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Abstract

Consider an (observable) random sample of size n from an infinite population of individuals,
each individual being endowed with a finite set of “features” from a collection of features
(Fj)j≥1 with unknown probabilities (pj)j≥1, i.e., pj is the probability that an individual
displays feature Fj . Under this feature sampling framework, in recent years there has
been a growing interest in estimating the sum of the probability masses pj ’s of features
observed with frequency r ≥ 0 in the sample, here denoted by Mn,r. This is the natural
feature sampling counterpart of the classical problem of estimating small probabilities in
the species sampling framework, where each individual is endowed with only one feature
(or “species”). In this paper we study the problem of consistent estimation of the small
mass Mn,r. We first show that there do not exist universally consistent estimators, in the
multiplicative sense, of the missing mass Mn,0. Then, we introduce an estimator of Mn,r

and identify sufficient conditions under which the estimator is consistent. In particular,
we propose a nonparametric estimator M̂n,r of Mn,r which has the same analytic form of
the celebrated Good–Turing estimator for small probabilities, with the sole difference that
the two estimators have different ranges (supports). Then, we show that M̂n,r is strongly
consistent, in the multiplicative sense, under the assumption that (pj)j≥1 has regularly
varying heavy tails.
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1. Introduction

The estimation of small probabilities is a classical problem in statistics, dating back to the
work of Alan M. Turing and Irving J. Good at Bletchley Park in the 1940s (Good, 1953).
To define small probabilities, let consider the following species sampling framework: i) an
infinite population of individuals, with each individual belonging to one “species” from
a collection of (possibly infinite) species labelled by (Sj)j≥1; ii) an unknown probability
distribution (qj)j≥1, with qj being the probability that an individual belongs to species
Sj ; iii) an (observable) random sample (Z1, . . . , Zn) of individuals from the population. If
Sn,r is the set of labels of species with frequency r ≥ 0 in the observable sample, with the
convention that Sn,0 are labels not in the sample, then the small probability of order r ≥ 0
is defined as

Pn,r = P(Zn+1 ∈ Sn,r |Z1, . . . , Zn) =
∑
j≥1

qj11{Sj∈Sn,r}, (1)

where 11{} denotes the indicator function. That is, Pn,r is the total probability mass of
species observed with frequency r ≥ 0 in the sample (Z1, . . . , Zn). In particular, Pn,0 is re-
ferred to as the missing mass, i.e., the total probability mass of unseen species in the sample.
The Good–Turing estimator (Good, 1953) is the most popular estimator of Pn,r. This is a
nonparametric estimator, in the sense that it does not rely on any distributional assump-
tion of the qj ’s, and it has been the subject of numerous studies. These studies include,
e.g., central limit theorems and large deviation principles (Zhang and Zhang, 2009; Gao,
2013; Grabchak and Zhang, 2017), admissibility and concentration properties (McAllester
and Schapire, 2000; Ohannessian and Dahleh, 2012; Ben-Hamou et al., 2017), consistency
and corresponding convergence rates (McAllester and Ortiz, 2003; Mossel and Ohannessian,
2019; Ayed et al., 2018), optimality and minimax properties (Orlitsky et al., 2003; Ayed et
al., 2018).

The importance of estimating small probabilities has been growing dramatically in recent
years, driven by applications in the broad areas of biological and physical sciences (Kroes et
al., 1999; Gao et al., 2007; Daley and Smith, 2013), in linguistics (Gale and Sampson, 1995;
Ohannessian and Dahleh, 2012), in machine learning (Bubeck et al., 2013; Cai et al., 2018),
in information theory (Orlitsky et al., 2004; Ohannessian and Dahleh, 2012; Ben-Hamou
et al., 2018) and in forensic DNA analysis (Anevski et al., 2017; Cereda and Gill, 2020).
At the same time, there has been a growing interest, especially in ecology and biological
sciences, in the estimation of the missing mass within the more general framework of feature
sampling. See, e.g., Ionita-Laza et al. (2009), Ionita-Laza et al. (2010), Chao et al. (2014),
Gravel (2014), Zou et al. (2016), and Ayed et al. (2019). The feature sampling framework
generalizes the species sampling framework by allowing each individual in the population
to belong to more than one “species”, now called “feature”. Formally, the feature sampling
framework consists of: i) an infinite population of individuals, with each individual endowed
with a finite set of features selected from a collection of (possibly infinite) features labelled by
(Fj)j≥1; ii) a collection of unknown probabilities (pj)j≥1, with pj being the probability that
an individual is endowed with feature Fj ; iii) an (observable) random sample (Y1, . . . , Yn)
of individuals from the population. In analogy to the species sampling framework, under
the feature sampling framework the missing mass is defined as the sum of the probabilities
pj ’s of unseen features in the observed sample (Y1, . . . , Yn).
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Consistent estimation of small masses in feature sampling

The Bernoulli product model is arguably the most popular model for estimating the
missing mass under the feature sampling framework. It assumes that the ith element of the
random sample (Y1, . . . , Yn) is a sequence Yi = (Yi,j)j≥1 of independent Bernoulli random
variables with unknown feature probabilities (pj)j≥1, and that Yr is independent of Ys for
any r 6= s. Therefore the random variable Xn,j :=

∑
1≤i≤n Yi,j , i.e., the number of times

that feature Fj appears in the random sample (Y1, . . . , Yn), is distributed according to a
Binomial distribution with parameter (n, pj), for any j ≥ 1. In analogy to the species
sampling framework, given the random sample (Y1, . . . , Yn) under the Bernoulli product
model we define the small mass of order r ≥ 0 as

Mn,r(Y1, . . . , Yn; (pj)j≥1) = E

∑
j≥1

11{Xn,j=r,Yn+1,j=1} |Y1, . . . , Yn

 =
∑
j≥1

pj11{Xn,j=r}. (2)

That is, Mn,r(Y1, . . . , Yn; (pj)j≥1) is the total mass of features observed with frequency
r ≥ 0 in the sample (Y1, . . . , Yn). In particular, we refer to Mn,0(Y1, . . . , Yn; (pj)j≥1) as the
missing mass, i.e., the total mass of unseen features in the observable sample. For ease of
notation, in the rest of the paper we will not highlight the dependence on (Y1, . . . , Yn) and
(pj)j≥1 in Mn,r(Y1, . . . , Yn; (pj)j≥1), and we simply write Mn,r. Motivated by recent works
on consistent estimation of Pn,r (Ohannessian and Dahleh, 2012; Ben-Hamou et al., 2017;
Grabchak and Zhang, 2017; Mossel and Ohannessian, 2019; Ayed et al., 2018) in this paper
we investigate the problem of consistent estimation of Mn,r under the Bernoulli product
model.

As an extension of the main result of Mossel and Ohannessian (2019) to the feature
sampling framework, we first show that there do not exist universally consistent estimators,
in the multiplicative sense, of the missing mass Mn,0. That is, under the Bernoulli product
model we prove that for any estimator T̂n,0 of Mn,0 there exists at least a choice of feature
probabilities (pj)j≥1 for which T̂n,0/Mn,0 does not converge to 1 in probability, as n→ +∞.
Our strategy of proof differs from the constructive strategy of Mossel and Ohannessian
(2019), and it relies on non-trivial generalizations of Bayesian nonparametric ideas and
techniques developed in Ayed et al. (2018). In particular, the use of generalized Beta process
prior (James, 2017) is critical to our strategy, which allows us to prove non-consistency
of T̂n,0 by exploiting the posterior distribution of Mn,0 given (Y1, . . . , Yn). Based on our
inconsistency result, we then consider the problem of introducing a consistent nonparametric
estimator for Mn,r. This problem leads us to extend most of the results of Ohannessian and
Dahleh (2012) and Ben-Hamou et al. (2017) to the feature sampling framework. We propose
an estimator M̂n,r of Mn,r which has the same analytic form of the Good–Turing estimator
of Pn,r, with the difference that the two estimators have different ranges (supports): while
the Good–Turing estimator of Pn,r takes values in the set (0, 1), our estimator for Mn,r

takes values in R+, indeed the pj ’s in (2) are not required to sum up to 1. Then, we show
that M̂n,r is strongly consistent, in the multiplicative sense, under the assumption that
(pj)j≥1 has regularly varying heavy tails (Karlin, 1967). Proofs of our results relies on novel
concentration inequalities for Mn,r, which may be of independent interest.

