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The ability of meeting the target production lead times is of fundamental importance in modern man-
ufacturing systems producing perishable products, where the product quality or value deteriorates with
the time parts spend in the system, and in manufacturing contexts where strict lead time constraints are
imposed due to tight shipping schedules. In these settings, traditional manufacturing system engineering
methods and token-based production control policies loose effectiveness as they aim at achieving target
production rates while minimizing the inventory, without directly taking into account the effect on the
lead time distribution. In this paper a production control policy for unreliable manufacturing systems
that aims at maximizing the throughput of parts that respect a given lead time constraint is proposed
for the first time. The proposed policy jointly considers the actual level of the buffer and the state of the
second machine in the system and stops the part loading at the first machine if there is unacceptable risk
of exceeding the lead-time constraint. The effectiveness of this new policy against the traditional kanban
policy is quantified by numerical analysis. The results show that this new policy outperforms the kanban
policy by providing a tighter control on the production lead time. This approach paves the way to the
introduction of new lead-time oriented production control policies to maximize the effective throughput
in real manufacturing systems.

Keywords: manufacturing systems, lead time, perishable products, production control policy, multiple
failure mode

1. Introduction and Objectives

Product quality and delivery reliability are key factors for success in modern manufacturing in-
dustries. To achieve desired target performance in both indicators, advanced production planning
models have been widely analyzed in the past. Manufacturing System Engineering methods have
been developed in the last decades for investigating the dynamic behaviour of manufacturing sys-
tems, for estimating their performance and for supporting their efficient design, operation and
improvement. Traditional system design approaches aim at maximizing the production rate of the
system, i.e. the average number of parts produced in a given time. However, by only looking at the
production rate maximization, undesired side effects can be generated on the system lead time,
also referred as system flow time, waiting time or residence time. In particular, since increasing
the buffers increases the average production rate of the system but also increases the average lead
time, a serious risk of undermining delivery reliability by excessive lead times is encountered.

Limiting the lead time is of particular interest in production systems where strict lead time
constraints are imposed due to tight finished product distribution and shipping schedules (Biller,
Meerkov, and Yan 2013) imposed by the customer and in systems producing perishable products.
Perishable, or obsolete, or deteriorating products are allowed to spend a limited amount of time
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inside the manufacturing system. If the system lead time exceeds certain fixed thresholds, the prod-
uct has to be considered as a defect and has to be scrapped by the system. For example, the food
production, and specifically the production of yogurt, is pervaded by strict requirements on hygiene
and delivery precision. The production plants have to quickly respond to the market demands and
current order situation. A typical production sequence for yoghurt includes mixing/standardizing
of milk, pasteurization, fermentation, cooling, addition of fruit additives and packaging. The pro-
duction planning involves very complex problems due to the maximum allowed storage time before
packaging. If the time the product flows in the system exceeds this limit, it has to be scrapped.
Another example comes from the production of multi-layer, multi-lumen polymeric micro-tubes for
medical vascular catheters. During the phase of preparation of the raw material, in forms of gran-
ules, the moisture level is measured and if the value exceeds a fixed limit, the granules are dried to
reduce the moisture level before the downstream micro extrusion process. The lead time between
the drying and extrusion processes should not exceed a certain limit to avoid increase of the mois-
ture level by exposure to the air. Excessive moisture level affects the material viscosity. This results
in fluctuations of the material shear rate and instability in the extrusion process, thus affecting
the quality of the tube section. Other examples of systems with strict lead time requirements due
to tight shipping schedules involve, for example, water bottling systems or manufacturing systems
integrated into highly responsive supply chains. In these situations, the production system should
be operated at the maximal possible production rate under a fixed constraint on the lead time
value.

In the literature, production control policies have been proposed to perform an indirect con-
trol on the production lead time, by regulating inventory levels. Problems that have been deeply
investigated are the optimal selection of parameters in token-based policies (Liberopoulos 2013)
including basestock, Kanban, Hedging Point Policy (HPP) and hybrid solutions, and the perfor-
mance comparison of these policies under different scenarios. Moreover, policies for the real-time
control of machine parameters, i.e. the processing rates, to regulate the work in process have been
proposed (Ma and Koren 2004), (Toshniwal et al. 2004). Although these policies allow to reduce
the production lead time, no direct control of this performance measure is performed. Recently,
raw material release policies have been proposed to maximize the throughput under an average
lead time constraint. For example, in (Biller, Meerkov, and Yan 2013) the average production rate
in isolation of the raw material release stage is controlled in Bernoulli serial lines. In these contri-
butions, the analysis is focused only on the average lead time and the distribution of lead time is
not taken into consideration.

In this paper we focus for the first time on production control policies for unreliable manufac-
turing systems that aim at maximizing the throughput of parts that respect a given lead time
constraint, namely effective throughput. The polices proposed in this paper are of threshold type
and regulate the part loading in order to find the best possible trade-off between the goal of max-
imizing the system’s production rate and the need of respecting the imposed lead time constraint.
Two policies are investigated in the paper for maximizing the throughput of parts that respect
desired lead time constraints in a two-machine one buffer system. The first is the traditional sin-
gle stage Kanban policy. In this policy, the part release at the upstream stage is stopped if the
downstream buffer reaches a certain threshold (buffer capacity). The second is a completely new
state-dependent policy. This policy jointly considers the actual level of the buffer and the state of
the second machine in the system and decides wether to load the part at the first machine based on
this observable states. The effectiveness of these policies is compared by numerical analysis. The
results show that this new policy outperforms the Kanban policy by providing a tighter control on
the production lead time. In our knowledge, this is the first time a similar approach is investigated
and validated in the literature.

