values are only vaguely known, showing how the presence of ambiguity affects the
evolution of the density of the public debt. Section 5 considers policymakers’ re-
sponse to ambiguity formalized through a simple rule in which the empirical and
the uniform distribution of the public debt are combined together to determine the
evolution of the density of the public debt. Section 6 presents some numerical sim-
ulations to exemplify the implications of our modeling approach and the dynamic
evolution of the distribution of the public debt under different circumstances. Sec-
tion 7 as usual concludes and proposes directions for future research.

2. Mathematical preliminaries. We now discuss the main mathematical tool
that we will later use in our analysis, that is iterated function systems on density
functions. We will take for granted basic concepts on iterated function systems and
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fractal attractors (see, among others, [22] for a concise review of these notions; a
more formal presentation can be found in [20]), and we will focus on the theory
of generalized fractal transforms, and the theory of iterated function systems on
maps and how the operator of iterated function systems on maps works on the set
of density functions.

2.1. Generalized fractal transforms. Let (X, d) be a metric space. The action
of a generalized fractal transform (GFT) T : X — X on an element u of the
complete metric space (X, d) is described by the following steps: it produces a set
of N spatially-contracted copies of u; then it modifies the values of these copies by
means of a suitable range-mapping; finally, it recombines them using an appropriate
operator in order to get the element v € X, v = T [3, 20]. In all these cases, under
appropriate conditions, the fractal transform T is a contraction and thus Banach’s
fixed point theorem guarantees the existence of a unique fixed point u = T.

Definition 2.1. (Contraction mapping) [2] Let T : X — X be a mapping on a
complete metric space (X,d). Then T is said to be contractive if there exists a
constant ¢ € [0,1) such that d (Tx,Ty) < cd(z,y) for all z,y € X.

The contraction factor of T is the smallest such ¢ € [0,1) for which the above
inequality holds true. We now come to what is perhaps the most famous theorem
regarding contraction maps on metric spaces and certainly central to fractal-based
methods.

Theorem 2.2. (Banach’s Fized Point Theorem) [2] Let T : X — X be a contrac-
tion mapping on X with contraction factor ¢ € [0,1) mapping on X. Then,

1. There ezists a unique element T € X, the fixed point of T, for which TZ = T.

2. Given any xo € X, if we form the iteration sequence Tni1 = T (z,,), then
Ty — T, Q.€., d(Tn,T) = 0 as n — oco. In other words, the fized point T is
globally attractive.

Theorem 2.2 states that, under the contractivity condition, there exists a unique
fixed point of T, to which any orbit in X converges. When the operator T is not a
contraction but it is only a Lipschitz map (that is, ¢ is not necessarily less than 1)
we can still prove the following result.

Corollary 1. Let T : X — X be a Lipschitz mapping on X with Lipschitz factor
C >0 and xpy1 = Txy, be the orbit generated from xog € X. If x,, — T, then T is a
fized point of T.

Proof. The proof follows from the following sequence of calculations:
d(z,T7) < d(Z,zn41) + d(@p41,17)
=d(Z,zp41) + d(Txy,, TT)
< d(Z,xp41) + Cd(zp, T)
and, by taking the limit when n — 400, we get that d(z,Tz) = 0, that is Z is a
fixed point of T. O

Corollary 1 states that, in the absence of the contractivity condition, the unique-
ness of the fixed point of T" cannot be ensured, but nevertheless the limit point of
any converging orbit in X is a fixed point of T'.
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2.2. Iterated function systems on mappings. We now focus on the method
of iterated function systems on mappings (IFSM), as formulated in [13]. IFSMs
extend the classical notion of iterated function systems (IFS) to the case of space of
functions [20] and can be used to generate integrable “fractal” functions. An IFSM
can be used to approximate a given element « of L? ([0, 1]), with p > 1. As usual LP
is equipped with the || - ||, norm and then the induced distance d,,. The ingredients
of an N-map IFSM on LP ([0, 1]) are:

1. a set of N contractive mappings w = {wy,ws,...,wy}, w; : [0,1] — [0,1],
most often affine in form:
w; () = six + a,, 0<|s;| <1, i=12,...,N; (1)

2. a set of associated functions—the greyscale maps—¢ = {¢1,¢2,..., 0N}, ¢ :
R — R. Affine maps are usually employed:

¢i (y) = auy + Bi- (2)

Associated with the N-map IFSM (w, ¢) is the fractal transform operator T, the
action of which on a function u € LP ([0, 1]) is given by:

(Tu) () =Y '6i (u (w;* (2))) (3)
i=1
where the prime means that the sum operates only on those terms for which w; 1
is defined. The following result in Proposition 1 states that T' is a Lipschitz map
on L? ([0,1]).

Proposition 1. [13] For any p > 1 we have that T : L? ([0,1]) — LP ([0,1]) and
for any u,v € LP ([0, 1)) we have:

dp (Tw,Tv) < Cdy, (u,v)

where:
N1
C=Y"s|ai.
i=1

1
Corollary 2. Suppose that C = Zf\il sP lay| < 1. Then T has a unique fizved

point @ € LP ([0,1]) and, for any ug € LP ([0,1]), the orbit generated un+1 = Tuy,
converges to 4 whenever n — +00.

1
The above corollary states that if Zfil s! ay| < 1 then the IFSM operator is a
contraction on L? ([0, 1]) and hence it has a unique fixed point @ that is attracting
any orbit T"u generated starting from any point ug € LP ([0,1]). Notice that if

we LP([0,1]), p > 1, then @ € L2 (]0,1]) for any 1 < g < p.

2.3. Iterated function systems on density functions. We are now ready to
show that, under certain hypotheses, an IFSM operator is a contraction with respect
to the usual norm introduced into the space of density functions. The following
results will be used in our modelling of ambiguity in Sections 4 and 5.

Definition 2.3. For any p > 1, the space of density functions UP is defined as
follows:

UP = {u:[O,l} —R,u e LP([0,1]) ,u(x) > 0Vx € [0,1],/
[0,1]

u(x)dx:l},
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where dx denotes the Lebesgue measure on [0, 1].

Let us notice that UP C U4 for any 1 < ¢ < p. Now we show that under certain
conditions the IFSM operator T earlier defined is a contraction mapping on UP. It
is trivial to prove that UP C LP ([0,1]) as defined earlier.

Proposition 2. The space U? is complete with respect to the usual d, metric.

Proof. The proof of this result follows from the following two facts: if f, is a
converging sequence of (a.e.) positive functions in L? to f then there exists a
subsequence that is a.e. pointwise converging to f and this implies the positivity
of f. Furthermore, if f,, has integral over [0,1] equal to 1 then the L? limit also
possesses this property. O

In the rest of the paper we suppose that the non-overlapping property holds,
which means that the following assumption on the maps w; is satisfied.

A. 1. The maps w;, fori=1,..., N, satisfy the following conditions:
i): UN w; [0,1] =[0,1],
ii): dX (w; ([0,1]) Nwj; ([0,1])) = 0 for any i # j, where dx denotes the Lebesgue
density on [0, 1].

Proposition 3. Under Assumption A.1 suppose that the following conditions are
satisfied:

i) a;,B; € Ry foralli=1..N,
i) SN s (o + Bi) = 1.
Then the operator T defined as:

= >0 (u (0] @), 0

maps UP into itself. Furthermore, if:

N oo
Z sfo; <1 (5)
i=1
then T is a contraction over UP. This implies that T has a unique fized point @ that
is also a global attractor for any sequence taking the form:
Unp4+1 = Tup
for any initial condition uy € UP.