There is a growing interest in the estimation of Mn,0, mainly driven by applications in
biological sciences. This is typically motivated by sampling procedures that are expensive,
in terms of time and/or financial resources, and further draws are legitimated only by the
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possibility of recording unseen features. In genetics, for instance, the ambitious prospect
of growing databases to encompass hundreds of thousands of human genomes, makes im-
portant to quantify the power of large sequencing projects to discover new genetic variants
(Auton et al., 2015). An accurate estimate of Mn,0 introduces a criterion for evaluating the
effectiveness of further sampling, providing a roadmap for large-scale sequencing projects:
one can fix a suitable threshold such that the sampling procedure takes place until the
estimate of the total mass Mn,0 of unseen genetic variants becomes for the first time smaller
than the threshold (Ionita-Laza et al., 2009; Gravel, 2014; Zou et al., 2016). The estimation
of Mn,r is also relevant in genetics, where there is a concrete interest in estimating the
total mass of relatively rare genetic variants, i.e., small values of r, since these variants are
known to play a critical role in disease predisposition (Cirulli and Goldstein, 2010; Bomba
et al., 2017). To the best of our knowledge, the problem of estimating Mn,r first appeared
in Cai et al. (2018) within the context of learning augmented algorithms, with potential
applications in computational biology (Zhang et al., 2014), password security (Schechter,
2010), games (Harrison, 2010) and social networks (Song et al., 2009). In particular, Cai
et al. (2018) relies on Bayesian nonparametric estimates of Mn,r to provide new insights
on the count-min sketch, a time and memory efficient randomized data structure for esti-
mating the number of times a symbol has been observed in a data stream (Cormode and
Muthukrishnan, 2005).

The paper is structured as follows. Section 2 contains a brief review on consistent
estimation of small probabilities. In Section 3 we prove that, under the Bernoulli product
model, there do not exist universally consistent estimators, in the multiplicative sense, of
the missing mass Mn,0. Section 4 contains novel exponential tail bounds for the small mass
Mn,r, for r ≥ 0, as well as exponential tail bounds for related statistics. In Section 5 we
introduce a nonparametric estimator M̂n,r of Mn,r and we apply tail bounds of Section
4 to show that M̂n,r is a consistent estimator under the assumption of regularly varying
feature probabilities pj ’s. Section 6 contains a discussion of our results and remaining open
challenges. Some technical lemmas used in the proofs of Theorem 1 and Theorem 12 are
deferred to Appendix A.

2. A review on consistent estimation of Pn,r

The Multinomial model is arguably the most popular model for estimating the small prob-
abilities Pn,r. It assumes that the (observable) random sample Zn = (Z1, . . . , Zn) from the
population is a collection of independent and identically distributed random variables from
an unknown discrete distribution q =

∑
j≥1 qjδSj . Both species’ labels (Sj)j≥1 and proba-

bility masses (qj)j≥1 are unknown and, without loss of generality, we assume that (Sj)j≥1

is a sequence of distinct points in [0, 1]. We can therefore consider as parameter space the
set

Q =

∑
j≥1

qjδSj : Sj ∈ [0, 1], qj ∈ [0, 1] and
∑
j≥1

qj = 1

 .

For a fixed n, an estimator R̂n,r : [0, 1]n → [0, 1] of the missing mass Pn,r is a measurable
map whose argument is the observed sample Zn = (Z1, . . . , Zn). We say that the estimator
R̂n,r is multiplicative consistent for Pn,r, under the parameter space Q, if for every ε > 0
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and for every q ∈ Q

lim
n→+∞

QZn|q

(∣∣∣∣∣R̂n,rPn,r
− 1

∣∣∣∣∣ ≥ ε
)

= 0, (3)

where QZn|q denotes the law of the observations Zn under a Multinomial model of parameter
q. The problem of consistent estimation, in the multiplicative sense, of Pn,r has been the
subject of recent works by Ohannessian and Dahleh (2012), Mossel and Ohannessian (2019),
Ben-Hamou et al. (2017) and Ayed et al. (2018). Here we review the main contributions of
these works.

The choice of the multiplicative loss function L(R̂n,r, Pn,r) = |R̂n,r/Pn,r − 1| is known
to be suitable for estimating small value parameters, such as Pn,r, since it allows to achieve
more informative results. Besides the estimation of Pn,r, the multiplicative loss function
has been used, for instance, in the estimation of small value probabilities using importance
sampling (Chatterjee and Diaconis, 2018) and in the estimation of tail probabilities in
extreme value theory (Beirlant and Devroye, 1999). Under the multiplicative loss function,
Ohannessian and Dahleh (2012) studied the consistency of the Good–Turing estimator P̂n,r
of Pn,r, i.e.,

P̂n,r = (r + 1)
Kn,r

n
where Kn,r is the number of distinct species appearing exactly r times in Zn. They showed
that if q ∈ Q is a geometric distribution with small enough parameter, then there exists
ε > 0 such that

lim
n→+∞

QZn|q

(∣∣∣∣∣ P̂n,0Pn,0
− 1

∣∣∣∣∣ ≥ ε
)
> C, (4)

for some C > 0. That is, P̂n,0 is not a universally consistent estimator, in the multiplicative
sense, of the missing mass Pn,0. As discussed in Ohannessian and Dahleh (2012), the intu-
ition behind (4) is that with a light-tailed distribution like the geometric distribution, there
are not enough samples to learn the small probabilities well enough for consistency. Similar
arguments shows that P̂n,r is not a universally consistent estimator, in the multiplicative
sense, of Pn,r.

Based on the non-consistency result (4), Ohannessian and Dahleh (2012) investigated
conditions on Q to obtain multiplicative consistency for Pn,r. In particular, they showed
that the assumption of regularly varying heavy-tailed distributions is sufficient to obtain
strong multiplicative consistency for Pn,r. To define regularly varying heavy-tailed distri-
butions, let ν(dx) =

∑
j≥1 δqj (dx) and let ν̄(x) = ν[x, 1]. Then, following Karlin (1967), we

say that q ∈ Q is a regularly varying heavy-tailed distribution, with regular variation index
α ∈ (0, 1) if

ν̄(x) ∼ x−α`(1/x) x ↓ 0

where `(·) is a slowly varying function, namely `(ct)/`(t) → 1 as t → +∞ for all c > 0.
Ohannessian and Dahleh (2012) showed that if q ∈ Q is a regularly varying heavy-tailed
distribution with index α, then for every r ≥ 0 there exist a universal constant ar and
distribution specific constants br > 0, nr < +∞ and εr > 0 such that for all n > nr and for
all ε ∈ (0, εr)

QZn|q

(∣∣∣∣ Pn,r
E[Pn,r]

− 1

∣∣∣∣ > ε

)
≤ are−brε

2nα`(n). (5)
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Then, by combining (5) with the Borel–Cantelli lemma it follows that P̂n,r/Pn,r → 1 almost
surely, as n → +∞. That is, under the assumption of regularly varying heavy-tailed
distributions, the Good–Turing estimator P̂n,r is strongly consistent, in the multiplicative
sense, for Pn,r.