In practice, if these policies are applied to systems producing perishable products, where excessive
lead times cause the production of defective parts, the proposed approach aims at finding the right
trade-off between product quality and production logistics performance of the system. Recently, the
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importance of considering the bilateral relations between production system design and product
quality has been highlighted. For example, in (Inman et al. 2013) and (Colledani et al. 2014) the
most recent approaches integrating the two areas are framed and the main results in this area
are highlighted. As a matter of fact, only few contributions addressed this problem in a context
where perishable products are produced. The design of in-process buffers in industries producing
perishable or deteriorating components and products has been addressed in (Liberopoulos and
Tsarouhas 2002). A project to determine cost-efficient ways of speeding up the croissant processing
lines of Chipita International Inc. is reported. The installation of a properly sized in-process buffer
at a specific point of the line led to a reduction in failure impact on product quality and an increase
of the system efficiency. In (Liberopoulos, Kozanidis, and Tsarouhas 2007) the author focused on
the production rate of asynchronous production lines in which machines are subject to failures. If
the failure of a machine is long enough, the material under processing in the upstream machines
must be scrapped by the system. In (Wang, Hu, and Li 2010) a transient analysis is proposed to
design the size of the buffers needed in dairy filling and packaging lines. In (Subbaiah, Rao, and
Rao 2011) an inventory model for perishable products with random perishability and alternating
production rate is proposed. As shown in these works, inventory capacity should be designed by
using an integrated quality-logistics approach.

The paper is structured as follows. In the next section the basic modeling assumptions are intro-
duced and the main performance measures of interest in this context are outlined. In Section 3 the
new production control policy is formulated. It can be easily seen that the single stage Kanban pol-
icy is a sub-case of the proposed policy. In Section 4 the effect of the proposed policy on the system
state-space structure is investigated. In Section 5 the system lead time distribution is calculated by
an exact analytical approach. In Section 6 the derivation of the optimal policy is discussed, while
in Section ?? the proposed policies are compared with respect to several performance measures.
The conclusions and future research directions are highlighted in Section 8.

2. System Modeling

2.1 Modeling Assumption

The system is composed of two machines, namely M1 and M2, and a finite capacity buffer. Finite
capacity buffers are used for modeling the single stage Kanban control policy. Thus, to modify the
capacity of the buffer, B, is equivalent to change the number of Kanbans at the production stage.
A discrete time system is considered, i.e., time is divided into slots. Both machines have equal and
constant processing times. Time is scaled so that the processing cycle of each machine takes one
time unit. If operational, machines start their operations at the same time instant. Machine Mi,
with i = 1, 2, is unreliable and characterized by Fi failure modes. In particular, machine Mi may fail
with probability pi,j whenever it is operational and begins to process a part, where j ∈ {1, .., Fi}.
Consequently, for each failure mode, times to failure (TTFs) follow a geometric distribution with
mean 1/pi,j . If the machine is down in mode j it gets repaired in a slot with probability ri,j . Thus,
for each failure mode, times to repair (TTRs) follow a geometric distribution with mean 1/ri,j . For
each machine, failure modes are mutually exclusive, in the sense that a machine cannot go down
in a certain mode without being repaired from a different failure mode. Therefore, each machine
is characterized by a set of states Si with dimensionality Li = Fi + 1. We will denote by U the up
state and by Di the ith failure mode. When the machine is operational it processes 1 part per time
unit while it does not process parts if the machine is down. The dynamics of each machine can be
captured in the transition probability matrix Ti, which is a square matrix of size Li. An example
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of transition probability matrix for a machine with 3 failure modes is provided below.

T1 =

∣∣∣∣∣∣∣∣
1− p1,1 − p1,2 − p1,3 p1,1 p1,2 p1,3

r1,1 1− r1,1 0 0
r1,2 0 1− r1,2 0
r1,3 0 0 1− r1,3

∣∣∣∣∣∣∣∣
The generic state indicator for this system assumes the form s = (b, α1, α2), where b is the

number of parts in the buffer and αi assumes values in the set Si. Under these assumptions, in
there are (B + 1)L1L2 states in total. We assume that, in each time slot, the state of the machine
is determined at the beginning of the time unit and the buffer content is changed accordingly at
the end of the time unit. The upstream machine is never starved and the downstream machine is
never blocked. Machine M1 is blocked if the downstream buffer is full. Similarly, machine M2 is
starved if there are no parts in the upstream buffer. Operational Dependent Failures are assumed,
i.e., a machine cannot make transitions to other states if it is starved (M2) or blocked (M1). The
Blocking Before Service (BBS) mechanism is assumed, i.e., machine M1 can start processing a part
only if the buffer is not full. With these assumptions some states, for example state (B,U,U), are
transient and thus do not have to be considered during the analysis.

We assume that the lead time is constrained and the processed parts are allowed to spend a
maximum of N time units inside the system. Therefore, if the lead time is larger than N , the lead
time constraint is violated and the part cannot be delivered in output from the system, thus it is
disposed, when it leaves M2.

2.2 Performance Measures

The performance measures of interest for this kind of systems are summarized in the following:

• The total production rate of the system, E, calculated neglecting the lead time constraint.
• The probability that the lead time LT exceeds the threshold N : D = P (LT > N).
• The effective production rate, EEff , only considering parts that respect the lead time con-

straint. It is given by EEff = E × (1−D).
• The defective production rate, EDef , i.e. the throughput of parts that do not respect the lead

time constraint. It is given by EDef = E ×D.
• The yield, Y , i.e. the fraction of parts respecting the lead time limit. It is given by Y =
EEff/E.
• The average inventory in the system, or work in progress, WIP , i.e. the average amount of

parts in the system.
• The average lead time in the system.

3. Structure of the Production Control Policies

If the system behaves as described in Section 2.1, a traditional single stage Kanban production
policy is implemented. In other words, machine M1 is allowed to load a raw part, to process
it and to release it in the downstream buffer, whenever there is at least one slot available in the
downstream buffer and independently of the state of the second machine. However, in case machine
M2 is characterized by multiple failure modes with significantly different repair times, the Kanban
level shall be set as a compromise between the effect of long and short failures, thus resulting in a
non-negligible fraction of parts exceeding the lead-time constraint.

