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Abstract 

Understanding how variation in weather and climate conditions impact productivity, 

performance and learning is of crucial economic importance. Recently, studies have established 

that high temperatures negatively impact cognition and educational outcomes in several 

countries around the world. We add to this literature by analysing test scores from a national 

assessment of Australian children aged between 8 and 15 years. Using comparable methods to 

previous studies, we find that high temperatures in the year prior to the test do not worsen 

performance. In fact, we find the opposite: additional cold days significantly reduce test scores. 

Moreover, the effect appears cumulative, with cold school days 1-2 years prior also having a 

negative effect. This seemingly contradictory finding is consistent with a literature which finds 

that people living in warm regions tend to inadequately protect themselves from cold 

temperatures, meaning they are susceptible to cold weather shocks. These results are also 

consistent with concerns about potentially harmful effects of unflued gas heaters in schools. 

More generally, we demonstrate that effects of weather conditions are context specific. 
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1. Introduction 

Increased average temperatures and extreme weather due to climate change has focussed 

attention on how environmental factors impact human capital accumulation and performance 

in cognitively demanding tasks. The preponderance of evidence from economics suggests that 

high temperatures (hot days) have a negative effect on a range of cognitive outcomes. Cho 

(2017), Graff Zivin et al. (2018), Roach and Whitney (2019), Park (2020), Park et al. (2020a, 

2020b), and Graff Zivin et al. (2020) all demonstrate that high temperatures on the test day 

and/or in previous days reduce student test scores.1 Similarly, high temperatures have been 

found to reduce trade performance by stock market investors (Huang et al. 2020), affect 

decisions by US immigration judges (Heyes and Saberian, 2019), and weaken performance in 

cognitively intensive sport (Qui and Zhao, 2019).  

But are the strong negative temperature effects universal? Older literatures studying the 

relationship between temperature and health find substantial heterogeneity across geographical 

regions, demonstrating that environmental context is crucial. For example, Curriero et al. (2002) 

conclude that “populations in warmer regions tend to be most vulnerable to cold, and those 

residing in cold climates are most sensitive to heat” (p.85). Vardoulakis et al. (2013) compared 

temperature-related mortality patterns in the UK and Australia, countries with similar 

socioeconomic characteristics but very different climates, and support this conclusion: heat-

related mortality risks in Sydney were lower than in London, while the reverse was true for 

cold-related mortality.  

A likely explanation for this counter-intuitive pattern is that people living in warm climates 

inadequately protect themselves from cold temperatures. Buildings in warmer climates tend to 

have inferior thermal efficiency (e.g. insulation) than buildings in cooler climates (Healy, 2003; 

Moore et al., 2019).2 Similarly, residents of warmer climates are less likely to wear appropriate 

                                                            
1 Cook and Heyes (2020) explore the cognitive effects of very cold temperatures (e.g. <15°C) relative 
to cold temperatures (2.5°C). They find that university exam performance in Ottawa worsens as the 
outdoor temperature declines. Mean temperature in the sample is around -5°C.  
2 Friedman (1987) argued it is rational for houses in warm climates to be colder than houses in cold 
climates. The article begins with the statement “A native of Chicago who spends a winter in Los 
Angeles or Canberra [Australia] is likely to find the houses uncomfortably cold and to express surprise 
that the natives are too stingy to heat their houses properly even though it would cost very little to do 
so” (p.1089). 
 



clothing in winter.3 The large empirical Eurowinter study (1997) concludes that “protective 

measures against a given degree of cold were fewer in regions with mild winters”, implying 

that residents of warmer climates are particularly susceptible to cold weather shocks. 

Given this context, it is important to explore whether the negative temperature-cognition 

relationship can be replicated in different environments around the world. This is the aim of 

our study. We estimate the effects of temperature on maths and literacy test scores in Australia 

using individual-level data on over 2.2 million national standardised tests taken by almost 

400,000 students in over 1,500 schools between 2009 and 2018 in New South Wales.4 The 

tests are taken each year in May by nearly all students in grade 3 (age 8-9), grade 5 (age 10-

11), grade 7 (age 12-13) and grade 9 (age 14-15). The wide range of ages allows us to explore 

the effects of temperature at younger ages than most previous studies. With matched 

government administrative data, we can also explore the moderating effects of family and 

school socioeconomic status. 

Comparing the within school-grade performance of students exposed to different temperatures 

across time, and controlling for test-day and non-school-day temperatures, we do not find a 

negative effect of heat on test scores. In fact, we find the opposite relationship: cold days 

significantly reduce test performance. Importantly, the effect sizes are large. Experiencing 10 

additional school days with a maximum temperature <60°F (<15.6°C) in the year prior to the 

test, instead of ten warm school days, is estimated to decrease test scores by 1.2% of a standard 

deviation. Moreover, the negative effects appear cumulative, with cold school days 1-2 years 

prior to the test also having a negative effect on scores. 

These findings for Australia suggest that the negative temperature-cognition relationship does 

not hold worldwide. Students (and others) may be more vulnerable to whatever weather 

conditions they are less accustomed to, or prepared for.5 These results are also consistent with 

concern about potentially harmful effects of unflued gas heaters, which continue to be used in 

NSW public schools. 