Proof. The only property that needs to be proved is that T maps U? into itself.
From the hypotheses on the signs of «;, 3; it follows that Tu is positive whenever u
is positive. To show that the integral is one, let us do some computations:

Tu) (z)dx = i s dx
/M< ) (2) /[ ]Z 6 (u (i (2)))

:Z /01 "6 (u (w; L (2))) dx
i (u w “1(2))) dx
Z/m([o 1])(;6 @)
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N

Zsl/[o . dx

i=1

N
st ozl derﬂl/ dx| =1
[0 1] [0,1]

i=1

O

Proposition 3 states that the operator 7" maps UP into itself and the fixed point
equation Tu = u has a unique solution that is attracting any orbit T™ug for any
up € UP. In the sequel we will suppose, for simplicity, p = 2 and we denote U? by
U. All the results can be easily extended to the case p # 2.

3. The benchmark model. We now present our benchmark model abstracting
completely from ambiguity, which will be introduced later. We analyze a purely
dynamic model of economic growth and public debt, along the lines of La Torre
and Marsiglio [25]. We consider a small open economy in which the interest rate
on international borrowing is exogenously given and public debt is used to finance
public spending. Households consume completely their disposable income: C; =

[1 -7 (Y )} Y:, where C; denotes consumption, Y; income, B; public debt, and

T (%) € (0,1) is the tax rate, which is an increasing function of the debt-to-GDP

ratio. The tax revenue Ry = 7 ( ) Y, is entirely devoted to repay public debt.

Income grows exogenously at the rate v > 0 as follows: Y11 = (14+7v)Y:. An
exogenous share of such an income, 0 < g < 1, is devoted to public spending, G; =
gYy;, which is entirely financed via debt accumulation. Public debt accumulation
increases with interest payments, (1 + r)B;, and public spending, gY¥;, while it
decreases with the tax revenue, as follows: By11 = (1 + ) By + Gt — R;. We assume

that the tax rate is a linear function of debt-to-GDP ratio as follows: 7 (%) = T%

where 0 < 7 < 1 is a scale parameter. This assumption is consistent with the results
in [25], which show that if policymakers determine optimally the tax rate in order to
minimize the social costs associated with debt accumulation they will find it optimal
to set the tax rate proportionally to the debt-to-GDP ratio. We also assume that
0 < B; <Y}, such that the debt-to-GDP ratio is bounded between zero and one,
that is %t € [0,1], which simply means that we normalize the values of the debt

ratio to represent with % =1 its maximum (unsustainable) level.
Given the dynamic equations for income and debt, it is straightforward to derive

the law of motion of the debt-to-GDP ratio, x; = 37;, which reads as follows:
Tpp1 = w (@) (6)
where w : [0,1] — [ﬁ’ H%;Jrg} is defined as:
14+r—71 g
w(z) = (7)

T+7 " 149
Similar to [25], equations (6) and (7) suggest that, intuitively, a higher growth rate
reduces the accumulation of the debt ratio by increasing the amount of resources
available to debt repayment activities; a higher interest rate increases the accumu-
lation of the debt ratio by increasing interest payments; a higher income share of
public spending increases the accumulation of the debt ratio by deteriorating the
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public budget balance position; a higher tax coefficient reduces the accumulation
of the debt ratio by improving the public budget balance position. If the public
budget balance were in equilibrium, G; = R;, then the evolution of public debt
would depend only on the gap between the interest and the growth rates, and in
particular the debt ratio would tend to increase (decrease) over time whenever the
interest rate is larger (smaller) than the growth rate. Disequilibrium in the public
budget balance position introduces a wedge between the growth and interest rate
gap and its impact on the debt ratio.

If fiscal policy instruments (i.e., the tax rate parameter, 7, and the government
spending to GDP ratio, g) are appropriately chosen in order to stabilize public debt,
then the following parameter restriction will apply 0 < H%:H] < 1, ensuring that
in the long run the public debt will converge to a positive finite value. Therefore,
in the following we shall assume that:

1+r—r71 1—1—7“—7'—|—g<

0< 1, 8
1+~ 1+~ - (8)

which implies that the function w is a contraction map transforming [0,1] into (a
subset of) itself. In this case we can interpret w as a (unique) map of the type
defined by (1) with s = 1?’;7;7 and a = {¥-. In such a specific framework, (6)
describes a very simple dynamical system which is globally convergent to the fixed
point:

- g

Ty T )
which, under condition (8), is interior to the interval [0,1] because 0 < g < 1.
Therefore, under the assumption of effectiveness in the debt stabilization policy
instruments, in the long run the public debt-to-GDP ratio will converge to a strictly
positive level, which intuitively increases with the government spending to GDP
ratio and the interest rate on borrowing, while it decreases with the growth rate
and the tax rate parameters.

Thus far we have simply assumed that there is no uncertainty and thus that
the debt ratio is a completely deterministic variable. However, the international
financial market is characterized by a large degree of randomness, and as the ex-
pectations within the market change (driven by the financial agents’ speculative or
hedging motives) the interest rate may change as well and thus the debt ratio turns
out to be stochastic. In light of such expectations-driven changes in the interest
rate, we now suppose that the debt ratio is no longer deterministic but instead
a random variable with an associated density function w;. Different from extant
works which assume that the noise is driven by a Bernoulli process we do not make
any specific assumption about the process underlying such a stochasticity, thus our
following discussion and results apply in general terms. If z; is a random variable
depending on the underlying probability space and w; its density, then, for any
0, < 65, we can perform the following calculations:

02
/ U1 (y) dy = Pr (61 < 2441 < 62)
01
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:Pr((1+7)91—9 <z < (1+7)92—9)

t =

14+7r—71 14+7r—71
(1+v)02—9g
Tfr—7
- A+v)01—9g b (y) dy ' (10)
itr—7
If we set:
B N e ko) Kt oy LT g
y=e @) = S e s = e
the integral on the LHS of (10) boils down to:
02 ()da—g w™(62)
/ ugt (y) dy = / Ut (y)dy = / ut (y) dy =
0, (1‘1:/)% w=1(6)
o2 1 1y/ L+~ o2 1
- - dz = ——— - dz.
/91 u [w™ (2)] (w™') (2)dz 1+r7/91 u [w™! (2)] dz

Since this is true for any pair 61,605 such that 6; < 65, we can summarize the
temporal evolution of the density u; of x; by means of the following operator T :
U — U defined as: 1+

2 -1
_— 11
14+7r— Foeew (11)
resembling an embryo of the more general operator T defined in (4) whose con-

stituents are the map w (x) = sx + a with s = 11:7;7 and a = =, together with a

greyscale map ¢ (y) = ay+  of the type defined by (2) with a = 1itzT and 8 = 0.
The above equation (11) states that at each iteration, the density of the debt ratio
at time t+ 1 is obtained as a modified (distorted) copy of the empirical distribution
of the debt ratio at time ¢, u;, since the composition with the inverse of w; times
the greyscale parameter « allows for possible shifting and rescaling of the density
function. Specifically, the composition of the density with the inverse of w; shrinks
its support while coefficient @ = 1f:77 being it larger than 1, vertically expands
the graph of the marginal density functions.

Note that the operator in (11), although it maps U into itself, unfortunately
is not a contraction over U, as it does not satisfy condition (5) in Proposition 3,

because under our parameter restriction (8) the following holds true:

s T+r—7\% 145 [ 144 \? 1+ \?
s2a = =|—] >1L
1+7 1+r—7\1+r—71 1+r—r71

However, despite the absence of contractivity, the fixed point equation;

1
a=T'a=—" gouw?, (12)
1+r—7
has a solution @ in some extended sense. In fact, the Dirac distribution concentrated

at the fixed point Z of the map w defined in (9), which we will denote by d_a__ (z),

y—r+T

is the fixed point of (12), but unfortunately, & e (x) is not an element of U.