In order to reduce the amount of parts that exceed the target lead time, in this paper a new state-
dependent production control, or part release, policy is proposed for machine M1. The rationale of
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the policy is explained in the following. Whenever the machine M1 is operational and machine M2

is down in failure mode j = 1, .., F2 if there are more than bj parts in the buffer the first machine
is prevented from loading, processing and releasing the part into the buffer. Therefore, for each
failure mode of the second machine M2, a specific threshold bj is defined that limits the number
of parts that should be deposited in the buffer, under that specific condition.

More formally, the proposed state-dependent production control policy is characterized by two
actions:

• Action 0: load the part. If the machine M1 is operational, the part is loaded, processed and
released in the buffer by M1.
• Action 1: stop part loading. If the machine M1 is operational, machine M1 does not load,

process, and release the part in the buffer.

The policy u acts on the loading of parts at the first machine M1 only if the second machine M2

is failed. It is defined by the vector bu of critical buffer levels, or thresholds. In detail, for each
j = 1, .., F2:

• If the buffer level b ≤ bj and M2 is down in mode j: implement action 0.
• If the buffer level b > bj and M2 is down in mode j: implement action 1.

It is worth to notice that the implementation of the proposed policy does not entail additional
complexity with respect to the single stage Kanban policy. Indeed, in addition to the level of the
downstream buffer, also the state of the second machine is taken into consideration to implement
the selected action. Both state variables are observable in the system. It is also worth to highlight
that the single stage Kanban policy can be seen as a sub-case of the new state-dependent policy.
Indeed, if bj = B−1 for j = 1, .., F2 then the state-dependent policy reduces to the Kanban policy.
However, the application of the state-dependent policy affects the behavior of the system. This
phenomenon will be investigated in the next section.

4. Effect of the Policy on the System

A system applying the policy introduced in the previous section can be modeled by a Discrete
Time Markov Chain (DTMC). Let us first consider the state space of the DTMC. As long as M2

is up, the buffer level cannot increase. If M2 is in failure mode j, with j ∈ {1, 2, ..., F2}, and we
have b > bj , then the buffer level cannot increase because of the control policy. Accordingly, the
maximal buffer level that can be reached in the system is maxj=1,2,...,F2

(bj + 1). Let us assume
hence B = maxj=1,2,...,F2

(bj + 1). As said before, the number of states to consider is approximately
(B+1)L1L2 because at the boundaries (where the buffer is empty or full) some states are transient.

In order to have a more compact description of the transition probabilities of the resulting
Markov chain we introduce some further notation:

pi = 1−
Fi∑
j=1

pi,j i = 1, 2

is the probability that machine Mi does not break down if it is up, and

ri,j = 1− ri,j i = 1, 2, j = 1, ..., Fi

is the probability that machine Mi does not get repaired if it is in state Dj .
A generic portion of the state space away from the borders (1 < b < B−1) is depicted in Figure 1

assuming a single failure mode for machine M1 and two failure modes for M2 (not all transitions
are drawn). Let us consider first state (b, U, U) in which there are b parts in the buffer and both
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machines are operating. Since both machines are up, the proposed policy does not intervene and
the following transitions are possible:

• with probability p1 p2 the machines remain operating and thus both machines process a part
and the system remains in state (b, U, U);
• with probability p1,1 p2 machine M1 breaks down while M2 remains operative processing a

part and thus the buffer level is decreased to b− 1;
• if machine M2 enters failure mode 1 (or 2) and M1 remains operative then the next state is

(b+ 1, U,D1) with probability p1 p2,1 (or (b+ 1, U,D2) with probability p1 p2,2)
• if both machines fail then the buffer level remains the same and the next state is either

(b,D1, D1) or (b,D1, D2) with probability p1,1p2,1 and p1,1p2,2, respectively.

We turn our attention now to a state in which M1 is up and M2 is down, namely state (b, U,D1).
In this state M1 is either blocked by the policy, if b > b1, or can process a part, if b ≤ b1. If M1 is
blocked by the policy, then only two transitions are possible (drawn by dashed line):

• with probability r2,1 machine M2 gets repaired, processes a part and the next state is (b −
1, U, U);
• with probability r2,1 machine M2 does not get repaired and the system remains in state

(b, U,D1).

If M1 is not blocked by the policy then four cases must be distinguished:

• M1 remains operative and M2 gets repaired and thus both machines process a part and the
system goes to state (b, U, U) (with probability p1r2,1);
• M1 remains operative and M2 does not get repaired and thus only M1 processes a part and

the system goes to state (b+ 1, U,D1) (with probability p1 r2,1);
• M1 breaks down and M2 gets repaired and thus only M2 processes a part and the system

goes to state (b− 1, D1, U) (with probability p1,1r2,1);
• M1 breaks down and M2 does not get repaired and thus no parts are processed and the

system goes to state (b,D1, D1) (with probability p1,1r2,1).

Outgoing transitions of state (b, U,D2) can be determined in a similar manner. We consider now
state (b,D1, U) in which, since machine M2 is operative, the policy does have an impact. The cases
to consider are symmetric to those above (associated transitions are not drawn in Figure 1):

• M2 remains operative and M1 gets repaired and thus both machines process a part and the
system goes to state (b, U, U) (with probability p2r1,1);
• M2 remains operative and M1 does not get repaired and thus only M2 processes a part and

the system goes to state (b− 1, D1, U) (with probability p2 r1,1);
• M2 breaks down and M1 gets repaired and thus only M1 processes a part and the system goes

to state (b+ 1, U,D1) or (b+ 1, U,D2) (with probability p2,1r1,1 and p2,2r1,1, respectively);
• M2 breaks down and M1 does not get repaired and thus no parts are processed and the system

goes to state (b,D1, D1) or (b,D1, D2) (with probability p2,1r1,1 and p2,2r1,1, respectively).