Mossel and Ohannessian (2019) strengthened the result of non-consistency obtained in
Ohannessian and Dahleh (2012). Specifically, let R̂n,0 be any estimator of the missing mass
Pn,0. Then, Mossel and Ohannessian (2019) showed that there exist ε > 0 and q ∈ Q such
that

lim
n→+∞

QZn|q

(∣∣∣∣∣R̂n,0Pn,0
− 1

∣∣∣∣∣ ≥ ε
)
> C, (6)

for some C > 0. That is, there do not exist universally consistent estimators, in the
multiplicative sense, of the missing mass Pn,0. Mossel and Ohannessian (2019) proved (6)
by carefully defining a discrete distribution q that satisfies (6), and such a construction
relies on a coupling of two generalized (dithered) geometric distributions. An alternative,
and remarkably shorter, proof of (6) is given in Ayed et al. (2018). While the approach of
Mossel and Ohannessian (2019) has the merit to be constructive, the approach of Ayed et
al. (2018) has the merit to be direct by exploiting properties of the posterior distribution
of Pn,0 under a Dirichlet process prior for q (Ferguson, 1973). Moreover, the alternative
approach of Ayed et al. (2018) paved the way to study the rate of consistency of the Good–
Turing estimator under the assumption of regularly varying q. In particular, Ayed et al.
(2018) showed that the convergence rate n−α/2 is the best rate that any estimator R̂n,0 of
Pn,0 can achieve, up to a slowly varying function, and that that the Good–Turing estimator
P̂n,0 achieves that rate.

3. Non-existence of universally consistent estimators of Mn,0

Consider the Bernoulli product model described in the Introduction. Without loss of gen-
erality, we assume that each feature Fj is labeled by a value in [0, 1] and therefore (Fj)j≥1

is a sequence of distinct points in [0, 1]. Furthermore, the probabilities (pj)j≥1 are assumed
to be summable, i.e.,

∑
j≥1 pj < +∞; this condition is needed in order to guarantee that

every observation Yi will display only a finite number of features almost surely. Indeed,∑
j≥1 pj < +∞ is equivalent to

∑
j≥1 P(Fj ∈ Yi) =

∑
j≥1 E[11{Fj∈Yi}] < +∞, which in

turns implies
∑

j≥1 11{Fj∈Yi} < +∞ almost surely, by Tonelli–Fubini Theorem. The two
unknown sequences (Fj)j≥1 and (pj)j≥1 can be uniquely encoded in a finite measure on
[0, 1],

∑
j≥1 pjδFj (·), with all masses at most one. We can therefore consider as parameter

space the set

P :=

∑
j≥1

pjδFj : Fj ∈ [0, 1], pj ∈ [0, 1] and
∑
j≥1

pj < +∞

 . (7)

Recall that Xn,j denotes the number of times that feature Fj has been observed in the
sample (Y1, . . . , Yn), that is Xn,j =

∑
1≤i≤n Yi,j =

∑
1≤i≤n 11{Fj∈Yi} is a Binomial random

variable with parameter (n, pj). For a fixed n ≥ 1, an estimator T̂n,0 : ({0, 1}∞)n → R+

of the missing mass Mn,0 is a measurable map whose argument is the observed sample
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Yn = (Y1, . . . , Yn). We say that the estimator T̂n,0 is multiplicative consistent for Mn,0,
under the parameter space P if for every ε > 0 and every p ∈P,

lim
n→+∞

PYn|p

(∣∣∣∣∣ T̂n,0Mn,0
− 1

∣∣∣∣∣ ≥ ε
)

= 0, (8)

where PYn|p denotes the law of the observations Yn under a Bernoulli product model
of parameter p. Theorem 1 shows that there are no universally multiplicative consistent
estimators of Mn,0 for the class P. This means that for any estimator T̂n,0 of the missing
mass, there exists at least one element p ∈ P for which T̂n,0/Mn,0 does not converge to 1
in probability, as n→ +∞.

Theorem 1 Under the feature allocation model, there are no universally consistent esti-
mators of the missing mass, i.e., there are no estimators satisfying (8). In particular, for
every estimator T̂n,0, and for any ε ∈ (0, 1/6) it is possible to find an element p ∈P

lim sup
n→+∞

PYn|p

(∣∣∣∣∣ T̂n,0Mn,0
− 1

∣∣∣∣∣ ≥ ε
)
> Cε. (9)

for some strictly positive constant Cε.

3.1 Proof of Theorem 1

The proof of this theorem will build on technical lemmas which statements and proofs are
deferred to the appendix for clarity of the exposition. In order to prove Theorem 1, it is
enough to show that for every estimator T̂n,0 and every ε ∈ (0, 1/6),

sup
p∈P

lim sup
n→+∞

PYn|p

(∣∣∣∣∣ T̂n,0Mn,0
− 1

∣∣∣∣∣ ≥ ε
)
> Cε, (10)

and therefore there exists a p ∈P for which T̂n,0 is not consistent. Let us also notice that
from Lemma 13 (stated in the Appendix), we know that for every ε ∈ (0, 1/6),

sup
p∈P

lim sup
n→+∞

PYn|p

(∣∣∣∣∣ T̂n,0Mn,0
− 1

∣∣∣∣∣ ≥ ε
)
≥ sup

p∈P
lim sup
n→+∞

PYn|p

(∣∣∣∣∣Mn,0

T̂n,0
− 1

∣∣∣∣∣ ≥ 2ε

)
. (11)

Hence, denoting ε̄ = 2ε ∈ (0, 1/3), it is sufficient to prove that

sup
p∈P

lim sup
n→+∞

PYn|p

(∣∣∣∣∣Mn,0

T̂n,0
− 1

∣∣∣∣∣ ≥ ε̄
)
> Cε̄, (12)

for some strictly positive constant Cε̄.
The main idea of the proof is as follows: we lower bound the supremum over P in

(11) by an average with respect to a (carefully chosen) prior for p; we swap the conditional
distribution of Yn|p and the marginal of p with the conditional of p|Yn and the marginal
of Yn; finally we lower bound the event probability with respect to the posterior of p given
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Yn. Let us formalize the proof.
In the sequel, we denote by Ep the expectation with respect to the prior for p, EYn the
expectation with respect to the marginal distribution of Yn and Pp|Yn

the probability under
the posterior of p given Yn. We concentrate on the left hand side of (12), which satisfies

sup
p∈P

lim sup
n→+∞

PYn|p

(∣∣∣∣∣Mn,0

T̂n,0
− 1

∣∣∣∣∣ ≥ ε̄
)
≥ Ep

[
lim sup
n→+∞

PYn|p

(∣∣∣∣∣Mn,0

T̂n,0
− 1

∣∣∣∣∣ ≥ ε̄
)]

≥ lim sup
n→+∞

EYn

[
Pp|Yn

(∣∣∣∣∣Mn,0

T̂n,0
− 1

∣∣∣∣∣ ≥ ε̄
)]

. (13)

where we have applied reverse Fatou’s lemma to exchange the lim sup with the expected
value.

Our choice of the nonparametric prior for p is based on completely random measures
(see Daley and Vere-Jones (2008)) and the generalized Indian Buffet process prior of James
(2017). In particular, a prior for p ∈ P can be defined through a completely random
measure Ñ(·) =

∑
j sjδFj (·) on [0, 1], where ({sj , Fj})j≥1 is a Poisson point process on

R+ × [0, 1], by setting p(·) =
∑

j(1 − e−sj )δFj (·) ∈ P. We select Ñ to be a completely

random measure with Lévy intensity ν(ds,dF ) = e−s/sds11(0,1)(F )dF . The distribution of

Ñ is completely characterized by its Laplace functional defined as,

E
[
e
−

∫
[0,1] f(F )Ñ(dF )

]
= exp

{
−
∫
R+×[0,1]

(1− e−sf(F ))ν(ds,dF )

}
, (14)

for any measurable function f : [0, 1]→ R+. See also Kingman (1993).