=
This can be proved more formally by transforming the operator in (12) into its

equivalent counterpart in the space of cumulative distribution functions. Let us
define the cumulative distribution function associated to u as F (z) = [, u(v)dv.
Simple calculations show that:

Fiiq(x) = /0 ugrq (v)dv = /0 T*uy (v)dv = /0 %ut [w™" (v)] dv

.
U1 =T uy =
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-1

1 w”(x)

I / ug (2) w' (v) dz
1+r—71 w=1(0)

-1
147~ 1+r—7 v (@)

= d

1+r¢< 1+ )A ut (2) dz

=F[w (z)], (13)

where in the third equality we use the definition in (11), while the fifth equality
follows from w’(v) = =T and the fact that w™" (0) < 0, so that the interval

[w™!(0),0] lies outside the support of u;. Because w (z) = sz + a is a contraction

with (constant) slope s = ﬂ% < 1 the image set w ([0,1]) is a proper subset of
[0,1], w([0,1]) C [0, 1], which collapses to the fixed point Z = —%— defined in (9)

y—r+T1
as t — oo. Therefore, after each iteration of operator T* in (11), the support of the

marginal density u; keeps shrinking as t increases, which, in turn, implies that the
associated cumulative distribution function F; becomes steeper on such a support
as t increases, eventually collapsing to the Dirac distribution 6__« _ (x) defined as:

prp——
0 ﬁ0§x<——i1—

F(z) = yoreT
1 ift—9  <p<n,

yor+T

which is the unique fixed point of the equation F (z) = F [w™! (z)]. To see that
F is unique note that the support of the marginal density u; along the trajectory
generated by system (11) converges to the single point Z defined in (9), so that as
t — oo the whole probability must necessarily be concentrated on the point Z itself.
In such a benchmark case in which the only source of uncertainty is the randomness
in the financial market’s expectations, then the model’s equilibrium coincides with
the deterministic steady state, such that the long run value of the debt-to-GDP
ratio can be perfectly predicted.

Besides the benchmark model defined by operator T* in (11) under the parameter
restriction (8), which guarantees the contractivity condition, it is worth exploring
the model’s behavior in the specific case in which ¢ = 0 and 7 = r — v (under

the assumption that 7 > =y). Such a special case corresponds to s = 1'{;;7 =1
and a = ﬁ = 0, such that the map w defined in (7) ceases to be contractive

and becomes the identity map w (x) = z. Of course, by losing the contractivity
property, the fixed point of operator T in (11) is no longer unique and becomes
dependent on the initial density ug. Specifically, the fixed point is the initial density
ug itself, since:

1+« _
T*ug (2) = ————ug [w™ (2)] = up (z
o (@) 1+r—70[ (x)] = uo (x)
because 1_1‘:17 = % =1 and w™! (z) = z. In other words, in this peculiar case any

density u turns out to be invariant under operator T*.

4. The model under ambiguity. Thus far, the only form of uncertainty in our
model is related to the randomness in the financial market’s expectations which
makes the interest rate and thus the debt ratio random variables. There is however
an additional layer of uncertainty that we need to take into account, related to the
limited knowledge on parameter values. Indeed, policymakers need to set the fiscal
policy instruments to stabilize the public debt by considering the possible values of
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the growth rate and the interest rate: the interest rate is unpredictable due to the
frequent changes in financial market’s expectations but also the growth rate cannot
be taken for granted since economic production is highly volatile. Therefore, in order
to account for such a vague knowledge on the relevant parameters, policymakers
need to rely on their subjective assessment to forecast them despite such assessment
may or may not be met in reality. In particular, they need to form some synthetic
assessment of the interest rate (i.e., the mean) to quantify how it may be affected
by the stochasticity in the financial market’s expectations.

We now add such an additional layer of uncertainty by introducing ambiguity in
our framework. Specifically, policymakers develop N different assessments of the
parameters r and -y, setting accordingly the value of the fiscal policy tools 7 and g.
In our setup this process translates into the existence of N maps:

1+T‘i—7'im+ gi ’ (14)

L+ L+
associated with the different assessments developed by the policymakers, such that
each map is characterized by a different set of interest rate on borrowing, r;, growth
rate of output, ;, tax rate parameter, 7;, and public spending share of GDP, g;.
As a matter of analytical simplicity, we assume that these maps satisfy the almost
non-overlapping property stated in Assumption A.1.

Since the different policymakers’ assessments are subjectively formed and thus it
is impossible to state which of them may be most likely, for the sake of simplicity we
average them to determine the evolution of the density of the debt ratio. Therefore,
we take the average and reassemble the actions of the different maps w; on us to
produce u;41, such that our ambiguity-extended model reads as follows:

w; (z) ==

Ut+1 = T;/Ut (15)
where:
1 & 1+ 1
Tiui=— '— 10 yow ™, 16
N N; 1+’I"i—7'iuowl ( )

where, as usual, the prime means that the sum operates only on those terms for
which w; ! € [0,1]. According to (15) and (16), at each iteration, the density of the
debt ratio at time ¢ + 1 is obtained by averaging modified copies of the empirical
distribution of the debt ratio under the different assessments during the previous
period.

We can easily prove that T3, maps the space of densities U into itself and it is
Lipschitz with Lipschitz constant equal to:

1
1+ 2
NZ<1+’I‘Z—TZ)

Because for alli = 1,..., N condition (8) must hold, it follows that C'is greater than
one and thus Ty is not a contraction on the space of densities U, as it does not satisfy
condition (5) in Proposition 3. However, such a feature, rather than determining
multiple fixed points for T7%;, allows the limit of the orbit generated through the
iterations u;+1 = TNus to lay outside the space of densities U. Specifically, again
borrowing from the space of cumulative distribution functions associated to each
marginal density u; as in the previous section, we can establish the uniqueness of
the fixed point for the orbit of cumulative distribution functions associated with the
orbit generated by w1 = TR{u;. This, in turn, implies that such orbit of densities
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cannot converge to two distinct invariant distributions, even if such limits do not
belong to U.

Recall that the cumulative function F of u is defined as F (z) = [ u (v) dv and
let us define the space of cumulative distribution functions as:

F=A{F:[0,1] — [0,1], F(0) =0, F (1) =1, F is right-continuous, I is increasing} .

Through steps similar to those in (13) and recalling that Hlfiﬂ_ln
grate operator T in (16) and get its equivalent in terms of cumulative distribution
functions:

N
xT x . 1 x 1 _
Ft+1 (CE) = /0 Ut41 (’U) dv = /0 TNut (’l)) dv = N ;//0 ;iut [wi 1 (1})] dv

1 1
-2

i=1 %

= L, we can inte-
K2

w; (x) 1 M i@
/ o /
/71 ug (2) wi (v)dz = N E /’.1(0) ut (2)dz

w; ~(0) i—1 w
1
:N{i—l—FFt [w; ™t (2)] } for x € [w; (0),w; V)], i=1,...,N

where in the third equality we use the definition of T in (16), the fifth equality
follows from w} (v) = s;, and the last equality holds because, under the almost
non-overlapping property (Assumption A.1), for all ¢ = 1,..., N it follows that

o iy
qu;u.il((oz)) ug (2)dz = 1 if x > w; (1) and fgil((()";) ut (z)dz = 0 if 2 < w; (0). Hence,

we can define the operator Tﬁ  F— F as:

THF (2) = % li—14Flu @]} foraew(0),w ()], (17)
whose fixed-point equation reads as:
F(x) = /Owu(v)dV:TﬁF(x) = % {i =14 F [w;" ()]} for z € [w; (0),w; (1)],

where @ is the fixed point of the operator T;. The following proposition shows that
the space F is complete with respect to the standard d., metric defined as:

doo (F,G) = sup |F (z)— G (z)|. for any F,G € F.
xz€[0,1]

Proposition 4. The space (F,d) is a complete melric space.

Proof. 1t is well known that d, is a metric. To show that F is complete, let us
take a Cauchy sequence F,, in F and let us show that F,, — F with F' € F. For
any = € [0,1], let us define the pointwise limit as F(x) = limy,_y400 Fp(x). It is
also clear that do (F,, F)) — 0 whenever n — +oo. The only thing to be proved
is that F' € F. The pointwise convergence implies that F' is increasing, F (0) = 0,
and F (1) = 1. Finally, the uniform convergence allows to conclude that F is
right-continuous. O

Proposition 5. The operator T# : F — F defined in (17) is contractive with
respect to the do, metric and thus it has a unique fized point.