We consider now a state in which both machines are down, namely (b,D1, D2). Also in this case
the behavior of the system depends on the threshold associated with the failure mode of machine
M2, namely b2. If b > b2 then M1 can get repaired but cannot put parts into the buffer until M2

does not get repaired. The possible transitions in case of b > b2 are the following (drawn by dashed
lines in Figure 1):

• with probability r1,1 r2,2 both machines remain down and the system remains in state
(b,D1, D2);
• with probability r1,1r2,2 machineM1 gets repaired (but cannot process a part) andM2 remains

down which leads to state (b, U,D2);
• with probability r1,1 r2,2 machine M1 does not get repaired, M2 turns operative and processes
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b− 1, U, U

b− 1, U,D1

b− 1, U,D2

b− 1, D1, U

b− 1, D1, D1

b− 1, D1, D2

b, U, U

b, U,D1

b, U,D2

b,D1, U

b,D1, D1

b,D1, D2

b+ 1, U, U

b+ 1, U,D1

b+ 1, U,D2

b+ 1, D1, U

b+ 1, D1, D1

b+ 1, D1, D2

p1 p2

p1,1 p2

p1 p2,1

p1 p2,2

p1,1p2,1

p1,1p2,2

r2,1

r2,1

p1r2,1

p1 r2,1

p1,1r2,1

p1,1r2,1

r1,1 r2,2

r1,1r2,2

r1,1 r2,2

r1,1r2,2

Figure 1. A portion of the state space away from the borders with F1 = 1 and F2 = 2. Note that not all transitions are drawn

in the figure. Dashed lines indicate transitions that are present when machine M1 is blocked by the proposed threshold based
policy.

a part and thus the next state is (b− 1, D1, U);
• with probability r1,1r2,2 both machines get repaired but only M2 can process a part and the

system goes to state (b− 1, U, U).

On the other hand, if b ≤ b2 then machine M1 can process a part if it gets repaired. We have the
same probabilities associated with the transitions as in the previous case but the next state of the
system is different if M1 gets repaired (these transitions are not depicted in Figure 1):

• with probability r1,1 r2,2 both machines remain down and the system remains in state
(b,D1, D2);
• with probability r1,1r2,2 machine M1 gets repaired, processes a part and M2 remains down

which leads to state (b+ 1, U,D2);
• with probability r1,1 r2,2 machine M1 does not get repaired, M2 turns operative and processes

a part and thus the next state is (b− 1, D1, U);
• with probability r1,1r2,2 both machines get repaired, process a part and the system goes to

state (b, U, U).

Outgoing transitions of state (b,D1, D1) can be determined in a similar manner.
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The above described procedure can be adopted easily to the general case in which both machines
have multiple failure modes and the policy is characterized by the vector of thresholds bu. The
resulting transition probability matrix of the DTMC will be denoted by P . Moreover, we will denote
by P ′ the matrix which contains only those transition probabilities of the DTMC that correspond
to placing a part in the buffer. I.e., P ′i,j = Pi,j if in state j M1 is up and in state i M1 is not blocked
(due to the control policy or because the buffer is full) and otherwise Pi,j = 0.

5. Performance Analysis

The lead time of a part can be computed following the approach described in Colledani, Horvath,
and Angius (2015) for lines with machines of general complexity and in Shi and Gershwin (2012)
for lines with up-down machines. In this paper we give a brief overview of this approach. The
first step is to compute the steady state probabilities of the DTMC characterized by P . Denoting
by π the vector of steady state probabilities, this corresponds to solve the following set of linear
equations

πP = π, π~1 = 1 (1)

where ~1 is a column vector of ones. Efficient techniques to find the solution of (1) can be found,
for example, in Stewart (2009). Having determined π, the production rate of the system can be
obtained by

E = πP ′~1

The second step is to characterize the system when a part is put in the buffer. This can be done
by calculating

π′ =
πP ′

E

which is a stochastic vector and its entry π′i gives the probability that the system is in state i when
a randomly chosen part enters the buffer.

The third step is to build a DTMC that models the way a part, which is already put in the
buffer, leaves the system. A state in this DTMC is a couple (b, α2) where b is the number of parts
in the system and α2 is the state of machine M2 (M1 has not to be considered in this DTMC
because it has no impact on a part that is already in the system). This DTMC, whose transition
probabilities can be derived from the parameters of M2, is depicted in Figure 2. The transition
probabilities are as follow. When the system is in state (b, U), i.e., M2 is operational, we have the
following possibilities: M2 remains operational with probability p2 and the next state is (b− 1, U)
or M2 goes into failure mode i, i ∈ {1, ..., F2}, with probability p2,i and the next state is (b,Di).
On the other hand, if M2 is not operational, i.e., the state is (b,Di) with i ∈ {1, ..., F2}, then there
are two possibilities: M2 gets repaired with probability r2,i and the next state is (b− 1, U) or M2

remains down with probability r2,i and the system remains in the same state (b,Di). Let us denote
the resulting probability transition matrix by P ′′. Note that the DTMC characterized by P ′′ has an
absorbing state, (0, U), which signals the moment when the last part is removed from the system.