                                                            
3 The Eurowinter study (1997) found that at the same cold-weather temperature (7°C), residents of 
Finland were much more likely to wear a hat than residents of Greece (72 percent versus 13 percent). 
Hats are important because the head has low internal insulation in the cold. 
4 New South Wales is Australia’s most populated state at approximately 8 million people. The state’s 
capital city is Sydney. 
5 Our findings do not imply that climate change will improve student performance in NSW. Climate 
change is increasing average temperature as well as weather variability. 



The remainder of the paper is structured as follows. Section 2 describes data and methods. 

Section 3 presents the results and robustness tests. Section 4 discusses potential mechanisms 

and Section 5 concludes. 

 

2. Data and Methods 

2.1. Data and Descriptive Statistics 

We use individual-level test score data from the National Assessment Program—Literacy and 

Numeracy (NAPLAN) for all New South Wales (NSW) Government (i.e. public) schools. 

NAPLAN is an annual assessment of students in grades 3, 5, 7 and 9, designed to measure 

grade-specific knowledge. The tests cover knowledge in the areas of reading, writing, language 

conventions (spelling; grammar and punctuation) and numeracy. They are undertaken every 

year in the second week of May, and all students across Australia sit the tests on the same days. 

Students with significant intellectual disability and students who arrived in Australia less than 

one year before the tests may be exempted from testing (Miller and Voon, 2012). Parents also 

have the possibility to withdraw their children from the tests, for reasons such as religious 

beliefs and philosophical objections to testing. Overall, NAPLAN participation rates are over 

90% in all subjects and grades (ACARA, 2019, AIHW, 2018). 

Our anonymised data were provided for all students who attended a NSW Government school 

between 2009 and 2018, and who completed at least three assessments during these years. After 

dropping unusual year-grade cells, our main estimation sample includes: grade 3 test score 

observations from 2009 to 2014; grade 5 observations from 2010 to 2015; grade 7 observations 

from 2012 to 2018; and grade 9 observations from 2014 to 2018.6  

In addition to test results, the data contain date of birth and gender of each student, quartile of 

socio-educational advantage (derived from parental occupation and education) and the school 

in which they were enrolled when they completed the test. School-level data is also provided 

                                                            
6 The different sample years by grade are due to the data requirement that students completed at least three 
assessments. For example, most students who completed their grade 3 NAPLAN test in 2015, completed their 
grade 5 NAPLAN test in 2017, and their grade 7 NAPLAN test in 2019. However, 2019 is outside our sample 
range, and therefore these students do not have three observed assessments, and so do not appear in our data set. 



including geographic coordinates and index of community socio-educational advantage, which 

represents relative socioeconomic status of students in a particular school (ACARA, 2015).   

Data from the Australian Bureau of Meteorology were used to construct various temperature 

variables. Specifically, we matched each school to its five closest weather stations, and 

calculated the weighted average daily maximum temperature, with weights equalling the 

inverse squared Euclidian distance from schools to stations. Some schools are far from weather 

stations, introducing measurement error in the predicted temperatures for those schools. To 

reduce the associated attenuation bias, we restrict our main analysis to all students attending 

schools within 20km of at least one weather station (90 percent of all students). With this 

restriction, mean distance to the closest weather station is 7.48km. In a robustness analysis 

reported below, we test the sensitivity of our results by relaxing the 20km distance restriction. 

Table 1 shows descriptive statistics for the main variables, for the main estimation sample. 

Figure 1 shows the distribution of temperatures across school-years included in the main 

estimation sample. Panel A shows the distribution of mean maximum temperatures. For 90% 

of student observations, the mean temperature is between 70°F and 78°F. Panel B shows the 

distribution of the number of cool school days (maximum < 70°F). This distribution is wide, 

ranging from 15 to 186.  

Figure 2 shows the geographic distribution of temperatures across NSW, by Local Government 

Area. Panel A is coloured according to mean maximum temperature, while Panel B is by 

number of cool school days. The inserts show the Sydney region, where over 60% of the NSW 

population live. The regions with the coldest temperatures are towards the south, and near the 

Great Dividing Range, a mountain range which spans the length of the state (and beyond), 

roughly parallel to the east coast.    

 

2.2 Methods 

To estimate the effects of hot and cold days on student performance, we exploit year-to-year 

variation in temperature within a grade in a given school. Specifically, we estimate a baseline 

specification of the form: 

𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = ∑ 𝛽𝛽𝑗𝑗𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑗𝑗,𝑖𝑖𝑖𝑖
𝐽𝐽
𝑗𝑗=1 + 𝛼𝛼𝑖𝑖𝑖𝑖 + 𝜃𝜃𝑖𝑖𝑖𝑖 + 𝜆𝜆𝑇𝑇𝑖𝑖𝑖𝑖 + 𝛾𝛾𝑋𝑋𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖    (1) 



where 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the standardized numeracy or literacy score (multiplied by 100) for student 𝑖𝑖 in 

grade 𝑔𝑔 at school 𝑠𝑠 in year 𝑡𝑡 .7 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑗𝑗,𝑖𝑖𝑖𝑖  is the number of school days in the prior twelve 

months in which the maximum temperature was in bin j. Potentially confounding factors, such 

as school infrastructure and student socioeconomic status, are controlled for with the inclusion 

of school-grade fixed effects (𝛼𝛼𝑖𝑖𝑖𝑖). Changes over time in the test itself are controlled for with 

year-grade fixed effects (𝜃𝜃𝑖𝑖𝑖𝑖). Regression (1) also includes controls for temperatures on non-

school days and test days (𝑇𝑇𝑖𝑖𝑖𝑖), and controls for student characteristics (𝑋𝑋𝑖𝑖𝑖𝑖).  