Proof. Direct computation leads to

doo (T#F, TﬁG) = sup

c i ;! — i w;t (x
we[07l]ﬁ{z—l+F[wi @)} - 5 {i-1+G [ (@)}
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1 sup { sup | Jw; ! ()] = G [w;! (x)”}

Nie{l,...,N} z€[w;(0),w;(1)]
1

=— sup |[F(y)—G(y
Nye[0,1]| W =Gwl
1

= Nd‘” (F,Q),

where in the first equality index i € {1,..., N} is determined by z as the unique 4
satisfying = € [w; (0),w; (1)]. This establishes the result whenever N > 2. O

Proposition 5 guarantees existence and uniqueness of the fixed point F' of Tj\"}é
over F; it actually strengthens Corollary 1 for the case of cumulative distribution
functions. This result allows us to conclude that the fixed point of operator Ty
defined in (16) acting over the space U of densities exists and is unique as well.
In fact, if two different fixed points of T existed, there would be two separate
fixed points for operator T# as well, thus contradicting Proposition 5. However,
when the limit distribution of operator TR, does not lie in the space U, the in-
variant distribution exhibits singularities at some points of [0, 1], possibly being a
whole singular probability measure with respect to the Lebesgue measure dx, like
in the case of the Dirac distribution obtained in section 3. Despite knowing that
such a limit distribution exists and is unique, whenever ambiguity over assessments
is introduced, its singularity traits (which definitely follow a much more complex
pattern when N > 2 than the Dirac distribution arising when N = 1) make it less
predictable than if it were itself a density belonging to the space U.! Specifically,
probabilities concentrated on single points (or on a zero Lebesgue measure subset
of [0,1]) make the estimation of the probability that in the long run the debt ratio
lies in some subinterval of [0, 1] more difficult than in the case of a fixed point which
is a density lying in the space U. We shall see in the next section that the presence
of some ambiguity aversion allows to smooth such a degree of unpredictability out.

5. Ambiguity attitude. Thus far, we have simply focused on how the presence of
ambiguity affects the public debt ratio by affecting the evolution of its density. We
now analyze policymakers’ reaction to ambiguity and its consequences on the pub-
lic debt dynamics. Since our framework is purely dynamic abstracting completely
from an optimal decision making process, we assume that a simple rule character-
izes entirely policymakers’ ambiguity attitude. Specifically, we suppose that they
adjust the available vague-information embedded in the empirical distribution with
a measure of their ignorance embedded in the uniform distribution. Formally, we as-

sume that the IV different assessments are associated with weights %t,7=1,..., N,
and maps w; () = “ﬁ;” T+ g +7 - satisfying the almost non-overlapping property

(Assumption A.1), such that our extended model to account for ambiguity attitude

ITo overcome any issue related to the existence of a density in the L2 space and its interpre-
tation along with the difference between the space of L? densities and the space of cumulative
distributions, we could formulate an extended operator on the space of distributions D([0,1]).
This space includes, in fact, regular LP densities as well as singular Dirac-type functionals. An
IFS-type operator on D([0,1]) has been defined in Forte and Vrscay [14], but its mathematical
formalism and theory go beyond the scope of this paper.
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reads as:

N
I < 1+ 1 1+
A ; {w <1+Ti—Ti>Utowz * w)1+7“i—7'i (18)

where w; € [0,1]. Instead of relying on the arithmetic mean assigning the same
weights % for all ¢ as in the previous section, in (18) at each iteration the density
of the debt ratio at time ¢ + 1 is obtained as a weighted average of the previous
period’s modified copies of its empirical distribution by means of different weights
<, each of them determined by w; < 1, for alli =1,..., N. In the definition of such
weights, w; < 1 suggests that the policymakers assign only a certain level of relia-
bility to the information provided by the empirical density u; when assessment ¢ is
considered. Such partial reliability of the empirical distribution is adjusted through
a term which measures policymakers’ ignorance regarding the true parameter val-
ues, captured by the second additive term in the square bracket in (18). Whenever

w; < 1, e positive constan — W —Li— is (uniformly) added to each term
1, the positi tant (1 i formly) added to each t

(1 Ji:rlr> U O W, 1 the latter being itself diminished by the multiplicative coeffi-

cient w; < 1. We may therefore interpret w; as the “degree of ambiguity tolerance”
and its complement to 1, (1 — w;), as the “degree of ambiguity aversion”. Note that
when w; =1 for all § = 1,..., N this model boils down to the one presented in the
previous section.

Our above model’s specification states that whenever w; < 1 the dynamic de-
scribed in (18) at time ¢ + 1 produces a distorted copy of wu; for assessment i ex-
hibiting a larger level of uncertainty than that observed at time ¢ through w; such
an increase in uncertainty is obtained by adding the constant (uniform) probabil-
ity (1 —w;) 1_&;’:1‘71 to each value of u; (z), for all z € [0,1]. The latter constant
term adds some measure of ignorance to the distribution in the current period, u;,
determining a next period’s density, w11, which becomes flatter (i.e., closer to the
uniform density w () = 1) than the distorted copy of u; that would result without
such additive constant. This means that the i-th assessment exhibits an increasing
level of uncertainty as time elapses, or, equivalently, that, after each iteration of sys-
tem (18), the probability of less likely outcomes becomes proportionally larger than
that of more likely outcomes in relative terms. Therefore, our setup suggests that
the presence of ambiguity aversion increases the level of uncertainty by increasing
the weight of unlikely outcomes. The following example may help to interpret this

property.

Example 1. Let v : [0,1] — Ry be defined by v(xz) = 2x; clearly v(x) is a

density because fol 2zdx =1. Let w = % and consider the transformation u (z) =

wv (x)+ (1 — w) = z+5; clearly u () is still a density on [0,1] as fol (z+3)dx=1.
However, with respect to v (), u (z) represents a flatter density concentrating larger
probabilities on values = closer to 0 and lower probabilities on values x closer to 1
than v (z) does.

Our extended model can thus be written as a dynamical system by defining the
following operator 1"

N

12 1+ . 14
T = — / ) - . 17 ) — | . 19
' N= {w (1+ri_7i>uowl i w)l—i—m—ﬂ (19)
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where, again, the prime means that the sum operates only on those terms for which
w;l € [0, 1]. Given that ug € U is the density of x¢, the density w11 can be obtained
by the action of the operator T" on wu¢, that is, u;+1 = Tuy. This means that operator
T is defined according to (4) whose constituents are the maps w; (z) = s;x + a; of

the type defined by (1) with

1 - )
s = +rn-7 and a; = Ji , (20)
L+ L+

together with greyscale maps ¢; (y) = oy + B; of the type defined by (2) with

Y (1+—> wd =y <1+n _) 2D
foralli=1,...,N.

We are now ready to establish our main result. It states that, unlike the model
based on a simple average of assessments discussed in section 4 in which the limiting
distribution may exhibit singularity features that increase its level of unpredictabil-
ity, the ambiguity aversion characterizing the policymakers’ response to vagueness
in past information, represented by the terms w;, under certain conditions may en-
sure that the dynamic generated by (19) converges to a unique invariant density
characterizing a much smoother tool to estimate probabilities in the long run. The
conditions needed broadly require that on average there is enough ambiguity aver-
sion in the response to the vague information associated with the i assessments, for
i=1,...,N. Let U be the space of all density functions as introduced in Definition
2.3 and note that the parameters’ choices in (20) and (21) satisfy property ii) of
Proposition 3, so that the following proposition is just an application of the previous
Proposition 3.