The initial probability vector for this DTMC, denoted by π′′, will be chosen in such a way that
it reflects the situation when a random part is put in the buffer. Accordingly, π′′ must be derived
from π′ (they are not the same because π′ and π′′ do not refer to the same state space). Given a
state i, we denote by B(i), M1(i) and M2(i) the number of parts in the buffer, the state of M1

and the state of M2 in i, respectively. With this notation the relation between π′ and π′′ can be
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b, U

b− 1, U

1, U

0, U

b,D1

b− 1, D1

1, D1

b,DF2

b− 1, DF2

1, DF2

p2

p2,1

p2,F2

r2,1
r2,F2

r2,1 r2,F2

p2

p2,1

p2,F2

r2,1
r2,F2

r2,1 r2,F2

Figure 2. Absorbing Markov chain used to characterize the lead time distribution.

formalized as

π′′i =
∑

∀j:B(j)=B(i)∧M2(j)=M2(i)

π′j

i.e., an entry in π′′ covers all those entries of π′ that correspond to states which the number of
parts in the buffer and the state of machine M2 are identical.

The probability that the lead time does not exceed a given threshold N is equal to the probability
that the DTMC characterized by π′′ and P ′′ is in its absorbing state after N time units. The
transient probabilities of this DTMC after N time units can be obtained by calculating the vector

ν(N) = π′′(P ′′)N

Let us denote the entry of ν(N) that corresponds to state (0, U) by ν
(N)
(0,U). With this notation, the

probability that the lead time exceeds N time units is simply

D = 1− ν(N)
(0,U)

Most performance measures listed in Section 2.2 can be directly calculated based on E and D.
The WIP of the system can be calculated in the standard way from π. The mean lead time and
higher order moments can be calculated by considering the fact that the lead time distribution is
a discrete phase type distribution (Bobbio et al. (2003)).
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6. Policy Optimization

In a recent paper Colledani, Angius, and Horvath (2014), we showed how the effective throughput
is affected by buffer capacity when Kanban policy is applied. In particular, we showed that often
the variation of the effective throughput as function of buffer capacity describes a convex curve
that admits a single maximal point that can be found easily since the optimization depends on
a single paramater. In this section, we present the same optimization problem for systems that
implement our failure control policy. On one hand, the search of an optimal policy is more complex
because it involves as many parameters as the failures of the downstream machine i.e. the vector
bu. On the other hand, by tuning more than one parameter, we have more freedom to search a
solution that improves the effective throughput togheter with other performance measures.

In principle, the parameters of the proposed policy bu should be optimized with respect to
some economic performance indicators of the system, for example the expected long term profit.
However, in practice it is very hard to estimate the cost coefficients to a level of confidence that is
significant for the analysis. Moreover, the use of a synthetic economic objective function prevents
from observing characteristics behavior of the system that can provide insights on the application
of the policy. Therefore, in this paper we focus on control policy optimization problems based
on production logistics related to performance indicators. Indeed, this choice penalizes our work
because it significantly reduces the gap between our failure control policy and the Kanban but, at
the same time, it enhances the importance of the result by showing that our method is able to
provide not negligible improvements also in a “flattened” scenario.

In the following, we propose four optimization problems that will be used in Section 7 to illustrate
the advantages of the failure control policy. The first three problems aim to maximize the effective
throughput whereas the last one deals with WIP minimization.

Unconstrained Optimization

The first problem deals with the unconstrained optimization of the effective throughput. This
means that we search for the set of parameters bu that provides the highest effective throughput by
disregarding any other performance measure. As a consequence, the formalization of the problem,
referred as Unconstrained (U), coincides with its objective function:

EEff
U = max

b

[
EEff (b)

]
. (2)

In Section 7 we will show that this search for optimal solution is naive and can lead to a drastic
worsening of other important performance indicators, such as the WIP, without a significant gain
once compared with the results of more conservative optimization problems. For this reason, the
remaining of this section is dedicated to the description of three possible alternatives.

Kanban Constrained

The second optimization problem aims to tackles the drawbacks provided by the unconstrained
optimization in such a way that it maximizes the effective throughput but limits the search to
systems having a buffer capacity smaller or equal than B∗, namely the optimal buffer capacity
when Kanban policy is applied. We refer such optimization problem as B∗ constrained (BC). In
formula:

EEff
BC = max

b

[
EEff (b)

]
. (3)

10
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subject to

max
j

(bj) ≤ B∗. (4)

Since B∗ constrained optimization considers a sub-set of the feasible solutions of the uncontrained

optimization, by definition, we have that the relation EEff
BC ≤ EEff

U holds. However, due to the
additional constraint, it is also guaranteed that WIP , E[LT ], V ar[LT ] and (1 − Y ) cannot be
greater than those obtained by using the Kanban policy. As a consequence, the BC optimization
provides a policy that, in the worse case scenario, concides with the optimal Kanban but it can
never happen that it provides a policy that improves the effective throughput by worsening the
other performance measures in comparison with the optimal Kanban.

A possible disadvantage of BC optimization is that it is a very conservative strategy that bounds
the improvements on the effective throughput by limiting the buffer size and, consequently, the
decoupling between the upstream and the downstream machine. The main problem is that Kanban’s
optimal buffer capacity is the result of an averaging between all the MTTRs of the downstream
machine. Therefore, a single, possibly rare, failure with a high MTTR can lead to a small buffer
even if the other failures are characterized by small MTTRs.

WIP constrained

In order to loosen the constraint and try to further improve the effective throughput, we propose a
third optimization problem that follows the same path of the second but takes in consideration the
WIP obtained by using the optimal Kanban. Therefore, the problem, referred as WIP Constrained
(WC), is defined as:

EEff
WC = max

b

[
EEff (b)

]
. (5)

subject to

WIP (b) ≤WIP (|B∗, .., B∗|). (6)

The idea behind this strategy is to be more flexible in regard to the buffer capacity but, at the
same time, do not consent an increment of the average number of parts inside the system. By acting
in this way, we can set large thresholds for all the failures having small MTTRs and mantain tight
thresholds for those failures that cause the scrapping with high probability.