Theorem 3.1 of James (2017) provides us with a distributional equality for the posterior
of Ñ conditionally on the observed sample Yn. Denoting by F ∗1 , . . . , F

∗
kn

the kn distinct
features out of Yn, the following distributional equality holds

Ñ |Yn
d
= Ñn +

kn∑
`=1

J`δF ∗` (15)

where the J`’s are non-negative random jumps (see (James, 2017, Equation (3.4)) for
their definition) and Ñn is a completely random measure with updated Lévy intensity
νn(ds,dF ) = e−snν(ds,dF ), independent of (J`, F

∗
` )`=1,...,kn and of the observations Yn.

In the sequel we will further denote by (s′j)j≥1 and (F ′j)j≥1 the jumps and atoms of Ñn,
respectively.

8



Consistent estimation of small masses in feature sampling

Defining An := {F ∗1 , . . . , F ∗kn}, from (15) we have that, for any Borel set B in R+, the
missing mass Mn,0 satisfies

Pp|Yn
(Mn,0 ∈ B) = Pp|Yn

∑
j≥1

pjδFj (A
c
n) ∈ B


= PÑ |Yn

∑
j≥1

(1− e−sj )δFj (Acn) ∈ B


(15)
= PÑn

∑
j≥1

(1− e−s
′
j ) ∈ B


(16)

showing that the posterior distribution of the missing mass Mn,0 is equal in distribution to

the random variable
∑

j≥1(1 − e−s
′
j ), where (s′j)j≥1 are the jumps of Ñn. Unfortunately,

the density of Mn,0 is not available in closed form, nevertheless, thanks to Lemma 14, we
know that

Sn :=
∑
j≥1

s′j = Ñn([0, 1])

is gamma distributed with parameters (1, n+ 1). Besides, Lemma 15, which builds on the
fact that 1 − e−x is asymptotically equivalent to x as x → 0, allows us to replace Mn,0

with Sn in our calculations. The rest of the proof will consist of two steps: i) by Lemma
15, we will show that any consistent estimator of Mn,0 is also a consistent estimator of Sn;
ii) exploiting the closed form probability distribution function of Sn and the fact that Sn
is independent of the observations Yn, we prove that there are no consistent estimators of
this random variable for the multiplicative loss.
More formally, let ε̄ ∈ (0, 1/3), the inverse triangular inequality entails∣∣∣∣∣Mn,0

T̂n,0
− 1

∣∣∣∣∣ =

∣∣∣∣∣Mn,0

Sn

(
Sn

T̂n,0
− 1 + 1

)
− 1

∣∣∣∣∣ ≥
∣∣∣∣∣Mn,0

Sn

∣∣∣∣∣ SnT̂n,0 − 1

∣∣∣∣∣−
∣∣∣∣Mn,0

Sn
− 1

∣∣∣∣
∣∣∣∣∣

≥ Mn,0

Sn

∣∣∣∣∣ SnT̂n,0 − 1

∣∣∣∣∣−
∣∣∣∣Mn,0

Sn
− 1

∣∣∣∣
(17)

which implies

Pp|Yn

(
1− ε̄

2
≤ Mn,0

Sn
≤ 1 ,

∣∣∣ Sn
T̂n,0

− 1
∣∣∣ > 3ε̄

)
≤ Pp|Yn

(∣∣∣Mn,0

T̂n,0
− 1
∣∣∣ > ε̄

)
. (18)

Indeed, thanks to (17), the two events together

1− ε̄

2
≤ Mn,0

Sn
≤ 1 ,

∣∣∣ Sn
T̂n,0

− 1
∣∣∣ > 3ε̄

imply that∣∣∣∣∣Mn,0

T̂n,0
− 1

∣∣∣∣∣ ≥ Mn,0

Sn

∣∣∣∣∣ SnT̂n,0 − 1

∣∣∣∣∣−
∣∣∣∣Mn,0

Sn
− 1

∣∣∣∣ ≥ (1− ε̄

2

)
3ε̄− ε̄

2
= ε̄(5− 3ε̄)/2 > ε̄

9
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where the last inequality follows from the fact that ε̄ < 1. Hence, from (18), we have that

Pp|Yn

(∣∣∣∣∣Mn,0

T̂n,0
− 1

∣∣∣∣∣ > ε̄

)
≥ Pp|Yn

(
1− ε̄

2
≤ Mn,0

Sn
≤ 1

)
− 1 + Pp|Yn

(∣∣∣∣∣ SnT̂n,0 − 1

∣∣∣∣∣ > 3ε̄

)

which may be plugged into (13) to obtain

sup
p∈P

lim sup
n→+∞

PYn|p

(∣∣∣∣∣ T̂n,0Mn,0
− 1

∣∣∣∣∣ ≥ ε̄
)

≥ lim sup
n→+∞

EYn

[
Pp|Yn

(
1− ε̄

2
≤ Mn,0

Sn
≤ 1

)
− 1

]
+ inf

Yn

inf
x>0

Pp|Yn

(∣∣∣∣Snx − 1

∣∣∣∣ > 3ε̄

)
.

(19)

We are going to lower bound the r.h.s. of (19). With regard to the first term, Lemma
15 gives

Pp|Yn

(
1− ε̄

2
≤ Mn,0

Sn
≤ 1

)
− 1 ≥ −e−ε̄(n+1). (20)

Let us now consider the second term on the r.h.s. of (19). Using again the fact that Sn is
gamma distributed and ε̄ < 1/3, we have

Pp|Yn

(∣∣∣∣Snx − 1

∣∣∣∣ > 3ε̄

)
= 1− (n+ 1)

∫ (1+3ε̄)x

(1−3ε̄)x
e−s(n+1)ds

= 1 + e−(1+3ε̄)x(n+1) − e−(1−3ε̄)x(n+1)

≥ inf
y>0

[
1 + e−(1+3ε̄)y − e−(1−3ε̄)y

]
it is now easy to see that the function f(y) := 1 + e−(1+3ε̄)y − e−(1−3ε̄)y is strictly positive,
continuous and admits a global minimum onR+ at the point y∗ = log((1+3ε̄)/(1−3ε̄))/(6ε̄),
therefore

Pp|Yn

(∣∣∣∣Snx − 1

∣∣∣∣ > 3ε̄

)
≥ f(y∗) =: Cε̄ > 0. (21)

Replacing the two bounds (20) and (21) in (19), for any ε̄ ∈ (0, 1/3) we get

sup
(pj)j≥1∈P

lim
n→+∞

P

(∣∣∣∣∣Mn,0

T̂n,0
− 1

∣∣∣∣∣ ≥ ε̄
)
≥ − lim sup

n→+∞
e−ε̄(n+1) + Cε̄ = Cε̄ > 0

which completes the proof.

Remark 2 We point out that the prior used to prove inconsistency almost surely samples
measures with an approximately exponential tail decay. Indeed, (log(1−pj))j≥1 is a gamma
Process. Therefore, if we suppose that the (pj)j are ordered, Kingman (1975) equation (65)
implies that, almost surely,

log pj ∼ −jC.

10
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As a consequence, for any estimator T̂n,0, there is a vector (pj)j≥1 with light tail for which
the estimation of the missing mass is inconsistent for the multiplicative loss. Hence, we
need to restrict our study to vectors of probabilities with “slow” enough tail decay in order
to find consistent estimators of the missing mass. This will be investigated and formalized
in Section 5.

4. Concentration inequalities for feature sampling

In this section we will establish exponential tail bounds for the small masses Mn,r and the
statistic Kn,r defined by

Kn,r =
∑
j≥1

11{Xn,j=r}, for r ≥ 1

which counts the number of features observed with frequency r in the sample Yn. The
statistic Kn,r is of interest in different applications of feature allocation models. We also
define Kn :=

∑
r≥1Kn,r, which represents the total number of distinct features out of the

initial sample. The concentration inequalities, that we are going to state, will be exploited
in Section 5 to prove the multiplicative consistency of the proposed estimator of Mn,r under
the assumption of regularly varying heavy tails (pj)j≥1, for any fixed r ≥ 0. We also
emphasize that our tail bounds are valid in full generality, i.e., without imposing further
assumptions on the probability masses (pj)j≥1.