Under the plausible assumption that temperature varies randomly across years within a given 

school, estimates of 𝛽𝛽𝑗𝑗 can be interpreted as the causal effect of exposure to hot and cold days 

on student performance. We test the validity of this assumption by conducting a placebo test 

in which we regress future temperatures on tests scores. We also regress student-level 

characteristics, such as family socioeconomic status, on temperature to determine whether there 

is an association between changes in student ‘quality’ and changes in temperature, within 

schools over time. The results are discussed in detail in Section 3.3; but the key take-away is 

that the identification assumption appears valid. 

We explore the sensitivity of 𝛽𝛽𝑗𝑗 by presenting estimates from regressions that include control 

variables representing: (i) other weather conditions; (ii) atmospheric pollution; (iii) local 

economic conditions; and (iv) area-specific linear time trends (see Section 3.2). We also present 

estimates from a regression that includes student fixed-effects in addition to the school-grade 

fixed effects and year-grade fixed effects (see Section 3.3). The estimates from these alternative 

specifications support our main conclusion.  

Finally, we estimate versions of regression (1) in which 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑗𝑗,𝑖𝑖𝑖𝑖 is replaced with (i) mean 

maximum school-day temperature over the previous 12 months, (ii) indicators of the decile of 

mean maximum school day temperatures, (iii) number of school days with mean temperature 

in bin j; and (iv) number of school days with minimum temperature in bin j. 

 

  

                                                            
7 We standardize test scores by subject (literacy and numeracy), grade level and calendar year. 



3. Results 

3.1. Baseline Estimates 

The main results are shown in Figure 3. Panel A shows estimated effects of cold and warm 

school days, relative to 70-75 degree days. The results suggest that one additional cold school 

day (<60°F) reduces test scores by 0.15 hundredths of a standard deviation (HSD), one 

additional 60-65°F day reduces scores by 0.10 HSDs, and one additional 65-70°F day reduces 

scores by 0.09 HSDs. These magnitudes are comparable to, indeed larger than, Park et al.’s 

(2020) estimated effects of hot days.8 

Appendix Figure A.1 shows estimates from similar models which instead use minimum and 

mean (average of max and min) daily temperatures. The results support the main finding that 

relatively cold days are associated with lower test scores. The results are strongest for 

maximum temperatures, and weakest for minimum temperatures, suggesting that school-time 

temperature is more important than night-time temperature. 

Panel B of Figure 3 shows estimated effects of the average maximum temperature of all school 

days in the past year. Estimates for each decile are relative to years in the 5th decile. Visually, 

there is a similar pattern as in Panel A, with the graph suggesting that lower test scores coincide 

with cooler temperatures. The test scores following years in the 1st, 2nd and 3rd deciles of the 

temperature distribution are estimated to be 1.94, 3.63 and 1.82 HSDs lower than test scores 

following a year in the 5th decile.9  In contrast, the estimated effects for the upper deciles are 

all close to zero. 

Importantly, these estimated relationships are clearly different to those presented in previous 

research, such as in Park et al. (2020). There is no evidence that hot days or hot years have any 

impact relative to moderate days or years. In Panel A the estimated coefficients of the highest 

four temperature categories are all small, similar and statistically insignificant. The results are 

similar for relatively high deciles in Panel B. However, the 95% confidence intervals are large 

for the estimated effects of hot days, and we cannot rule out reasonably large effects. 

                                                            
8 However, these differences in magnitudes are not generally statistically significant, reflecting the relatively large 
standard errors in our estimates. One useful comparison is between overall estimates of cool and hot days. Our 
estimate for cool days is -0.083 (Table 3, Column 1), whilst Park et al.’s (2020: Table 3) comparable estimate for 
hot days is -0.056. The difference between these two estimates is not statistically significant (p = 0.26). 
9 The average temperatures in the 1st, 2nd, 3rd, and 5th deciles equal 67.8°F; 71.3°F; 72.1°F and 73.4°F. 



Table 2 shows corresponding regression estimates. Column (1), Panel A shows estimates based 

on the main specification, but with a continuous variable representing average annual school 

day temperature (instead of temperature deciles as in Figure 3B), while Column (1), Panel B 

shows the results which correspond to Figure 3A. The estimate in Panel A is positive (0.436), 

but is not statistically significant. Therefore, we conclude that there is no strong evidence of a 

linear relationship between temperature and test performance.10 

3.2. Estimates from Expanded Specifications  

Columns (2) to (6) in Table 2 test the sensitivity of the baseline results to the inclusion of 

additional control variables. Column (2) includes controls for rainfall, wind and humidity on 

school days in the past year and on the test day, and Column (3) controls for school day and 

test day atmospheric pollution.11 These variables are added because they are correlated with 

temperature, and may also affect student outcomes. In both columns, the coefficient estimates 

for number of school days in the past year that were <60°F, 60-65°F and 65-70°F are only 

slightly smaller than the corresponding estimates in Column (1). 

Column (4) controls for the local unemployment rate in the past year, because temperature-

driven shocks to the local economy might affect child wellbeing. For example, through parental 

mental health. Again, the estimates are similar to those in Column (1). Column (5) includes 

indicators of family socioeconomic status quartile, which are based on an index of parental 

education and occupation.12 The estimates from this specification have the same pattern as 

previous regressions – cold days are associated with lower test scores – but the coefficient 

estimates for number of school days < 60°F is somewhat reduced from -0.148 to -0.118. 