By definition, we have that the relation EEff
BC ≤ E

Eff
WC ≤ E

Eff
U holds whereas WIP , E[LT ] and

V ar[LT ] are guaranteed to be equal or smaller than the optimal Kanban but they will be greater
or equal than those obtained by using BC optimization.

WIP Minimization

The last optimization problem coincides with the dual problem of the WIP constrained optimiza-
tion. In fact, it aims to minimize the system WIP as long as the effective throughput is greater
than the one obtained by using the optimal Kanban. This problem will be referred as Throughput
constrained (TC) and corresponds to:

WIPTC = min
b

[WIP (b)] . (7)

11
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Figure 3. Lead Time distribution under the Kanban and state-dependent control policies.

subject to

EEff (b) ≥ EEff (|B∗, .., B∗|). (8)

As a consequence, we have that WIP , E[LT ], V ar[LT ] and (1−Y ) obtained by using any of the
optimization problem proposed above will be greater than those obtained by using the throughput
constrained optimization. At the same time we have that the effective throughput cannot be smaller
than the one obtained by using the optimal Kanban. Indeed, TC reflects the scenario in which the
service level is not a priority. Therefore, more attention can be dedicated to the reliability of the
output of the system.

In order to solve these optimization problems, an exhaustive search approach has been imple-
mented. More intelligent optimization algorithms will be tested in future works.

7. Numerical Results

7.1 Effect of the Policy on the Lead Time Distribution

First we illustrate the effect of the proposed policy on the lead time distribution of the system.
We consider a system in which: i) the first machine has a single failure mode with parameters
p1,1 = 0.01 and r1,1 = 0.1; ii) the second machine is characterized by three failure modes that
occur with probability p2,1 = 0.01, p2,2 = p2,3 = 0.005, and are repaired with probability r2,1 = 0.1,
r2,2 = 0.05 and r2,3 = 0.01 respectively; iii) the number of Kanbans is fixed at B = 50 items. As
already shown in (Colledani, Angius, and Horvath 2014), under the single stage Kanban control
policy (top box of Figure 3) the lead time distribution in a two machine line is characterized by
a bi-modal distribution that has peaks at time units 1 and B − 1. The magnitudes of these peaks
depend on the difference of the efficiencies of the two machines.

With the new state-dependent policy, the lead time distribution becomes a multi-modal distri-
bution with as many peaks as the number of failure modes to which a distinct critical threshold
level is associated by the control policy. In the second box of Figure 3 we show the lead time
distribution of the same system operating under state-dependent control policy with parameters
bu = (50, 30, 10). In this case, the lead time distribution is characterized by peaks of different
magnitudes at levels (9, 29, 49). This shift in the distribution can provides considerable benefits to
the system behavior. In particular, we can observe that the new peaks detract probability from the
tail of the distribution on the right, corresponding to the large values of lead time, thus reducing
in practice the probability that the lead time exceeds the fixed constraint. It is remarkable to ob-
serve that the introduction of the new policy also reduces the first and the second moments of the
distribution, thus providing benefits also to the average lead time of the system. Therefore, these
graphs prove that with the introduction of the new state-dependent production control policy a
more direct control on the lead time distribution can be achieved. In the next experiment, the
impact of the new policy on other system performance measures is investigated.
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Figure 4. Effective throughput of the system as a function of the single stage Kanban level.

b E EEff∗
WIP E [LT ] V [LT ] Y

Kanban 0.7958 0.7939 6.6339 8.3354217415 4041.59653 0.9981
U 0.7970 0.7963 6.2939 7.8963 1937.8116 0.9993

WC 0.7970 0.7963 6.2939 7.8963 1937.8116 0.9993
BC 0.7969 0.7962 5.9099 7.4159 1839.2490 0.9993
TC 0.7945 0.7939 4.9137 6.1842 1596.1407 0.9994

∆% U 0.1499 0.3026 -5.1252 -5.2672 -52.0533 0.1212
∆% CW 0.1499 0.3026 -5.1252 -5.2672 -52.0533 0.1212
∆% CB 0.1301 0.2871 -10.9148 -11.0306 -54.4920 0.1246
∆% DW -0.1663 0.0003 -25.9306 -25.8072 -60.5071 0.1329

Table 1. Comparison of the optimal policies for the considered case

7.2 Comparison between policies

In the second experiment, the performance measures provided by the application of the optimal
single stage Kanban and the optimal state-dependent policies are compared for a specific case. We
consider a system in which: i) the first machine fails with probability p1,1 = 0.2 and is repaired with
probability r1,1 = 0.1; ii) the second machine is characterized by three failure modes that occur
with probability p2,1 = 0.0033, p2,2 = 0.0066 and p2,3 = 0.0001, and are repaired with probability
r2,1 = 0.5, r2,2 = 0.1 and r2,3 = 0.001 respectively; iii) the lead time constraint is fixed at N = 100
time units.

We first solve the optimization problem formulated in Section 6 for the single stage Kanban
policy. The results are reported in Figure 4. The effective production rate is maximized at B∗ = 26.

Then, we solved the four optimization problems presented in Section 6. Since the second machine
is affected by three failure modes there are three threshold levels, i.e. b1, b2, and b3 to be fixed
in order to perform the optimization. In reference to the Unconstrained optimization, the optimal
parameters are bu∗ = (22, 29, 5) which corresponds also to the optimal solution provided by the
WIP constrained problem. Therefore, in this case the unconstrained problem does to a worsen the
WIP , E[LT ], V[LT ] and Y ield. For what concern the BC problem and WIP minimization we have
that the optimal parameters are bu∗ = (21, 26, 5) and bu∗ = (25, 19, 5), respectively.

The overall set of performance measures is reported in Table 1 for all the policies, together with
the percentage relative difference provided by the two policies.

We can observe that all the new state dependent policies provide an increase in the effective
throughput of the system while the total throughput is decreased.