In order to derive the concentration inequalities for Kn,r (resp. Mn,r) we will exploit
Chernoff bounds, which require suitable inequalities on the logarithmic moment generating
function (or log-Laplace transform) of Kn,r (resp. Mn,r). To this end, we now remind some
useful definitions from Boucheron et al. (2013) and Ben-Hamou et al. (2017) which serve
to compare the tail behaviour of a generic random variable with respect to some reference
distributions (Gaussian, gamma and Poisson).

Definition 3 Let X be a real valued random variable defined on some probability space,
then:

i. X is sub-Gaussian on the right tail (resp. on the left tail) with variance factor v if
for any λ ≥ 0 (resp. λ ≤ 0)

logE
(
eλ(X−E[X])

)
≤ vλ2

2
; (22)

ii. X is sub-gamma on the right tail with variance factor v and scale parameter c if

logE
[
eλ(X−E[X])

]
≤ λ2v

2(1− cλ)
, for any λ satisfying 0 ≤ λ ≤ 1/c; (23)

iii. X is sub-gamma on the left tail with variance factor v and scale parameter c if −X
is sub-gamma on the right tail with variance factor v and scale parameter c;

iv. X is sub-Poisson with variance factor v if for all λ ∈ R

logE
[
eλ(X−E[X])

]
≤ φ(λ)v, (24)

where φ(λ) = eλ − 1− λ.

11
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Note that a sub-Gaussian random variable is also sub-gamma for any choice of the scale
parameter c, but in general the inverse is not true. As proved in the sequel, the bounds
on the log-Laplace transforms (22)–(23) imply exponential tails bounds by means of the
Chernoff inequality. See Boucheron et al. (2013) for other details. In Proposition 4, we
prove exponential tail bounds for the moment generating function of the small mass Mn,r,
showing that Mn,r is sub-Gaussian on the left tail and sub-gamma on the right one. These
bounds are then applied in Corollary 6 to derive concentration inequalities for Mn,r.

Proposition 4 Consider an integer number r such that 0 ≤ r < n − 2. On the left
tail, the random variable Mn,r is sub-Gaussian with variance factor v−n,r := (r + 1)(r +
2)E[Kn+2,r+2]/((n+ 1)(n+ 2)), i.e., for any λ ≤ 0 it holds

logE
[
eλ[Mn,r−E[Mn,r]]

]
≤
λ2v−n,r

2
. (25)

On the right tail, the random variable Mn,r satisfies

logE
[
eλ[Mn,r−E[Mn,r]]

]
≤ v+

n,r

{
1

(1− λ/(n− r))r+1
− 1− λ(r + 1)

n− r

}
, (26)

for any 0 ≤ λ < (n− r), where v+
n,r is defined by

v+
n,r :=

E[Kn−r]n!

(1− 2/(n− r))(n− r)!(n− r)r
.

Proof We first focus on the proof of (25). Let λ ≤ 0, exploiting the independence of the
random variables Xn,j ’s and the elementary inequality log(z) ≤ z − 1, valid for any z > 0,
we obtain

logE
[
eλ[Mn,r−E[Mn,r]]

]
=
∑
j≥1

logE
[
e
λ(pj11{Xn,j=r}−pjP(Xn,j=r))

]
=
∑
j≥1

(
−λpjP(Xn,j = r) + log(1 + (eλpj − 1)P(Xn,j = r))

)
≤
∑
j≥1

P(Xn,j = r)(eλpj − 1− λpj).

Since λ ≤ 0 we get that

logE
[
eλ[Mn,r−E[Mn,r]]

]
≤
∑
j≥1

P(Xn,j = r)
(λpj)

2

2
=
λ2

2

∑
j≥1

p2
jP(Xn,j = r)

=
λ2

2

∑
j≥1

(
n

r

)
pr+2
j (1− pj)n−r =

λ2

2
· n!(r + 2)!

r!(n+ 2)!
E[Kn+2,r+2] =

λ2v−n,r
2

then (25) now follows.
As for the second inequality (26), we can use the previous calculations to state that for

any λ ∈ [0, n− r)

logE
[
eλ[Mn,r−E[Mn,r]]

]
≤
∑
j≥1

P(Xn,j = r)(eλpj − 1− λpj) =
∑
j≥1

P(Xn,j = r)
∑
k≥2

(λpj)
k

k!

12
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=
∑
k≥2

∑
j≥1

P(Xn,j = r)
(λpj)

k

k!
=
∑
k≥2

∑
j≥1

(
n

r

)
prj(1− pj)n−r

(λpj)
k

k!

=
∑
k≥2

(
n

r

)
λk

k!

∑
j≥1

pk+r
j (1− pj)n−r

where we have used the Taylor series expansion of the exponential function. We now observe
that (1− pj)n−r ≤ e−(n−r)pj and the bound is pretty accurate when n is high, then we get

logE
[
eλ[Mn,r−E[Mn,r]]

]
≤
∑
k≥2

(
n

r

)
λk

k!

∑
j≥1

pk+r
j e−(n−r)pj

=

(
n
r

)
(n− r)r

∑
k≥2

(
λ

n− r

)k (k + r)!

k!

∑
j≥1

(pj(n− r))k+r

(k + r)!
e−(n−r)pj .

By observing that for any k ≥ 2 the upper bound holds true

(pj(n− r))k+r

(k + r)!
e−(n−r)pj ≤ (e(n−r)pj − 1)e−(n−r)pj = 1− e−(n−r)pj ,

we obtain the following inequality for the log-Laplace functional of our interest

logE
[
eλ[Mn,r−E[Mn,r]]

]
≤

(
n
r

)
(n− r)r

∑
k≥2

(
λ

n− r

)k (k + r)!

k!

∑
j≥1

[1− e−(n−r)pj ].

Fixing the useful notation

Φn :=
∑
j≥1

(1− e−npj )

and evaluating the sum over k using the Euler gamma function, we get

logE
[
eλ[Mn,r−E[Mn,r]]

]
≤
(
n

r

)
Φn−r

(n− r)r
∑
k≥2

(
λ

n− r

)k Γ(k + r + 1)

k!

=

(
n

r

)
Φn−r

(n− r)r
∑
k≥2

(
λ

n− r

)k 1

k!

∫ ∞
0

e−xxk+rdx

=

(
n

r

)
Φn−r

(n− r)r

∫ ∞
0

e−xxr
∑
k≥2

(
λx

n− r

)k 1

k!
dx

=

(
n

r

)
Φn−r

(n− r)r

∫ ∞
0

e−xxr
(
eλx/(n−r) − 1− λx

n− r

)
dx

where all the previous equalities are valid whenever 0 ≤ λ < (n−r). By solving the integrals
on the right hand side of the last term in the previous chain of equations, we get

logE
[
eλ[Mn,r−E[Mn,r]]

]
≤ r!Φn−r

(n− r)r

(
n

r

){
1

(1− λ/(n− r))r+1
− 1− (r + 1)λ

n− r

}
13
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=
n!Φn−r

(n− r)!(n− r)r

{
1

(1− λ/(n− r))r+1
− 1− (r + 1)λ

n− r

}
(27)

Proceeding along similar lines as in (Gnedin et al., 2007, Lemma 1), it is not difficult to see
that for any n > 2

|Φn − E[Kn]| ≤ 2

n
Φn,2 ≤

2

n
Φn, (28)

which entails Φn ≤ E[Kn]/(1 − 2/n), for any n > 2. The last inequality can be used to
provide an upper bound for the r.h.s. of (27). To this end we can apply (28) with n replaced
with n− r to obtain

Φn−r ≤
E[Kn−r]

(1− 2/(n− r))
for any n > r + 2. We use the previous inequality to bound Φn−r which appears in (27),
and (26) easily follows.

We now specialize Proposition 4 when r = 0, proving that the missing mass Mn,0 is sub-
Gaussian on the left tail and sub-gamma on the right one.