Proposition 6. Suppose that Assumption A.1 holds true together with the following
conditions:

i): parameters r;, v;, 7; and g; satisfy condition (8), that is,

1+r,— 7 14+r,—7+g

0< < <1 ori=1...N,
- 14y 1+ - J
ii):
N 1
— i | ———— < 1.
N;w <1+Ti_7i>

Then the debt-to-GDP ratio dynamics model defined by

N
1 L+ -1 L+
=Tu = — "New; | ————2 5 1—w) | ———™
o " Nizzl [wz(1+7"iﬂ' et +( i) L+r—7
has a unique fized (steady-state) point u € U that is also a global attractor, namely:
Up, 3 U,

for any initial condition ug € U. Moreover, @ is characterized by the following
expression:

N
T oY 147 Y gow! L+

N \l+ri—-7 ' l—wi) (/|- 22
' N; [w <1"‘7”i—7'i)uowZ * w)(l—i-m—n (22)
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Unlike what we have seen in section 4, Proposition 6 shows that the unique fixed
point for our extended model is still an element of the space U, that is, a density,
as under assumption ii) operator T defined in (19) is a contraction according to
Proposition 1 and thus all the results in Proposition 3 directly extend to our model
as well. Moreover, equation (22) shows that @ is a self-similar object as it is the sum
of distorted copies of itself. Note that condition ii) requires ambiguity tolerance co-
efficients w; to be sufficiently small on average. In other words, a sufficient level of
ambiguity aversion—represented by the complement coefficients (1 — w;)—is neces-
sary in order to smooth out singularities upon the limiting density that may appear
in the model without ambiguity attitudes of section 4. Paradoxically, the unpre-
dictability of a stochastic dynamic like that defined by (15) is being smoothed out
by adding more uncertainty to the system. Of course there is a trade-off: on the one
hand, the additional uncertainty originated by the constant terms (1 —w;) 1 Ji:"ﬁT
in the operator T defined by (19) leads to a limiting density that is flatter (closer
to the uniform density), and thus less informative, than the fixed points of operator
T3 defined in (16); on the other hand, whenever assumption ii) in Proposition 6
is met—that is, in presence of a sufficient level of ambiguity aversion—the limiting
density becomes perfectly predictable. Hence, there is a price to pay for predictabil-
ity: a flatter (more uniform), less informative limiting density that, however, can
be completely foregone.

The following corollary helps us to appreciate how adding more uncertainty to
the system after each iteration according to operator T in (19) when the con-
tractivity assumption ii) of Proposition 6 is satisfied affects the limiting density
by showing that, when the assessments considered by policymakers are “symmet-
ric” (specifically, w; are wavelet-like maps), the fixed point of operator T in (19) is
the uniform density itself regardless of the initial density ug, that is, the system
always converges to the most uninformative distribution.

Corollary 3. Under conditions i) and ii) of Proposition 6 assume further that the
maps w; are wavelet-like, that is, suppose that

_ - = d = =
S 1+,771 N an a; 1+’YZ N

Then operator T defined in (19) has always the uniform density @ (x) = 1 as its
unique fized point for any initial density ug (x).

fori=1,...,N. (23)

Proof. As under condition ii) of Proposition 6 operator T in (19) is a contraction, to
guarantee existence and uniqueness of its fixed point it is enough to find a density
@ satisfying equation (22):

N
m m 1 1+’YZ _ -1 1+’yl
=Tu=—Y "|w|—"— ; l-—w) | ———
TN Y [w (Hn——n o+ (e \ T,

N
= %Z’ [wiNt@ow; " + (1 — w;) N]| :Z’ [wii o w; ™ + (1 — w;)] (24)

i=1
where in the third equality we used the first condition in (23). If we replace @ (z) = 1
into the last term of (24) we have wow; ' =1 for alli = 1,..., N, so that

N

N
i(2) = (Ta) (@) = 3w+ (1—w)] =Y 1= 1=a(a),

=1 =1



PUBLIC DEBT DYNAMICS UNDER AMBIGUITY 5889

where the fourth equality holds because the prime in the sum implies that we are
actually taking the union of the constant 1 over the partition of [0, 1] formed by the
subintervals of size 3 that, according to condition (23), are the sets w; ([0,1]) for i =
1,...,N; specifically, wy ([0,1]) = [0, %], w2 ([0,1]) = [+, %] ..., wn ([0,1]) =

(A1) 0

Note that calculations similar to those in the last part of the proof of Corollary 3
hold also for operator T3 defined (16) for the model discussed in section 4, so that,
whenever the the maps w; are wavelets, the unique fixed point for T, does belong
to the space U of densities, being it always the uniform density regardless of the
initial density ug. This fact will be illustrated in the next section.

6. Numerical simulations. Thanks to the “piecewise” routine embedded in Maple
we built a simple algorithm that directly iterates the definition of operator T" in (19)
by transforming any density w; into its next step density uy,1.°> There is no need to
keep track of all intervals in each pre-fractal (i.e., the images of the maps w; after
each iteration) as the piecewise function routine in Maple does it automatically.
This feature together with the symbolic computation of integrals in Maple allows
us to start from any initial density ug on [0,1] which is integrable in closed-form
and follow its transformation after each iteration to appreciate how exactly opera-
tor T' shrinks ‘horizontally’ and modifies ‘vertically’ the marginal density u;. While
the algorithm works also under the strong no overlap condition—introducing ‘holes’
among the image sets w; ([0, 1]) after each iteration so to have a Cantor-like set as
support for the limiting distribution—we will consider only examples satisfying the
almost non-overlapping property (Assumption A.1). We follow the order in which
we introduced the three operators T* according to (11), Tx according to (16) and
T according to (19) in sections 3, 4 and 5 respectively. We consider at most three
different assessments i = 1,2, 3, and in all assessments we fix the exogenous growth
rate at the constant level v = 0.02 while the exogenous international interest rate is
assumed to take the following three different values: r; = 0.02, ro = 0.05, r3 = 0.08.

Our first exercise aims at illustrating the behavior of the algorithm in the bench-
mark model considered in section 3, that is, we apply it to operator T defined in
(11). Assuming v = 0.02 and r = 0.02, we set 7 = 0.51 and g = 0.255, so that the

(unique) map w (x) = sx + a has parameters s = 1J{_:7 =1anda = s = 1
. 1 s . . P 1. .
respectively, while its unique fixed point is T = ij = =3 the (unique) greyscale
14~ _ 1 _

map ¢ (y) = ay + B has parameters o = 2 = ¢ 2 and 5 = 0. In this
case operator T does not satisfy Assumption A.l because the image set of the
map w (x) is a proper subset of [0,1] and is not contractive; however, it has the
unique fixed point represented by the Dirac distribution § 1 (z) concentrating all
the probability on the fixed point = %, regardless of the initial density ug. Fig-
ure 1 plots the first 7 iterations of operator T* starting from the bimodal initial
density ug (z) = 12 (z — %)2 as obtained by running our Maple algorithm: after
each iteration operator T™ clearly shrinks the support of the marginal density u;
while augmenting its height, letting the dynamic converge to ¢ 1 (z) as t — oo. Fig-
ure 2 plots the evolution of the corresponding cumulative distribution functions F}
associated to the densities u; in Figure 1.

2The detailed code is available upon request.
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FIGURE 1. First 7 iterations of operator T* defined in (11) for the only
map w (z) = 1z + I together with the only greyscale map ¢ (y) = 2y
starting from wo (z) = 12 (z — %)2
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0.8 0.8 0.8 0.8
0.6 0.6 0.6 0.6
FO F1 F2 F3
0.4 0.4 0.4 0.4
0.2 0.2 0.2 0.2
0 "0204,06 08 1 0 020440608 1 O 0204,0608 1 O 02 04,06 08
(a) (b) (c) (d)
H 1 14 14
0.8 0.8 0.8 0.8
0.6 0.6 0.6 0.6
F4 F5 Fé F7
0.4 0.41 041 0.4
0.2 0.2 0.2 0.2
070270440608 1 0 02040608 1 0 0204,0608 1 O 02 04,06 08 1
(e) () (8) (h)

FIGURE 2. cumulative distribution functions associated to the densities
u in Figure 1.