Therefore, under the new production control policy, the system produces less parts in total
but more parts respect the lead time constraint. This is due to the fact that the state-dependent
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Figure 5. Lead Time distribution under the optimal Kanban and the four optimal failure control policies.

Machine fi,1 fi,2 fi,3 fi,4 ri,1 ri,2 ri,3 ri,4 Efficiency
1 0.003 0.003 0.003 0 0.1 0.2 0.05 0 0.9049
2 0.03 0.03 0.03 0 0.1 0.5 0.7 0 0.7128
3 0.003 0.003 0.0016 0.0016 0.1 0.5 0.07 0.01 0.8204
4 0.003 0.003 0.0016 0.0016 0.7 0.5 0.1 0.01 0.8429

Table 2. Parameters of multifailure machines

policy can prevent the first machine from producing even if it is operational, with the objective
to limit the lead time of parts flowing in the system. For what concerns optimal policies that
aim to maximize the effective throughput the increment is around the 0.3%. In reference to the
WIP minimization such increment is instead almost null but, at the same time, we can notice a
remarkable improvement on the other performance measures. In fact, work in progress and average
lead time are reduced by more than 25% and the variability of the lead time is decreased by more
than the 60%. In this direction, smaller but still notable results are obtained also by the other
policies that show improvements of the WIP and mean lead time that oscillate around 5% and
10% and a reduction of the variability around 55%.

Figure 5 reports the lead time distribution for all the different optimal policies.
As expected, it is possible to notice that the lead time corresponding to the minimal WIP has

the shortest tail.
We performed a large number of similar tests by using both real and “in silico” parameters.

Similar results have been found in the major part of the cases.
We selected a set of 10 tests based on four different machines by assuming that items must

be scrapped after N = 50 time units, Table 2 reports the parameters of each machine; we can
observe that the first two machines are characterized by three failures whereas the last two by
four. Machines differ also in efficiency; the first is highly efficient (around 90%), the second is
poorly efficient (≈ 70%), and the third and the fourth, referred as medium efficiency machines, are
characterized by efficiencies around ≈ 82% and ≈ 84% respectively. By using these machines, we
generated the 10 different systems that reported in Table 3. It is possible to notice that the first
four systems are balanced since we use the same machine type both for the downstream and the
upstream. The last six cases are instead dedicated to unbalanced in systems.

In order to provide a preliminary qualitative comparison, Table 3 provides also the optimal policy
vectors obtained by applying the optimization problems presented in Section 6. We can observe
that there are only three cases in which the solutions of two optimization problems coincide i.e. U
and CW on system 1; CK and DW on system 2; CW and CK on system 5. Furthermore, it has
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Case M1 M2 B∗ U CW CK DW
1 1 1 2 (23,24,19) (23,24,19) (22,22,19) (21,22,16)
2 2 2 20 (19,22,22) (19,21,21) (19,20,20) (19,20,20)
3 3 3 13 (20,21,18,5) (17,18,15,5) (13,13,13,5) (10,7,8,5)
4 4 4 8 (20,20,20,5) (9,10,10,5) (8,8,8,5) (5,6,6,5)
5 1 2 12 (11,13,13) (11,12,12) (11,12,12) (10,12,12)
6 1 4 14 (20,21,19,5) (19,19,17,5) (14,14,14,5) (10,9,10,5)
7 2 1 35 (38,40,34) (38,39,34) (35,35,34) (35,35,33)
8 2 3 25 (45,45,42,22) (35,35,35,22) (25,25,25,21) (24,21,25,16)
9 3 4 12 (26,27,25,5) (15,15,15,5) (12,12,12,5) (6,8,8,5)
10 4 3 9 (15,15,13,5) (10,11,9,5) (9,9,9,5) (7,6,6,5)

Table 3. Parameters of multifailure machines

never occurred that an optimization problem coincide the Kanban policy.
Since we intentionally used only basic optimization problems we argue that such variety of

results points out the complexity of the problem and underlines how large could be the margin for
improvements when more detailed optimization problems will be considered.

Table 4 provides the comparison between the performance measures obtained by using the
optimal Kanban and the optimal policy of each optimization problem. In sake of synthesis, we
reported punctual numbers only for the Kanban whereas the other policies measures are reported
in terms of relative distance percentage from the Kanban.

For what concern the effective throughput of the system we can notice that:

• The gain provided by the introduction of buffer policy does not exceed 0.36% in the best case
scenario i.e. test 6 by using uncontrained optimization.
• Failure control policies benefit from the number of failure of the downstream machine. The

more failures characterize the downstream machine and the more large can be the difference
between the optimal failure control policy and the optimal Kanban.
• The difference between the effective throughput obtained by using the optimal U and the

optimal CW is most of the times negligible.

Much more significant results are obtained on WIP, average and variance of the lead-time. In
fact we can observe that:

• The unconstrained optimization often provides marked worsening of these values whilst it
does not provide a significant improvementof the effective throughput once compared with
the optimal obtained by WC. As an example, in case 3 we have an increment of 0.3369%
againsts 0.3121% but at the same time by using the optimal policy provided by unconstrained
optimization the WIP increases by 13% whereas it decreases by 0.1% by using the result of
WC.
• The improvements obtained on WIP (and consequently on E[LT ]andV[LT ]) by minimizing

the WIP are always larger than those obtained on the effective throughput by applying
effective throughput maximization problems.