                                                            
10 To account for possible nonlinear annual temperature effects (Burke et al., 2015), we re-estimated this model 
with the inclusion of a quadratic function of temperature. The estimated coefficient of temperature-squared was 
close to zero (0.003) with p-value equal to 0.89. The p-value for the joint significance test of the linear and squared 
coefficient terms is 0.30. 
11 The pollution controls are constructed from the Air Quality Index. This is based on atmospheric concentrations 
of ozone, nitrogen dioxide, carbon monoxide, sulphur dioxide, particular matter (PM)-2.5 and PM-10, and 
visibility, collected from monitoring stations around the state. See  
https://www.environment.nsw.gov.au/topics/air/understanding-air-quality-data/air-quality-index 
12 This variable was provided by the data custodian, who advised that “Socio-educational advantage (SEA) quarter 
classifies students into one of four quarters on a measure derived from parental occupation and education attributes. 
Parental occupation and education data is complete for over 90% of students. However, for students with 
incomplete parental data, a multiple imputation methodology is used to impute missing values based on other 
available student level data plus area-based community variables from the ABS census associated with the 
statistical area level 1 (SA1) of student addresses.” The sample size in Columns (5) and (6) of Table 2 is smaller 
than in other columns, because of missing information on the socioeconomic status of around 4% of students. 
 
 



Finally, in Column (6) we present estimates from a regression with all of the weather, pollution, 

and economic controls included simultaneously. 13  This specification indicates that one 

additional school day in the past year that was <60°F is estimated to reduce test scores by 0.12 

hundredths of a standard deviation (HSD), and one additional 60-65°F school day is estimated 

to reduce test scores by 0.08 HSDs. The estimated effect for school days 65-70°F in Column 

(6) is considerably smaller than in the baseline specification and is also more precisely 

estimated. We therefore place less emphasis on the test score effect of temperatures within this 

particular range. 

Another interesting result from Column (6) is the relatively large positive coefficient estimate 

associated with number of school days >90°F (= 0.089). The pattern of negative coefficient 

estimates for cold days, and nearly as large positive coefficient estimates for hot days, is 

reflected in the now large and statistically significant coefficient on average temperature. The 

estimate of 0.863 indicates that a one degree increase in the average school day temperature in 

the past year is estimated to increase test scores by 0.86 HSDs. 

 

3.3. Placebo and Robustness Tests 

As a simple placebo test, we re-estimate our main specification, using weather data from the 

12 months after the test, rather than from the 12 months prior. If changes in temperature are 

spuriously associated with changes in student or school quality, then we may find a pattern 

similar to that shown in Figure 3A. The results shown in Appendix Figure A.2 support our 

empirical approach. None of the estimates are statistically significant, nor do they follow any 

systematic pattern. 

Next, we test whether temperature influences student composition within schools. In Appendix 

Table A.2, we show results from regressions with student characteristics as the dependent 

variables, instead of test scores (control variables are as in Column 1 of Table 2). Column (1) 

presents results for family socioeconomic status as the dependent variable, expressed in 

quartiles: = 1 for the bottom quartile (disadvantaged) and = 4 for the top quartile (advantaged). 

Only one coefficient is statistically significant, and there is no systematic pattern in the 

                                                            
13 Appendix Table A.1 shows the full set of coefficient estimates from the model with all controls. 
 



estimates. Estimates in Columns (2) and (3) are similar to those in Column (1), demonstrating 

no association between temperature and the composition of schools in terms of gender or age.14  

Another potential concern is that there is an association between temperature and unobserved 

factors in the school’s local area, which in-turn affect student scholastic performance. To 

explore this possibility, we estimate regressions that additionally include area-specific linear 

time trends. Specifically, we include a separate trend term for 128 Local Government Areas 

within NSW. The estimates are very similar to those in Column (6) of Table 2: an additional 

school day <60°F and 60-65°F is estimated to reduce test scores by 0.115 HSDs and 0.086 

HSDs, respectively.  

Our fourth test involves controlling completely for time-invariant student characteristics 

through the inclusion of student-fixed effects. Specifically, we estimate a regression with 

student fixed-effects, school-grade fixed-effects and year-grade fixed-effects. The estimates 

indicate that additional cold days significantly reduce test scores. The estimated coefficients 

on the number of days <60°F and number of days 60-65°F are statistically significant and equal 

-0.069 and -0.070, respectively. The estimate for number of days 65-70°F equals -0.026 and is 

statistically insignificant from zero. Overall, these estimates support our previous findings 

regarding cold weather, but are distinctly smaller than those shown in Table 2. An explanation 

for this difference is that the additional third level of fixed-effects means that identification of 

the temperature coefficients become reliant on test score changes among a much smaller 

proportion of observations. This smaller sub-set of observations are likely to be different than 

the sub-set of observations driving the identification in our main specification.  

A different potential source of estimation bias comes from measurement error in our 

temperature variables caused by schools being located far from weather stations. The main 

analysis excludes schools farther than 20km from a weather station, but we have tested the 

sensitivity to alternative distance restrictions. The results demonstrate that increasing the 

allowable distance introduces attenuation bias. For example, estimated effects for school days 

<60°F are 31% larger for our main sample (within 20km) than for the sample using all schools 

within 50km of a weather station. However, regardless of the restriction, we find that more 

cold school days is associated with lower test scores. 