Proposition 5 Let n > 2. On the left tail, the random variable Mn,0 is sub-Gaussian with
variance factor v−n := 2E[Kn+2,2]/((n+ 2) · (n+ 1)), i.e., for any λ ≤ 0 it holds

logE
[
eλ[Mn,0−E[Mn,0]]

]
≤ λ2v−n

2
. (29)

On the right tail, the random variable Mn,0 is sub-gamma with variance factor v+
n :=

2E[Kn]/(n2 − 2n) and scale parameter 1/n, i.e., for any 0 ≤ λ < n one has

logE
[
eλ[Mn,0−E[Mn,0]]

]
≤ λ2v+

n

2(1− λ/n)
. (30)

Proof It is sufficient to apply Proposition 4 when r = 0.

As already mentioned at the beginning of this section, the bounds on the log-Laplace
obtained in Proposition 4 imply useful exponential tail bounds for Mn,r which can be
obtained via the Cramér-Chernoff method (see Boucheron et al. (2013)). More specifically
we can state and prove the following

Corollary 6 For any r satisfying 1 ≤ r ≤ n− 2 and x ≥ 0, then

P(Mn,r − E[Mn,r] ≤ −x) ≤ exp

{
− x2

2v−n,r

}
and

P(Mn,r − E[Mn,r] ≥ x)

≤ exp

{
−

[
λmax(x)x− v+

n,r

((
1 +

x(n− r)
(r + 1)v+

n,r

) r+1
r+2

− 1− λmax(x)(r + 1)

n− r

)]}
where

λmax(x) = (n− r)

[
1−

(
1 +

x(n− r)
(r + 1)v+

n,r

)−1/(r+2)
]
. (31)

14
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Proof The first concentration follows from the fact that Mn,r is a sub-Gaussian random
variable on the left tail (see (Boucheron et al., 2013, Section 2.3)). In order to prove
the second inequality we may use the general Cramér-Chernoff method as described in
(Boucheron et al., 2013, Section 2.2). In Proposition 4 we have proved (26), bounding the
log-Laplace of Mn,r − E[Mn,r] for any for any 0 ≤ λ < (n− r). More precisely

logE
[
eλ[Mn,r−E[Mn,r]]

]
≤ v+

n,r

{
1

(1− λ/(n− r))r+1
− 1− λ(r + 1)

n− r

}
=: ψn,r(λ), (32)

for any 0 ≤ λ < (n−r). The Cramér-Chernoff method prescribes to determine the Legendre
transform of ψn,r, i.e.,

ψ∗n,r(x) := sup
λ≥0
{λx− ψn,r(λ)},

and it gives the so-called Chernoff inequality

P(Mn,r − E[Mn,r] ≥ x) ≤ exp{−ψ∗n,r(x)}. (33)

We need only to prove that (33) coincides with the concentration inequality in the statement.
By some elementary calculations, it is not difficult to see that the function λx − ψn,r(λ)
attains its maximum over λ ∈ (0, n− r) at the point

λmax(x) = (n− r)

[
1−

(
1 +

x(n− r)
(r + 1)v+

n,r

)−1/(r+2)
]
,

hence

ψ∗n,r(x) = λmax(x)x− ψn,r(λmax(x))

= λmax(x)x− v+
n,r

(
1

(1− λmax(x)/(n− r))r+1
− 1− λmax(x)(r + 1)

n− r

)
= λmax(x)x− v+

n,r

((
1 +

x(n− r)
(r + 1)v+

n,r

) r+1
r+2

− 1− λmax(x)(r + 1)

n− r

)

and putting this expression in (33) the second concentration inequality is proved, as well.

Due to the importance of the missing mass Mn,0 in several applications, we also specialize
Corollary 6 to the case r = 0.

Corollary 7 For any n > 2 and x ≥ 0, the following probability bounds hold true

P(Mn,0 − E[Mn,0] ≤ −x) ≤ exp

{
− x2

2v−n

}
,

P(Mn,0 − E[Mn,0] ≥ x) ≤ exp

{
−v+

n n
2

[
1 +

x

nv+
n
−
√

1 +
x

nv+
n

]}
.

Proof The two inequalities follow by the Chernoff bound and the log-Laplace bound proved
in Proposition 5. This is a standard argument, see Boucheron et al. (2013) for details.
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Proceeding along similar lines as before we show that Kn,r is a sub-Poisson random
variable, this result is implicitly proved in the Supplementary material by Ayed et al.
(2019), but for the sake of completeness we report it here as well.

Proposition 8 For any r ≥ 1 and n ≥ 1, the random variable Kn,r is sub-Poisson with
variance factor E[Kn,r]. Indeed, for any λ ∈ R the following bound holds true

logE[eλ(Kn,r−E[Kn,r])] ≤ φ(λ)E[Kn,r], (34)

where φ(λ) := eλ − 1− λ.

Proof Exploiting the independence of the random variables Xn,j ’s, for any λ ∈ R we can
write:

logE[eλ(Kn,r−E[Kn,r])] =

∞∑
j=1

logE exp
{
λ(11{Xn,j=r} − E11{Xn,j=r})

}
=

∞∑
j=1

{
−λP(Xn,j = r) + log(eλP(Xn,j = r) + 1− P(Xn,j = r))

}
≤
∞∑
j=1

φ(λ)P(Xn,j = r) = φ(λ)E[Kn,r]

where we have used the inequality log(z) ≤ z − 1, for any z > 0.

The previous proposition and the Chernoff bounds imply an exponential tail bound for
Kn,r, indeed one can prove that

Corollary 9 For any n ≥ 1, r ≥ 1 and x ≥ 0 the following tail bound holds true

P(|Kn,r − E[Kn,r]| ≥ x) ≤ 2 exp

{
− x2

2(E[Kn,r] + x/3)

}
. (35)

Corollaries 7 and 9 provide us with concentration inequalities for the small masses Mn,r

and the statistics Kn,r, respectively, around their means, for any r ≥ 0. These results hold
true in general, without any further assumption on the probabilities (pj)j≥1. In the next
Section, we will focus on the restricted class of regularly varying probabilities, and we define
a nonparametric estimator of the small mass Mn,r, also considered by Ayed et al. (2018)
for the special case r = 0. Thanks to the previous concentration inequalities, we are able
to give provable guarantees in terms of consistency for that estimator of Mn,r within the
restricted class of regularly varying probabilities.

5. A consistent estimator for regularly varying feature probabilities

We now introduce a nonparametric estimator of the small mass Mn,r in a quite natural
way, i.e., by comparing expectations. We simply evaluate the expected value of Mn,r and
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we obtain

E[Mn,r] = E

∑
j≥1

pj11{Xn,j=r}

 =
∑
j≥1

pjP(Xn,j = r) =

(
n

r

)∑
j≥1

pr+1
j (1− pj)n−r

=
r + 1

n+ 1

∑
j≥1

P(Xn+1,j = r + 1) =
r + 1

n+ 1
E[Kn+1,r+1].

(36)

By comparing the expected values of the first and the last term in (36) we are led to define
the following nonparametric estimator of the small mass Mn,r

M̂n,r :=
r + 1

n
Kn,r+1 (37)

where n + 1 has been replaced by n so that all the quantities are computable at time n.
It is worth to stress that M̂n,r is a nonparametric estimator of the mass of features with
frequency r in the sample, since it does not rely on any parametric assumption on the
pj ’s. Moreover, it is a feasible quantity form a computational standpoint, being easy to
implement and evaluate for any value of n. The (37) has the same parametric form of the
Good–Turing estimator (Good, 1953), however the two estimators have different ranges:
while the estimator of the missing mass in species sampling takes values in [0, 1], the same
estimator in the feature sampling framework takes positive values. Finally M̂n,0 has been
already introduced by Ayed et al. (2018), who have extensively discussed its interpretations
both as a Jackknife estimator in the sense of Quenouille (1956) and as a non-parametric
empirical Bayes estimator in the same spirit as Efron and Morris (1973). A somewhat
related derivation of (37) can be also found in Chao and Colwell (2017).