Next, we apply our algorithm to an example with N = 2 assessments of the type
discussed in section 4 for which we consider the following pair of parametrizations.:
v = 0.02, 1 = 0.02, 7y = 0.765, g1 = 0, and v = 0.02, ro = 0.05, 72 = 0.285,
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g2 = 0.255, so that the maps w; (z) = s;2 + a; have parameters s, = 1=2=7 — 1

1+ 4
_ 91 _ _ 14ro—10 _ 3 _ 92 _ 1 : :
a = 74, = 0 and s = T = 1 a2 Trs 7 respectively, while the
1
greyscale maps ¢; (y) = a;y + 3; have parameters a; = m = 5e- = 2
- Ity 1 2 — — iQ eag *
and as = S0Trecrs) = 255 = 3 with §1 = B2 = 0. In this case the operator T4

defined in (16) satisfies Assumption A.1—so that the union of the images of the
maps wy ([0, 1]) Uws ([0,1]) is the whole interval [0, 1] while such images almost do
no overlap—but again it is not a contraction. Figure 3 plots the first 7 iterations of
operator T3 as obtained by running our Maple algorithm starting from the uniform
initial density wg () = 1, while Figure 4 reports the corresponding cumulative
distribution functions F} associated to them. Figure 5 shows the first 7 iterations of
the same operator Ty but now starting from the bell-shaped initial density ug (x)

3.38526_(690_3)2, while Figure 6 reports the corresponding cumulative distribution
functions F;. Clearly, Figures 3 and 5—as well as Figures 4 and 6 for the cumulative
distribution functions—report different graphs for the first iterations because the
algorithm starts from different initial densities ug; however, already after the 5"
iteration they start looking similar in qualitative terms. Although the spike of the
first modified copy of the initial density up—that closest to 0 in Figure 5(b)—in
Figure 5 keeps being more than three times taller than the analogous one in Figure 3
after each iteration, Proposition 5 assures that both sequences of marginal densities
u; must converge to the same fixed point as ¢ — oo, which may possibly be a
singular measure.

1 2 4 81
0.8 157 37 6
0.6
uo ut 14 u224 u344
0.4
02 057 1] 27—LH—\;
0 020440608 1 O 02040608 1 0 020440608 1 0 02 04,0608 1
(a) (b) (c) (d)
15 30 60 120
100+
10 20 401 80+
ud ub ué U7 go1
51 10 201 40L L
201
Al 0 WML L. b 1P
0 02040608 1 0 020440608 1 0 02040608 1 0 02 04,0608 1
(e) () () (h)

FIGURE 3. First 7 iterations of operator 75 defined in (16) for the
maps w1 (z) = 1z and w (z) = 22 + § together with greyscale maps
¢1 (y) =2y and ¢2 (y) = %y starting from uo (z) = 1.

4

As observed at the end of section 5 after Corollary 3, if the maps w; are wavelets
the uniform density is the unique fixed point for the operator Ty defined in (16). Of
course, if the initial density is the uniform density itself our algorithm just replicates
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FIGURE 4. cumulative distribution functions associated to the densities
u¢ in Figure 3.
34 61 12 259
104 20
- - 8,
u0 ut u2 us’®
& 10
1 2] 47
21 5]
0 02040608 1 9 02040608 1 0 02040608 1 0 0204,0608
(a) (b) (c) (d)
50 100 200 400
40 804 1501 300
30 601
u4 ub U6100, U7200
20 407
10 20 50 100
0 0204,0608 1 0 020440608 1 0 02040608 1 0 020440608
(e) ) () (h)

the same uniform density after each iteration; hence, it is more interesting to check
the evolution of the transition densities when the initial density ug is different than

ug () Suppose that N = 2 with the following pair of parametrizations.:

FIGURE 5. First 7 iterations of operator 75 defined in (16) for the

maps w1 ()

= 1.

1

= 1z and wy (z) = 32+ 1 together with greyscale mans
#1 (y) = 2y and ¢2 (y) = 2y starting from uo (z) = 3.3852¢~ (623",

3
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FIGURE 6. cumulative distribution functions associated to the densities
u¢ in Figure 5.

v =002, ry = 0.02, 7, = 051 ¢4
g2 = 0.51, so that the maps w; () =

= 0, and v = 0.02, 7o = 0.05, 72 = 0.54,
$;x + a; turn out to be wavelets defined by

81 = 89 = 1+171;7'1 — 1+1ri;72 = %, a; = 1‘1—17 =0, a3 = 15_’; = % respectively, while
_ _ _ 1 _ 1 _
the greyscale maps ¢; (y) = a;y + f; have parameters a; = ag = TsT = 35; = 1

with B, = B2 = 0. Figures 7(a) and 7(b) show the 5! and the 7t" iterations of
operator T4 respectively as obtained by running our Maple algorithm starting from
the increasing initial density ug (z) = 322, while, as usual, Figures 7(c) and 7(d)
reports the associated cumulative distribution function. In Figure 7(a) the 25 = 32
shrunken copies of the initial increasing density uo (z) = 322 (the half parabolas)
are still apparent, while in Figure 7(b) there are 27 = 128 (more squeezed) copies so
that they become hard to discern. Clearly, because a3 = a; =1 and 51 = 82 = 0,
the spikes of all half parabolas remain at level ug (1) = 3 > 1 after all iterations,
thus misleading into the wrong conclusion that the limiting fixed point should be
something different than the uniform density. However, Proposition 5, establishing
uniqueness of the fixed point, together with our knowledge of ug () = 1 being a
fixed point, guarantee that also the marginal densities in Figure 7 must converge to
the uniform density as ¢ — oco. This implies that after a sufficiently large number
of iterations operator T3 tends to concentrate all probability into the square [0, 1]2,
that is, on the lower third portion of all the half parabolas visible in Figure 7(a).
The next example considers N = 3 assessments of the type discussed in section
4 for which we consider the following set of parametrizations.: v = 0.02, r; = 0.02,
71 = 0.8925 g1 = 0, v = 0.02, ro = 0.05, 79 = 0.6675, go = 0.1275, and v = 0.02,
rg = 0.08, 73 = 0.57, g3 = 0.51 so that the maps w; (x) = s;x + a; have parameters

— 14m-m _ 1 — 91 _ — l4ro—7 _ 3 — 92 _ 1 —
e —8,a1—1+7—0,32— i1y —8,a2—1+7—8and53—
1+7r3—T 1 _ g3 __ 1 : : . — .

et =5 =15 =3 respectively, while the greyscale maps ¢; (y) = a;y+ 5;



(c) (d)

FIGURE 7. a) 5" and b) 7*" iteration of operator T defined in (16)
for the wavelets maps w1 (z) = 2 and ws (z) = 1z + 5 together with
greyscale maps ¢1 (y) = ¢2 (y) = y starting from ug (x) = 322, c) and d)
cumulative distribution functions associated to the densities us and wur.

iz%,agzﬁzgandagzizgwithﬁlzﬁgz
B3 = 0. Again the operator T3 defined in (16) satisfies Assumption A.1 and it is not
a contraction; nonetheless, existence and uniqueness of its fixed point are ensured
by Proposition 5. Figure 8(a) shows the 5" iteration of operator T} as obtained by
running our Maple algorithm starting from the uniform initial density ug (x) = 1,
while Figure 8(b) reports the corresponding cumulative distribution function. With
N = 3 maps the algorithm slows considerably, due to the fact that it quickly fills
the whole plot after just a few iterations; this is why with three maps we stop it
after 5 iterations.