                                                            
14 The age composition of schools can increase if a greater proportion of parents delay enrolling their age-eligible 
child in school (known sometimes as redshirting). In Australia this practice is common, especially in higher 
socioeconomic status areas. 



Our next robustness check involves exploring how the estimates change with different 

estimation samples. The original data provided by the custodian were restricted to students who 

completed at least three (NAPLAN or HSC) assessments between 2010 and 2018. This leads 

to some unusual sample characteristics. For example, Year 7 results for 2010 and 2011 were 

only provided for the subset of students who completed the Year 12 exam (HSC), but for later 

years, students did not need to complete the HSC to meet the selection criteria. In the main 

analysis, we exclude observations in such clearly anomalous cells. Estimates from regressions 

that do not exclude these observations are very similar to those in Table 2: estimate for school 

days <60°F equals -0.146, compared with -0.148. Estimates are also similar when using a 

smaller sample that ensures that student-year observations are included strictly consistently 

across calendar years for each grade.15  

In our final robustness test we consider sensitivity of the key results to inclusion of other 

temperature controls (weekends and holidays). If we exclude weekend temperature covariates 

from our baseline specification, the estimated effects of school day temperatures are slightly 

smaller than in Table 2. Estimated coefficients on the number of days <60°F and number of 

days 60-65°F equal -0.130 and -0.086, respectively. If holiday temperature covariates are 

included, the estimates are again similar to the baseline specification. Estimated coefficients 

on the number of days <60°F and number of days 60-65°F equal -0.126 and -0.073, respectively.   

 

3.4 Lagged and Cumulative Effects 

We now consider whether the effects are temporary or have lasting effects on student 

performance. Table 3 shows results from regressions based on the baseline specification, with 

two modifications. For parsimony, these regressions include just one variable measuring the 

number of cool days (<70°F). This value is chosen, even though the upper limit of 70°F is not 

particularly cold, because all the estimates in Table 2, suggest that the cool weather effects 

begin in the 65-70°F range. The other modification is that some regressions also include 

variables representing lagged number of cool days.  

                                                            
15 There is more than one way to construct such a sample. We show results from the version that yields 
the largest sample size. Further details available from the authors. 



Column (2) includes one lag, which captures the effect of cool school days between 24 and 12 

months prior to the test date. Column (3) includes two lags. Each column also includes an 

estimated ‘cumulative’ effect, which is the sum of the lagged and unlagged coefficients. These 

results are consistent with Park et al. (2020) in the sense that the effects are not completely 

transitory. A temperature shock in the past year that increases the number of cool school days 

is estimated to effect test scores this year (-0.100) and next year (-0.089). The cumulative three-

year effect (-0.211) is estimated to be 2.5 times greater than the one-year effect.   

 

3.5 Heterogeneity 

Whilst constrained by statistical power, we now consider heterogeneity in the estimated effects 

of temperature on test scores. Each estimate in Figure 4 is from a regression based on the 

baseline specification, with the variable of interest defined as days where the maximum 

temperature was <70°F, estimated using only the subpopulation of interest. The first estimate 

at the top of Figure 4 is for students at schools where cool days are relatively rare. These are 

schools in the bottom half of the distribution of the average annual number of school days 

<70°F. The next estimate is for schools in the top half of the distribution. The difference 

between these two estimates is not statistically significant. However, the point estimate is close 

to zero for schools where cool days are not rare. This provides support for our conjecture that 

cool days may be more harmful in areas accustomed to warm or hot weather. 

The next pair of estimates are for schools where air-conditioning coverage in teaching spaces 

is low vs high. The air conditioning data are for a single point in time, collected in a survey 

undertaken between November 2016 and December 2017. Average air conditioning coverage 

in teaching spaces is 25% for schools in the ‘low’ air conditioning group, and 95% in schools 

in the ‘high’ air-conditioning group. The effects of cool days are clearly concentrated in schools 

with low air-conditioning coverage. This result is explained by the fact that air-conditioners 

are likely to be used for heating as well as cooling. This explanation is further discussed in 

Section 4. 

Regressions estimated separately for primary school students and high school students show 

that the estimated point estimate is much higher for high school students. A possible 

explanation for this result is that air-conditioning coverage is much higher in primary schools 

than secondary schools: 75% vs 41% of teaching spaces, in our data. More broadly, younger 



children are likely more closely monitored and guided on their clothing and environment, with 

older children more likely to make their own choices and hence more vulnerable to weather 

fluctuations. We are not aware of previous related studies which have examined heterogeneity 

by age of children. 

The estimated effects are larger for boys than for girls. This is consistent with previous studies. 

In particular, Cook & Heyes (2020) find larger effects of cold weather on test scores for boys, 

also citing earlier work which suggests female students wear more layers of clothing in cold 

weather (Donaldson et al., 2001). Cho (2017) also finds slightly larger effects of heat on test 

performance for boys. Ebenstein et al. (2016) found male test performance to be more 

vulnerable to pollution, while a broader literature finds male mortality more vulnerable to heat 

(e.g. Deschênes & Greenstone, 2011). 

Park et al. (2020b) found much larger immediate effects of heat for low income and minority 

students, partly due to differential access to air-conditioning in schools and homes. We do not 

find such heterogeneity. This may reflect NSW’s centrally funded public school system, in 

which SES-related discrepancies in air-conditioning, insulation and heating are less likely. We 

also find only a small difference between estimates for English and Math test scores. The 

slightly larger English effect consistent with Cho (2017), although Cho also found no 

significant effect for reading. Others have found similar effects of temperature across English 

and Maths tests (Park et al. 2020b; Roach & Whitney, 2019).  