Here we want to study the consistency of (37). In Section 3 we proved that, without
imposing further assumptions on the features’ proportions, any estimator of the missing
mass is inconsistent for at least one choice of the proportions (Theorem 1). We then
study the consistency of (37) under the ubiquitous assumption of heavy tailed probabilities
(pj)j≥1. We rely on the theory of regular variation by Karamata, J. (1930, 1933) (see also
Karlin (1967)) to define a suitable class of heavy-tailed (pj)j≥1, showing that, under this
class, M̂n,r turns out to be multiplicative consistent, for any r ≥ 0.

We use the limiting notation f ' g to mean f/g → 1; we further write f . g if there
exists a fixed constant C > 0 such that f ≤ Cg. As in Karlin (1967) we give the following
definition.

Definition 10 Let ν(dx) :=
∑

i≥1 δpi(dx) and define the measure ν(x) := ν[x, 1], which is
the cumulative count of all features having no less than a certain probability mass. We say
that (pj)j≥1 is regularly varying with regular variation index α ∈ (0, 1) if ν(x) ' x−α`(1/x)
as x ↓ 0, where `(t) is a slowly varying function, that is `(ct)/`(t) → 1 as t → +∞ for all
c > 0.

Let us remark that if we denote (p[j])j≥1 the sorted probabilities in decreasing order, defi-
nition 10 is equivalent to

p[j] ' j−1/α`∗(j),

as j →∞, where `∗ is another slowly varying function. For simplicity, the relation between
`, `∗ and α is skipped here, interested readers can refer to Lemma 22 and Proposition 23
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of Gnedin et al. (2007). Definition 10 is in the same spirit as Karlin (1967), but for our
purposes here we consider the case

∑
j≥1 pj < +∞, while in Karlin (1967) the pj ’s satisfy

the more restrictive condition
∑

j≥1 pj = 1. The next theorem is similar to a result proved
by Karlin (1967) and provides the first order asymptotic of EKn,r, used later to prove
consistency of M̂n,r.

Theorem 11 Let (pj)j≥1 be regularly varying with α ∈ (0, 1). If Γ(·) denotes the gamma

function, then as n→ +∞, E[Kn,r] ' αΓ(r−α)
r! nα`(n) and E[Kn] ' Γ(1− α)nα`(n).

Proof We first define the quantity

Φn,r :=
∑
j≥1

(npj)
r

r!
e−npj , r ≥ 1,

which can be considered an asymptotic approximation of EKn,r. Indeed, in order to prove

the theorem, we first show that Φn,r ' αΓ(r−α)
r! nα`(n) as n→ +∞, and then we prove that

Φn,r ' E[Kn,r]. In order to prove the former asymptotic equivalence it is worth noticing
that (Gnedin et al., 2007, Proposition 13) applies also for the feature setting under regularly
varying heavy tails, indeed the measure defined by νr(dp) := prν(dp) is such that

νr([0, p]) '
α

r − α
pr−α`(1/p), as p→ 0. (38)

Since Φn,r = nr/r!
∫ 1

0 e
−npνr(dp) is the Laplace transform of νr multiplied by a suitable

quantity, we can apply Tauberian theorems to connect the asymptotic behaviour of the
cumulative distribution function of νr given in (38) to that of Φn,r. In particular, from
Tauberian theorems (see Feller (1971)), we obtain

Φn,r =
nr

r!

∫ 1

0
e−npνr(dp) '

nr

r!
αΓ(r − α)n−(r−α)`(n) = α

Γ(r − α)

r!
nα`(n), (39)

as n→ +∞. As a byproduct of (39), we get Φn,r → +∞. Finally to show Φn,r ' E[Kn,r],
we can easily observe that (Gnedin et al., 2007, Lemma 1) applies in this setting as well,
hence there exists a constant c such that

|E[Kn,r]− Φn,r| ≤
c

n
max {Φn,r,Φn,r+2} → 0, (40)

as n→ +∞. From (40), along with Φn,r → +∞, we obtain∣∣∣E[Kn,r]

Φn,r
− 1
∣∣∣ =
|E[Kn,r]− Φn,r|

Φn,r
→ 0, as n→ +∞,

in other words we have shown that Φn,r ' E[Kn,r] as n→ +∞. The asymptotic for E[Kn]
can be proved in a similar fashion. To see this, first of all define

Φn :=
∑
j≥1

[1− e−npj ]
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which can be considered as an asymptotic approximation of E[Kn] thanks to the inequality
(28), indeed let us evaluate∣∣∣E[Kn]

Φn
− 1
∣∣∣ =
|E[Kn]− Φn|

Φn

(28)

≤ 2

n
→ 0

which implies that E[Kn] ' Φn as n grows to ∞. It remains to determine the asymptotic
behavior of Φn, applying the integration by parts formula and Tauberian theorems (Feller,
1971, Theorem 4, Section 5, Chapter 13) we obtain

Φn =

∫ 1

0
(1− e−np)ν(dp) =

∫ 1

0
ne−npν̄(p)dp ' nΓ(1− α)n−(1−α)`(n).

therefore the conclusion follows since E[Kn] ' Φn ' Γ(1− α)nα`(n).

We are now ready to prove that M̂n,r is multiplicative consistent for any fixed r ≥ 0, when
the feature probabilities (pj)j≥1 are regularly varying. In the proof we will employ the
concentration inequalities of Section 4, which are tuned under the assumption of regular
variation by means of Theorem 11. Technical details are deferred to the Appendix (see
Lemma 16).

Theorem 12 Let (pj)j≥1 be regularly varying with index α ∈ (0, 1). Fix r ≥ 0 and let
M̂n,r := (r+1)Kn,r+1/n be the nonparametric estimator of Mn,r in a sample of size n, then

M̂n,r is strongly multiplicative consistent, i.e., Mn,r/M̂n,r
a.s.−→ 1.

Proof In order to prove the multiplicative consistency we first show thatKn,r/E[Kn,r]
a.s.−→ 1

and that Mn,r/E[Mn,r]
a.s.−→ 1. As for the former convergence, we can use the concentration

inequality (35) given in Corollary 9, which, for any ε > 0, gives

P(|Kn,r/E[Kn,r]− 1| ≥ ε) ≤ 2 exp

{
− ε2E[Kn,r]

2(1 + ε/3)

}
. (41)

When ε > 0 is fixed, we can exploit the asymptotic equivalence E[Kn,r] ' (r!)−1αΓ(r −
α)nα`(n) in Theorem 11 to state that there exists a suitable constant C > 0∑

n≥1

P(|Kn,1/E[Kn,1]− 1| ≥ ε)
(41)

.
∑
n≥1

2 exp {−Cnα`(n)} < +∞,

which implies that for any ε > 0, P(lim supn(|Kn,r/E[Kn,r] − 1| ≥ ε)) = 0 by the first

Borel–Cantelli lemma, hence Kn,r/E[Kn,r]
a.s.−→ 1 for any fixed r ≥ 1.

Analogously we may use Corollary 6 to prove the almost sure convergence to 1 of the
ratio Mn,r/E[Mn,r]. Indeed, for any ε > 0, we have

P(|Mn,r/E[Mn,r]− 1| ≥ ε)
= P(Mn,r − E[Mn,r] ≥ εE[Mn,r]) + P(Mn,r − E[Mn,r] ≤ −εEMn,r)

≤ exp

{
−ε

2(E[Mn,r])
2

2v−n,r

}
+ exp

{
−
[
λmax(εEMn,r)εEMn,r

− v+
n,r

((
1 +

εEMn,r(n− r)
(r + 1)v+

n,r

) r+1
r+2

− 1− λmax(εEMn,r)(r + 1)

n− r

)]}
,

(42)
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where λmax has been defined in (31). By observing that E[Mn,r] = (r+1)E[Kn+1,r+1]/(n+1)
and using again Theorem 11, it is not difficult to determine the asymptotic behavior of the
previous upper bound as n→∞ to conclude that for any fixed ε > 0∑

n≥1

P(|Mn,r/E[Mn,r]− 1| ≥ ε) .
∑
n≥1

exp {−Cnα`(n)} < +∞ (43)

for a suitable constant C > 0. See Lemma 16 for technical details. By the first Borel–
Cantelli lemma, we get Mn,r/E[Mn,r]

a.s.−→ 1, as well.
Thanks to the previous considerations, the consistency of M̂n,r easily follows, indeed

Mn,r

M̂n,r

=
Mn,r

E[Mn,r]
· nE[Mn,r]

(r + 1)E[Kn,r+1]
· E[Kn,r+1]

Kn,r+1

a.s.−→ 1,

since all the ratios on the r.h.s. converge to 1 almost surely.