We now focus on the role played by ambiguity attitudes as introduced in section
5 to define operator T' according to (19). We apply our algorithm to the same
example with N = 2 assessments considered in Figures 3-6, that is, for v = 0.02,
ry = 0.02, 74 = 0.765, g1 = 0, and v = 0.02, ro = 0.05, 72 = 0.285, go = 0.255,
so that again s; = %, a1 = 0 and sy = %, as = i. Now the parameters of the
greyscale maps ¢; (y) = «;y + ; depend on the degree of ambiguity tolerance w;

have parameters a; =
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1,
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201 041
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FIGURE 8. a) 5" iteration of operator T3 defined in (16) for the maps
wy (x) = gz, w2 (z) = 2+ § and ws (z) = Lo + 3 together with
greyscale maps ¢1 (y) = Sy, ¢2 (y) = Sy and ¢s (y) = 2y starting from
up (z) = 1, b) its associated cumulative distribution function.

and its complement to 1, (1 —w;): in this first approximation we assume that all
ambiguity aversion is associated to the first assessment by setting wy = %, while no
ambiguity aversion is associated to the second assessment, so that wy = 1 Hence,

w1 1+~ w2 1— wl 1+ _ l-wy __
ay = 5 <1+7'1—71> - 281 5 and ﬁl - (1+7'1—7'1) - 28 ’ while
_ w2 1+ _ wy _ 2 _ 1w 14~ _ l—ws __
@2 = 3 (1+r2—72> = 5% = 3 and B2 = 5 (1+r2—72> = &, = 0. With
such a parameterization operator T’ deﬁned in (19) satisﬁes Assumptlon A.1 and
. . . 1 2 . _t,_»y _
it is a contraction, as 5 > ;_; w; (H—n—n) =53 Zz Jwis; 2 =0.78 < 1, so that,

according to Proposition 6, its fixed point not only is unique, but is itself a density in
the space U starting form any initial density ug. Figure 9 plots the first 7 iterations
of operator T as obtained by running our Maple algorithm starting from the uniform
initial density wug (z) = 1, while Figure 10 reports the corresponding cumulative
distribution functions F;. Figure 11 shows the first 7 iterations of the same operator
T but now starting from the bell-shaped initial density ug (z) = 3.3852¢~(62=3)
while Figure 12 reports the corresponding cumulative distribution functions F}. It
is clear from all four figures that now operator T converges to the same invariant
density exhibiting a somewhat decreasing pattern reported in both Figures 9(h) and
11(h).

We now proceed with the same parameter values for the maps w; used in the
last example described in Figures 9-12 but assume the same ambiguity aversion for
both assessments w1 = wo = l In this case the greyscale maps have parameters
a; = =1and 8 = 2;“ 1, Whlleagzg"%:%andﬂgzlg‘;?:%.
With such a parameterization operator T deﬁned in (19) satisfies Assumption A.1

and is still a contraction, as 3 Z _q wis; % = 0.79 < 1, so that its fixed point
exists, is unique, and is a density in the space U starting form any initial density
ug. Figure 13(a) reports the 7t" iteration of operator T as obtained by running
our Maple algorithm starting from the uniform initial density ug (z) = 1, which
is an approximation of the unique fixed point of operator T', while Figure 13(b)
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i 24 1
08 151 2
i 157 i
0.6 15
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0.4+ 11 1]
0.2 057 0.5 057
0 0204,0608 1 0 020440608 1 O 0204,0608 1 0 0204406 08 1
(a) (b) (c) (d)
25 251 251 25
24 21 21 24
LS 4515 NS 75
1 1 14 1
051 054 0.5 0.5
0" 0204,0608 1 0 020440608 1 O 0204,0608 1 0 0204406 08 1
() () (8) (h)
FIGURE 9. First 7 iterations of operator T' defined in (19) for the maps
wi (z) = t2 and wa (z) = 324 1 together with greyscale maps
1(y) = 2y + 8 and ¢2 (y) = 2y starting from wug (z) = 1.
5 5 3
1 1 1 1
0.8 0.8 0.8 0.8
0.6 0.6 0.6 0.6
FO F1 F2 F3
0.4 0.41 041 0.4
0.2 0.2 0.2 0.2
0 "0204,0608 1 0 02040608 1 O 0204,0608 1 0 0204406 08 1
(a) (b) (c) (d)
1 1 1 1
0.8 0.8 0.8 0.8
0.6 0.6 0.6 0.6
F4 F5 F6 F7
0.4 0.4 0.4 0.4
0.2 0.2 0.2 0.2
0702 04,06 08 1 O 0204,0608 1 0 02040608 1 0 0204,0608 1
() () (8) (h)

FIGURE 10. cumulative distribution functions associated to the
densities us in Figure 9.

reports the associated cumulative distribution function. Clearly, even if density uy
in Figure 13(a) still resembles a somewhat decreasing pattern, due to the ambiguity
aversion more spread across the two assessments it exhibits a flatter graph than
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FIGURE 11. First 7 iterations of operator T' defined in (19) for the

maps w1 ()

5

o1 (y) = gy—i—g and ¢2 (y) = %y starting from uo (z) = 3.3852¢ (623

1

= ;o and ws (z)

gx + i together with greyscale maps

2

0.8 0.8 0.8 0.8
0.6 0.6 0.6 0.6
Fo Fi F2 F3
0.4 0.4 0.4 0.4
0.2 0.2 0.2 0.2
07 0204,0608 1 0 02040608 1 0 0204,0608 1 0 02 04,0608 1
(a) (b) (c) (d)
1 1 1 1
0.8 0.8 0.8 0.8
0.6 0.6 0.6 0.6
F4 F5 F6 F7
0.4 0.4 0.4 0.4
0.2 0.2 0.2 0.2
0 0 L0 ‘

07702 04,06 08 1
(e)

02 04,06 08 1
()

02 04,06 08 1
()

0.2 04406 08 1
(h)

FIGURE 12. cumulative distribution functions associated to the
densities u; in Figure 11.

that in Figures 9(h) and 11(h); such a feature emphasizes the role of ambiguity
aversion in letting the limit invariant distribution be closer to the uniform density.
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FIGURE 13. a) 7" iteration of operator T' defined in (19) for the maps

wi (z) = 12 and ws (z) = 3z + 1 together with greyscale maps

#1(y) =y+ 1 and ¢2 (y) = 2y + & starting from uo (z) = 1, b) its
associated cumulative distribution function.

To illustrate Corollary 3 assume that the N = 2 maps w; are wavelets; such a
configuration, for example, is obtained with v = 0.02, ry = 0.02, ; = 0.51, g1 = 0,

and v = 0.02, ro = 0.05, 2 = 0.54, go = 0.51, so that s; = sy = %, a1 = 0 and
ag = % If the ambiguity aversion parameters are wy = % and wy = % the greyscale
maps ¢; have parameters aq = 32 = 2 and By = 712*;;’1 = 2, while ay = T2 = 3
and By = 1 22 = L. Operator T defined in (19) still satisfies Assumption A.1 and

it is a contraction, as %Z?Zl wisi_% = 0.85 < 1, so that, according to Corollary
3, must have the uniform density as the unique limit distribution starting form
any initial density ug. Figure 14(a) reports the 7*" iteration of operator T as
obtained by running our Maple algorithm starting from the bimodal initial density
ug () = 12 (x — %)2, which provides an approximation of the unique fixed point
of operator T', while Figure 14(b) reports the associated cumulative distribution
function. Figure 14(a) shows that subsequent iterations of operator T tend to
smooth out the spikes of the initial bimodal density, which are maintained in all
finite marginal densities u;, and let them disappear in the limit to converge to the
unique fixed point 4 (z) = 1.

If the assumption of having N = 2 wavelets maps, w; (z) = 1z and ws (z) =
%m + %7 as in the last example is coupled with the same ambiguity aversion for
both assessments, w; = wy = %, the greyscale maps’ parameters turn out to be

o=y = g = Land B = o = 12_: = 1, so that operator T, which is still a

1
contraction as % Z?Zl w;s; > =0.71 < 1, becomes perfectly symmetric. In this case,

whenever the initial density wug is different than the uniform density, convergence
toward the (unique) fixed point, which, by Corollary 3, must be the uniform density
@ (x) = 1, becomes smoother than the transition path described in Figure 14(a),
where the taller spikes of the finite marginal densities are concentrated toward the
right endpoint of the interval [0,1]: Figure 15(a) shows that the 7*" iteration of
operator T as obtained by running our Maple algorithm starting from the same
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FIGURE 14. a) 7" iteration of operator T defined in (19) for the maps
w1 (z) = 12 and wy (x) 1z + 1 together with greyscale maps
o (y) = 5y+7 and d)g( ) = 2y + ¢ starting from

12 (z —

) , b) its associated cumulative distribution function.

w\»—t

bimodal initial density ug (z) = 12 (x — 5) Unlike the marginal density in Figure
14(a) has spikes which are smaller and uniformly distributed over the whole interval
[0, 1], while the associated cumulative distribution function reported in Figure 15(b)
looks quite the same as that in Figure 14(b). Such a configuration envisages a faster

convergence toward the unique fixed point @ (z) = 1.