 

4. Exploring Mechanisms 

A likely explanation for our results is that Australian people are accustomed to warm and hot 

temperatures, and lack awareness on appropriate preparation for cold weather (Barnett et al., 

2017; Howden-Chapman et al., 2017). Australian houses and buildings are generally 

unprepared for moderate amounts of cold weather, mostly because of inadequate heating 

systems and poor insulation (Daniel et al., 2019; Moore et al., 2019, among others). Schools 

and classrooms are subject to similar problems, including having inadequate heating, and 

buildings that unable to maintain warmth in moderately cold weather. 

In this section, we discuss two specific mechanisms, which are related to this explanation: (i) 

increased sickness absenteeism; and (ii) the use of unflued gas heaters in classrooms. We are 



able to test the first of these. We do not have data on unflued gas heaters, so we instead 

summarise the recent debates about using such heaters in the NSW schools. 

 

4.1 Sickness and Attendance  

A potential mechanism for the cold-day effect is through greater rates of student illness and/or 

school absenteeism. We explored this mechanism by estimating a school-grade and year-grade 

fixed-effects regression of student attendance rates. Our main student-level database does not 

include attendance records, and so we instead used publicly available school-year level data on 

average student attendance rates across the first half of each school year from 2011 to 2018.16 

The results shown in Figure 5 do not support a school absenteeism mechanism, with the U-

shaped pattern of point estimates suggesting higher attendance is associated with more cold 

weather and more hot weather. The estimates are mostly statistically insignificant, and arguably 

small. For example, the point estimates suggest that a week of weather in the coldest category 

(relative to the omitted category) would increase attendance by less than 0.1 percentage points 

across the semester.  

 

4.2 Unflued Gas Heating  

Many schools in New South Wales still use unflued gas heaters. Such heaters present several 

health-related risks, because they produce toxic gases and must be used with appropriate 

ventilation in the classrooms (Marks et al., 2010). This usually means that at least one window 

in the classrooms needs to be open (NSW Government, 2018), which may drastically reduce 

heating efficiency (and increase heating costs).  

Several studies in the Australian and international literature have showed that children exposed 

to high levels of nitrogen dioxide (produced by unflued heaters) had increased respiratory 

symptoms and more absent days from school (see Pilotto et al., 1997; Pilotto et al., 2004; Samet 

and Bell, 2004; Amnesi-Maesano et al., 2012; Cong et al., 2014, among many others). However, 

the evidence on long term health consequences is not conclusive (see Amnesi-Maesano et al., 

2013 for a review of the evidence).  

                                                            
16 For this analysis we use weather data from the first half each school year, to match the attendance data. 



After calls from parents’ and teachers’ associations for a commitment from the Department of 

Education and Training to remove all unflued heaters (see for example Barnes, 2009; Lemaire, 

2010; Lemaire, 2011), the process of removing these heaters from NSW classrooms started in 

2010. This process is still in progress (part of the so-called “Cooler Classroom Program”), but 

is far from complete. It is also focussed on installing air-conditioning in hot areas, not on 

replacing heaters where they are most heavily used (NSW Department of Education, 2018; 

Harris, 2020; Baker, 2021). 

As discussed in Section 3.4, the effects of temperature on test scores are apparent only in 

schools with low air-conditioning coverage. Since air-conditioners are likely to be used for 

heating, our results are consistent with unflued gas heaters as a potential mechanism. 

 

5. Conclusion 

Unlike several previous studies for other countries, we have found that cold, not heat, inhibits 

learning in Australia. The estimated effects are meaningful. For example, experiencing 10 

additional school days with a maximum temperature <60°F (<15.6°C) is estimated to decrease 

test scores in the same year by 1.2% of a standard deviation. Moreover, the effect sizes are 

larger than the heat effects presented in most previous studies.  

The heterogeneity analysis is statistically under-powered, but suggests that these effects are 

concentrated in schools where cool days are relatively rare, in schools with low air conditioning 

coverage, and (perhaps consequently) in secondary schools rather than primary schools. These 

results are also consistent with potentially harmful learning effects from the use of unflued gas 

heaters on cold days. We find little heterogeneity in effect size by family SES or by school 

SES. 

The relationship we have identified here is in-line with studies on morbidity and mortality that 

demonstrate cold temperatures are particularly damaging in hot regions with mild winters, and 

conversely, that hot temperatures are particularly damaging in cold regions with mild summers. 