These set of tests points out that:

• when the priority is the effective throughput, the best strategy is to apply the optimal solution
provided by the WC optimization because it leads to an effective throughput that is very
similar to that provided by the unonstrained optimization without having drawbacks in terms
of WIP.
• when the priority is the stability of the output, the greatest gain can be achieved by using

the minimization of the WIP.
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Case Policy E EEff WIP E [LT ] [V ] [LT ] Y

1

B∗ 0.8603 0.8500 10.8800 12.6467 295.1206 0.9897
∆% U -0.0259 0.0391 -0.9865 -0.9608 -1.8158 0.0562
∆% WC -0.0259 0.0391 -0.9865 -0.96085 -1.8158 0.0562
∆% BC -0.1141 0.0270 -4.9227 -4.8140 -8.7134 0.12250
∆% TC -0.2881 0.0049 -11.7058 -11.4506 -19.5590 0.2547

2

B∗ 0.6492 0.6354 9.9991 15.4016 409.8976 0.9862
∆% U 0.0123 0.0317 0.1842 0.1719 0.15656 0.0123
∆% WC 0.0123 0.0316 -1.1079 -1.1201 -2.0632 0.0607
∆% BC -0.1632 0.0147 -2.7939 -2.6349 -4.8341 0.1169
∆% TC -0.1632 0.0147 -2.7939 -2.6349 -4.8341 0.1169

3

B∗ 0.7120 0.7015 6.4492 9.0568 530.6025 0.9894
∆% U 0.2143 0.3369 13.4975 13.2547 -4.4383 0.0846
∆% WC -0.0064 0.3121 -0.1289 -0.1224 -18.5901 0.2259
∆% BC -0.3300 0.2077 -18.1322 -17.8611 -35.4453 0.3848
∆% TC -0.7453 0.0029 -37.9256 -37.4595 -51.2570 0.5384

4

B∗ 0.7374 0.7314 3.9704 5.3840 290.5272 0.9940
∆% U 0.3980 0.2505 51.5942 50.9932 34.5248 -0.1108
∆% CW -0.0052 0.1505 -0.5990 -0.5937 -16.3843 0.1147
∆% BC -0.1269 0.09135 -13.4908 -13.3808 -26.1316 0.1614
∆% TC -0.28854 0.0007 -30.3377 -30.1361 -36.9158 0.2146

5

B∗ 0.6905 0.6840 9.8242 14.2275 282.2502 0.9935
∆% U 0.1543 0.0104 6.5715 6.4072 11.4181 -0.1000
∆% WC -0.0236 0.006 -1.0167 -0.9933 -1.8772 0.0205
∆% BC -0.0236 0.006 -1.0167 -0.9933 -1.8772 0.0205
∆% TC -0.0564 0.0033 -2.3031 -2.2480 -4.0517 0.0415

6

B∗ 0.7761 0.7636 7.40252 9.5373 577.3116 0.9875
∆% U 0.1037 0.36203 6.55553 6.4450 -12.9934 0.1984
∆% WC -0.0068 0.3537 -0.0415 -0.0347 -19.6504 0.2789
∆% BC -0.3893 0.2406 -20.1177 -19.8055 -38.2341 0.4921
∆% TC -0.8419 0.0054 -39.2702 -38.7546 -53.4448 0.6659

7

B∗ 0.7070 0.6988 4.3122 6.0991 168.6085 0.9918
∆% U 0.0013 0.0075 0.0335 0.0322 -0.0744 0.0043
∆% WC -2.43E-5 0.0073 -0.0134 -0.0134 -0.1664 0.0052
∆% BC -0.0321 0.0014 -1.0797 -1.0479 -2.159 0.0239
∆% TC -0.0668 0.0003 -2.2147 -2.1494 -4.3773 0.0478

8

B∗ 0.6562 0.6403 4.5076 6.8690 843.42003 0.98416
∆% U -0.1929 0.06868 -8.0248 -7.8469 -11.2910 0.1733
∆% WC -0.2062 0.0644 -8.4535 -8.2643 -11.5448 0.1794
∆% BC -0.3574 0.02560 -13.1927 -12.8813 -16.2519 0.2550
∆% TC -0.8578 4.3E-5 -29.5338 -28.9241 -36.2011 0.5720

9

B∗ 0.7249 0.7159 5.1055 7.0430 448.9454 0.9910
∆% U -0.0239 0.3072 1.0333 1.0575 -19.1250 0.2395
∆% WC -0.2786 0.2298 18.9155 -18.6889 -38.6024 0.3698
∆% BC -0.4045 0.1633 -27.0093 -26.7129 -45.0319 0.4138
∆% TC -0.6613 0.0009 -41.5485 -41.1594 -54.8544 0.4844

10

B∗ 0.7224 0.7151 5.0035 6.9261 351.8407 0.9927
∆% U 0.3709 0.2057 38.5345 38.0226 23.6833 -0.1217
∆% WC -0.0252 0.1426 -0.9922 -0.9672 -14.9564 0.1211
∆% BC -0.1309 0.1072 -10.7273 -10.6103 -23.3929 0.1725
∆% TC -0.3827 0.0039 -32.5234 -32.26417 -40.0125 0.2813

Table 4. Comparison between optimal Kanban and different optimal buffer policies in terms of relative distance percentage
16
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• The BC optimal policy represents the best trade-off between effective throughput and output
stability.

8. Conclusions and Prospects

This paper proposes for the first time the analysis of production control policies for systems with
strict lead time limitations. A new state-dependent policy is designed to be implemented in real
manufacturing systems where the product is affected by deterioration and perishability and can
turn into defective by excessive waiting time in the system. Also, it can be applied in context where
the customers requirements on the accepted lead time have to be tightly met. Numerical results
prove that the proposed policy can induce a controllable shift in the lead time distribution thus
outperforming the application of traditional Kanban policies with respect to the effective produc-
tion rate. Moreover, it also provides considerable benefits in terms of inventory levels, fraction of
parts that exceed the lead time constraint and production yield.

Future research will be oriented towards the extension of this analysis for validating the policy
also for production lines with more production stages. Moreover, a formal proof of optimality
of the proposed policy within the described context will be investigated. Finally, more complex
machine models, also involving non-geometric up and down times and non-identical processing
time of machines will be investigated.
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