1 1
081 08-
06 06-
u7 F7
04 041
021 02
0 02 04 ) 06 08 1 0 02 04 06 08 ‘

FIGURE 15. a) 7*" iteration of operator 1" defined in (19) for the maps
wy (z) = 32 and wa (z) = 32+ % together with greyscale maps
¢1(y) = ¢2 (y) = 3y + 3 starting from o (z) = 12 (z — %)2, b) its
associated cumulative distribution function.

The next example recalls the same N = 3 assessments considered in Figures 8
and 9 to which ambiguity aversion is being added. Specifically, we set v = 0.02,
ry = 0.02, 74 = 0.8925 g1 = 0, v = 0.02, ro = 0.05, 70 = 0.6675, go = 0.1275, and
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v =0.02, r3 = 0.08, 73 = 0.57, g3 = 0.51 so that the maps w; (z) = s;x + a; have

. _ 147 1 _ 91 __ _ l4ro—71 __ 3 — 92 _ 1

pau"ame‘wsrs1 S1= i, = 5 @ —11+7 =0, s9 = i = g G2 —11+7 = g
— 1trza—m3 _ 1 — 93 _ 3 3 — —

and sz = e =g a3 =105 =5 respectively. By assuming w1 = ¢z, w2 = ¢
and ws = 1, so that in the third assessment there is no ambiguity aversion, the
greyscale maps ¢; (y) = ayy + §; have parameters a; = é"Tl =15 and B = 1:;‘*1’1 =
32 _ wy __ 16 _ 1wy _ 8 — w3 _ 2 —
5 @2 = 50 = g5 and o = 5% = gp, a3 = g = 3 andﬁ3_ 5 = 0

Again the operator T defined in (19) satisfies Assumption A.1 and is a contraction
as %25:1 wis;% = 0.88 < 1, so that its fixed point exists, is unique and is a
density starting form any initial density ug. Figure 16(a) shows the 5" iteration of
operator T as obtained by running our Maple algorithm starting from the uniform
initial density ug () = 1, while Figure 16(b) reports the corresponding cumulative
distribution function.

4 1
08
3,
06
5 F5
0.4
17 02,
0 02 04 _ 06 08 1 0 02 04 . 06 08 1

(a) (b)

FIGURE 16. a) 5th iteration of operator T defined in (19) for the maps
w (z) = $z, we (z) = 890 + 1 and ws (z) = 32 + & together with
greyscale maps o1 (y) = 15y+ 32, ¢ (y) = 2y + 5 and ¢3 (y) = 2y
starting from uo () = 1, b) its associated cumulative distribution
function.

Finally, we consider the same N = 3 assessments just studied but by exchanging
the levels of ambiguity aversion across assessments; that is, to the same maps w;
taken above we set w; = 2 (low ambiguity aversion) and wy = w3 = & (high
ambiguity aversion associated to the last two assessments),” Then, the greyscale
maps ¢; (y) = a;y + B; have parameters oy = = % and 81 = 1;;‘1’1 = 1%,
ay =2 = and By = 522 = 3 a3 = £2 = & and f3 = 152 = £ Operator
T defined in (19) is a contraction as %Z?:l wisi_% = 0.86 < 1, and the limit
distribution exists, is unique and is a density starting form any initial density ug.
Figure 17(a) reports the 5 iteration of operator T as obtained by running our
Maple algorithm starting from the uniform initial density uo () = 1, while Figure
17(b) plots the corresponding cumulative distribution function. Now the largest
share of ambiguity aversion is attributed to the (last two) maps that are steeper:

3We cannot just use the opposite levels of the previous case because with w; = 1, wy = % and
w3 = % the contractivity condition ii) of Proposition 6 would be violated.
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because they shrink slower horizontally and a larger constant probability is added
to them after each iteration, the resulting marginal density after 5 iterations of T" in
Figure 17(a) turns out to be characterized by a higher spike close to the 0 endpoint
and by a flatter pattern on most other points than that in Figure 16(a).

Note that in all examples featuring ambiguity aversion, in order to satisfy the
contractivity condition ii) of Proposition 6 the coefficients w; must be on average suf-
ficiently small; this requirement becomes stricter as the number N of assessments—
i.e., of the maps w;—increases.

25 N
20 08
15 06

u5 F5
101 0.4
su 021
0 02 04 . 06 08 10 02 04 . 06 08 1

FIGURE 17. a) 5" iteration of operator T' defined in (19) for the maps

wy (z) = $z, wa (z) = 22+ % and ws (z) = Lz +  together with

greyscale maps ¢1 (y) = 2y + £, ¢2 (y) = £y + 5 and
@3 (y) = rl5y + % starting from uo (z) = 1, b) its associated cumulative

distribution function.

7. Conclusion . Uncertainty is an essential characteristic of macroeconomic dy-
namics and thus it is important to understand the implications of different sources
of uncertainty on economic activities. In the economic growth literature random-
ness is typically modeled with a scenario-based approach, in which the occurrence
of shocks is associated with variables taking on specific values with specific prob-
abilities. However, parameter values are largely unknown and thus this approach
does not allow to account for such information-based uncertainty, which instead
introduces ambiguity in the picture. Our paper analyze the implications of ambi-
guity and ambiguity attitude on macroeconomic dynamics by developing a novel
approach based on iteration function systems on density functions in the context of
economic growth and public debt stabilization. We assume that the debt-to-GDP
ratio is described by a random variable to take into account the randomness asso-
ciated with the formation of expectations, but it is also affected by ambiguity since
policymakers need to develop subjective assessments to forecast unknown parameter
values. We formalize policymakers’ response to ambiguity with a simple heuristic
rule in which the empirical distribution of the debt ratio is adjusted with an igno-
rance measure, captured by the uniform distribution. We show that ambiguity is a
source of unpredictability since it introduces some singularities in the steady state
distribution of the debt ratio. Policymakers’ ambiguity aversion removes such an
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unpredictability by smoothing out the singularities in the steady state distribution
reducing thus the degree of uncertainty associated with the equilibrium outcome.
However, this comes at the cost of a more uniform and less informative steady state
distribution.

We exemplify the implications of our analysis through numerical simulations
showing the large variability of the long run outcomes in the debt-to-GDP level.
Apart from the cases of convergence to the uniform density characterized by wavelets
maps w;, all our simulations exhibit approximations of the invariant distribution
consisting of densities which are decreasing on average, independently of policy-
makers’ ambiguity attitude. Such a property arises not by coincidence: it depends
on the choice of having always flatter maps w; closer to the left endpoint 0 of the
interval [0, 1] than those closer to the right endpoint 1. This suggests that the slope
of the maps w; could in principle be tuned by appropriate choices on the policy pa-
rameters 7; and g; (specifically, by choosing high and zero—or close to zero—values
for each of them respectively). In other words, a simple rule of thumb, rather than a
sophisticated optimality criterion, on the choice of parameters 7; and g; in some as-
sessments may prove effective enough in containing the long-run debt-to-GDP level.
It may be interesting thus to analyze how fine-tuning of the policy parameters may
lead to long-run distributions which tend to concentrate more mass (probability)
on lower values of the debt-to-GDP ratio x;, providing some level of containment
of the public debt from a probabilistic perspective. Extending the analysis along
this direction is left for future research.
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