International research suggests that this difference is due to populations in hot regions 

inadequately protecting themselves from cold temperatures. Australia has an ingrained identity 

of a sunburnt country, and has a long history of focusing on adaption and resilience to hot 

temperatures, rather than cold (Daniel et al., 2019). Further research is needed to determine 



whether the positive test-score temperature gradients that have been robustly identified in the 

U.S., China, Korea and other countries, have broad external validity, especially in regions with 

mild winters and hot summers. 
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Figures 
 

Figure 1 Distributions of School-Day Temperatures in the Previous Year 

 
A: Average Maximum Temperature 

 
B: Number of Cool School Days 

 



Figure 2 Temperature Statistics by NSW Local Government Areas 

 

A: Average Maximum Temperature on School Days 

 
B: Number of Cool School Days Per Year 

 

  



Figure 3 Test Score Effect Estimates from Baseline Regression Specification 

 

A: Estimated test score effects of prior year school days with various maximum temperatures 

 
B Estimated test score effects of average prior year school day temperature by temperature 

decile 

 

Note: Estimates from linear regression with the displayed temperature 
variables and the following covariates: number of weekend days in previous 
12 months with maximum temperatures in the same ranges as shown for school 
days; max temperature on test day; age; gender; year-grade FE; and school-
grade FE. 
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Figure 4 Estimated Effects of Number of Cool School Days, Separately by Student and 
School Factors 

 
 

Note: “Cold rare” represents schools in the bottom half of the distribution of the 
average annual number of school days <70°F. “Cold often” represents schools 
in the top half of the distribution. “Low AC” represents schools with proportion 
of teaching spaces with air conditioning below the median and “High AC” 
represents schools with proportion of teaching spaces with air conditioning 
above the median. 

 
  



Figure 5 Estimated school attendance effects of school days at various temperatures 

 
Notes: This Figure shows the estimated effects of temperature on school 
attendance, drawing on school-year level data. The dependent variable is the 
average attendance rate across the first half of a school year for a given school. 
The key explanatory variables are the number of school days during the first 
half of the year in each temperature category. The empirical approach 
otherwise follows the main analysis.  
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Tables 
 

Table 1 Descriptive Statistics 

Variable Mean Std Dev 
Standardized Test Score 0.02 1.01 
Mean school day maximum temperature 73.47 2.51 
Mean school day minimum temperature 54.04 3.39 
Number of school days with max temp below 60°F 11.72 15.36 
Number of school days with max temp between 60°F and 64°F  28.65 9.58 
Number of school days with max temp between 65°F and 69°F 39.36 8.80 
Distance (km) to nearest weather station 7.48 4.19 
Age (years) 11.39 2.16 
Female 0.488 0.500 
Air conditioning coverage (0-1) 0.603 0.379 
Primary school 0.568 0.495 
Mean relative humidity on school days (%) 70.07 4.54 
Average wind speed (km/h) 26.69 12.28 
Prior year pollution (measured using the Air Quality Index) 45.79 7.53 
Local unemployment rate (%) 5.58 1.52 
Sample size 2,234,842 
Note: This table shows descriptive statistics for the main estimation sample. The mean and SD of the 
standardized test score are zero and one, respectively, amongst the broader sample before any restriction is 
applied on distance from school to nearest weather station. The Air Quality Index (AQI) is constructed 
using measurements of key air pollutants; specifically, particles less than 2.5 micrometres diameter (PM2.5), 
particles less than 10 micrometres diameter (PM10), ozone, nitrogen dioxide, sulphur dioxide and visibility. 
Our measurement of AQI comes from the NSW Department of Planning, Industry and Environment. The 
local unemployment rate is the average monthly regional unemployment rate over the 12 months prior to the NAPLAN 
test date. 

 

 

  



Table 2 Estimated effects of temperature on NAPLAN test scores 

 (1) (2) (3) (4) (5) (6) 

A: Impact of average max temperature 
Average temperature 0.436 0.568 0.622** 0.450 0.523* 0.863** 
 (0.278) (0.380) (0.286) (0.280) (0.271) (0.379) 

B: Impact of number of school days in various max temperature ranges 

Days < 60°F -0.148*** -0.147** -0.144** -0.158*** -0.118** -0.116** 
 (0.058) (0.063) (0.058) (0.058) (0.053) (0.058) 
Days 60°F to 65°F -0.097*** -0.090** -0.092*** -0.101*** -0.094*** -0.081** 

(0.033) (0.036) (0.033) (0.033) (0.032) (0.035) 
Days 65°F to 70°F -0.090*** -0.076** -0.085** -0.088*** -0.075** -0.055* 

(0.033) (0.034) (0.034) (0.033) (0.032) (0.032) 
Days 75°F to 80°F -0.027 -0.028 -0.007 -0.026 -0.017 -0.002 

(0.040) (0.040) (0.041) (0.040) (0.039) (0.039) 
Days 80°F to 85°F 0.012 -0.005 0.044 0.013 0.018 0.027 

(0.043) (0.045) (0.045) (0.043) (0.041) (0.045) 
Days 85°F to 90°F -0.036 -0.027 0.008 -0.036 -0.012 0.034 

(0.055) (0.057) (0.057) (0.055) (0.053) (0.057) 
Days > 90°F 0.016 0.036 0.062 0.016 0.031 0.089 
 (0.058) (0.064) (0.061) (0.058) (0.056) (0.064) 
       
Sample size 2,234,842 2,234,842 2,234,842 2,234,842 2,148,231 2,148,231 
       
Prior year weather No Yes No No No Yes 
Prior year pollution No No Yes No No Yes 
Economic conditions No No No  Yes No Yes 
Student SES No No No No Yes Yes 

Notes: The dependent variable is the standardized NAPLAN test score multiplied by 100. “Prior year weather” includes 
measurements for rainfall, wind and humidity on school days in the past year and on the test day; “Prior year pollution” is 
based on the AQI index (see notes for Table 1); “Economic conditions” are measured using the average monthly regional 
unemployment rate over the 12 months prior to the NAPLAN test date; and “Student SES” is a measure of family 
socioeconomic status provided by the data custodian, derived from parental education and occupation. Other covariates not 
shown are, number of weekend days in previous 12 months with maximum temperatures in the same ranges as shown for 
school days in the table; max temperature on test day; age; gender; year-grade FE; school-grade FE. Standard errors 
clustered at school level. *, **, and *** represent statistical significance at the 10%, 5%, and 1% levels, respectively. 
 

 
  



Table 3 Estimated lagged and cumulative effects of temperature on NAPLAN test scores 

 (1) (2) (3) 
    
Days below 70°F in previous year -0.083*** -0.092*** -0.100*** 
 (0.021) (0.022)      (0.026) 
Days below 70°F 1 year earlier (t-1)  -0.079*** -0.084*** 
  (0.023) (0.025) 
Days below 70°F 2 years earlier (t-2)   -0.028 

(0.029) 
    
Total effect (sum of presented 
coefficients) 

 -0.170*** 
(0.036) 

-0.211*** 
(0.062) 

    
Number of observations 2,234,842 2,234,842 2,234,842 
Note: Included covariates: Days below 70°F in the last 12 months; max temperature on test 
day; age; gender; year-grade FE; school-grade FE. Standard errors clustered at school level. *, 
**, and *** represent statistical significance at the 10%, 5%, and 1% levels, respectively. 

 

  



Appendix 
 

Figure A.1 Estimates using Alternate Temperature Measures 

A: Estimated test score effects of prior year school days with various mean temperatures 

 
B: Estimated test score effects of prior year school days with various minimum temperatures 
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Figure A.2 Estimated Effects of School Day Temperatures in the Year After the Test 
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Table A.1 Detailed Regression Results for Model with Full Controls 
 Coefficient (S.E) 
School days below 60°F -0.116** (0.058) 
School days between 60°F and 64°F -0.081** (0.035) 
School days between 65°F and 69°F -0.055* (0.032) 
School days between 70°F and 74°F (omitted category) - - 
School days between 75°F and 79°F -0.002 (0.039) 
School days between 80°F and 84°F 0.027 (0.045) 
School days between 85°F and 89°F 0.034 (0.057) 
School days above 90°F 0.089 (0.064) 
Weekend days below 60°F 0.102 (0.116) 
Weekend days between 60°F and 64°F 0.167* (0.094) 
Weekend days between 65°F and 69°F 0.197*** (0.075) 
Weekend days between 70°F and 74°F (omitted category) - - 
Weekend days between 75°F and 79°F 0.015 (0.066) 
Weekend days between 80°F and 84°F 0.073 (0.072) 
Weekend days between 85°F and 89°F 0.007 (0.101) 
Weekend days above 90°F -0.155 (0.125) 
School days with no rain (omitted category) - - 
School days with 0 – 0.5 mm of rain 0.027 (0.026) 
School days with 0.5 – 4 mm of rain -0.106*** (0.033) 
School days with 4 – 16 mm of rain -0.053 (0.040) 
School days with 16 – 32 mm of rain 0.080 (0.056) 
School days with 32 – 64 mm of rain -0.005 (0.082) 
School days with 64+ mm of rain -0.001 (0.151) 
Rain on test day (estimated) 0.267*** (0.102) 
Age -1.683*** (0.348) 
Female 5.147*** (0.289) 
Local Unemployment Rate -0.158 (0.160) 
Mean Pollution on School Days -0.103* (0.056) 
Mean Wind on School Days -0.036 (0.046) 
Mean Relative Humidity  0.103 (0.085) 
Student SEA quartile 1 (omitted category) - - 
Student SEA quartile 2 22.957*** (0.413) 
Student SEA quartile 3 41.526*** (0.545) 
Student SEA quartile 4 70.218*** (0.800) 
Test day maximum temperature 0.302* (0.175) 
_cons -23.914** (9.835) 
N 2,148,231  

Notes: This table shows detailed results for the version of the model which contains full controls (as per Table 2 Column 6 
Panel B). See also Table 1 notes. 
  



Table A.2 Estimated Associations between Student Characteristics and Temperature 

 SEA quartile  
(1) 

Female 
(2) 

Age 
(3) 

School days below 60°F -0.0008 0.0003 0.0002 
 (0.0005) (0.0003) (0.0002) 
School days between 60°F and 64°F -0.0004 0.0001 -0.0000 
 (0.0003) (0.0002) (0.0001) 
School days between 65°F and 69°F -0.0006** -0.0000 -0.0001 
 (0.0003) (0.0002) (0.0001) 
School days between 75°F and 79°F -0.0005 -0.0002 0.0002 
 (0.0004) (0.0002) (0.0002) 
School days between 80°F and 84°F -0.0002 -0.0001 0.0003 
 (0.0004) (0.0002) (0.0002) 
School days between 85°F and 89°F -0.0007 -0.0002 0.0004* 
 (0.0005) (0.0002) (0.0002) 
School days above 90°F -0.0007 -0.0000 0.0003 
 (0.0005) (0.0002) (0.0002) 
r2 0.300 0.070 0.952 
N 2149349 2236002 2236002 
Notes: This table shows the results of tests of weather affecting selection into test taking. The dependent 
variable is quartile of student Socio-educational advantage (1=low, 4 = high) in column (1), female in (2) 
and age in years in (3). The specification otherwise follows the main analysis, as per Figure 3, excluding 
sex as an explanatory variable in (2), and age in (3). *, **, and *** represent statistical significance at the 
10%, 5%, and 1% levels, respectively. 

 
 