6. Discussion

The importance of estimating the small mass Mn,r has emerged in ecology and biological
sciences (Ionita-Laza et al., 2009, 2010; Chao et al., 2014; Gravel, 2014; Zou et al., 2016;
Ayed et al., 2019), and most recently in machine learning (Cai et al., 2018) within the
context of learning augmented algorithms. In this paper we first studied the problem of
consistent estimation of Mn,r, thus extending to the feature sampling framework some recent
results on the consistent estimation of the small probability Pn,r (Ohannessian and Dahleh,
2012; Ben-Hamou et al., 2017; Grabchak and Zhang, 2017; Mossel and Ohannessian, 2019;
Ayed et al., 2018). In particular,

i) we showed that that there do not exist universally consistent estimators, in the multi-
plicative sense, of the missing mass Mn,0; that is, under the Bernoulli product model
we prove that for any estimator T̂n,0 of Mn,0 there exists at least a choice of feature
probabilities (pj)j≥1 for which T̂n,0/Mn,0 does not converge to 1 in probability, as
n→ +∞;

ii) we introduced a nonparametric estimator M̂n,r of Mn,r which has the same analytic
form of the Good–Turing estimator of Pn,r, and we showed that M̂n,r is strongly con-
sistent, in the multiplicative sense, under feature probabilities with regularly varying
heavy tails.

These results rely on novel exponential tail bounds for the small mass Mn,r, and for related
counting statistics, which are of independent interest. To the best of our knowledge, our
study is the first theoretical account to the problem of estimating the small mass Mn,r, for
r ≥ 0.

Our work paves the way to explore new research directions in the estimation of the
small mass Mn,r, both theoretical and methodological. From a theoretical perspective, it
remains an interesting open problem the study of the rate of consistency of the nonpara-
metric estimator M̂n,r. With this regards, we retain that Bayesian nonparametric ideas and
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techniques developed in Section 3 can be usefully exploited to show optimality of the rate
of consistency of M̂n,r under feature probabilities with regularly varying heavy tails (Ayed
et al., 2018, 2019). From a methodological perspective, our results allow to extend the
realm of applicability of the estimation of Mn,r. In principle, any application involving the
estimation of small probabilities Pn,r may be reconsidered under the more general feature
sampling framework. For instance, exponential tail bounds introduced in Section 4 can be
usefully exploited to extend the upper confidence bound multi-armed bandit strategy of
Bubeck et al. (2013), based on a confidence interval for the Good–Turing estimator P̂n,0, to
the feature sampling framework.
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Appendix A. Technical lemmas

Here we state and prove the technical lemmas used in the proof of Theorem 1 and in the
proof of Theorem 12.

Lemma 13 For every ε ∈ (0, 1/6),

P(| T̂n,0
Mn,0

− 1| ≥ ε) ≥ P(|Mn,0

T̂n,0
− 1| ≥ 2ε)

Proof Suppose that
∣∣∣ T̂n,0Mn,0

− 1
∣∣∣ < ε, then multiplying by Mn,0 it comes that

−Mn,0ε < T̂n,0 −Mn,0 < Mn,0ε. (44)

From the lower bound of (44), it comes that T̂n,0 > (1−ε)Mn,0 >
Mn,0

2 , leading to
Mn,0

T̂n,0
< 2.

Therefore, dividing (44) by T̂n,0 and using previous inequality successively gives∣∣∣∣∣Mn,0

T̂n,0
− 1

∣∣∣∣∣ ≤ Mn,0

T̂n,0
ε < 2ε
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Considering the complements of the two events, it follows that∣∣∣∣∣Mn,0

T̂n,0
− 1

∣∣∣∣∣ ≥ 2ε⇒

∣∣∣∣∣ T̂n,0Mn,0
− 1

∣∣∣∣∣ ≥ ε,
and, as a consequence, P(| T̂n,0Mn,0

− 1| ≥ ε) ≥ P(|Mn,0

T̂n,0
− 1| ≥ 2ε), proving (11).

In the following two lemmas, we denote by Ñn a completely random measure with
Lévy intensity νn(ds,dF ) = e−snν(ds,dF ) = e−s(n+1)/sds11(0,1)(F )dF . We further denote

(s′j)j≥1 the jumps of the completely random measure Ñn.

Lemma 14 The random variable Sn := Ñn([0, 1]) is gamma distributed, with parameters
(1, n+1).

Proof This result is straightforward when computing the moment generating function of
Sn Indeed, for every x ∈ R we have

E[exSn ] = E

[
exp

{
x

∫
[0,1]

Ñn(dF )

}]
(14)
= exp

{
−
∫ 1

0

∫ +∞

0
(1− exs)e−snν(ds,dθ)

}
= exp

{
−
∫ +∞

0
(1− exs)e

−s(n+1)

s
ds

}
=

(
1− x

n+ 1

)−1

,

which is the characteristic function of a Gamma(1, n+ 1) random variable.

Lemma 15 Let Sn :=
∑

j≥1 s
′
j = Ñn([0, 1]) and Mn,0 =

∑
j≥1(1 − e−s

′
j ). Then for any

ε̄ > 0 the following inequality holds

P
(

1− ε̄

2
≤ Mn,0

Sn
≤ 1

)
≥ 1− e−ε̄(n+1),

implying in particular, using Borel–Cantelli lemma, that Mn,0 and Sn are almost surely
equivalent.

Proof Let us observe that the elementary inequality

x− x2/2 ≤ 1− e−x ≤ x,

for x > 0, implies that for all j ≥ 1

s′j −
1

2
(s′j)

2 ≤ 1− e−s
′
j ≤ sj .
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Summing over j the previous equation and observing that S2
n ≥

∑
j≥1(s′j)

2, we obtain

Sn −
1

2
S2
n ≤ Sn −

1

2

∑
j≥1

(s′j)
2 ≤Mn,0 ≤ Sn,

and dividing by Sn, we get

1− 1

2
Sn ≤

Mn,0

Sn
≤ 1.

As a simple consequence of the last inequality, for any ε̄n > 0, the event {Sn ≤ ε̄} implies
the validity of {1 − ε̄/2 ≤ Mn,0/Sn ≤ 1} and therefore we can upper bound the first term
in (19) as follows

P
(

1− ε̄

2
≤ Mn,0

Sn
≤ 1

)
− 1 ≥ P (Sn ≤ ε̄)− 1

= (n+ 1)

∫ ε̄

0
e−x(n+1)dx− 1 = −e−ε̄(n+1),

(45)

where we have used the fact that the posterior distribution of Sn is Gamma(1, n+ 1).

The next lemma has been used in the proof of Theorem 12.

Lemma 16 The upper bound appearing on the r.h.s. of Equation (42) satisfies

exp

{
−ε

2(E[Mn,r])
2

2v−n,r

}
+ exp

{
−
[
λmax(εEMn,r)εEMn,r

− v+
n,r

((
1 +

εEMn,r(n− r)
(r + 1)v+

n,r

) r+1
r+2 − 1− λmax(εEMn,r)(r + 1)

n− r

)]}
. exp{−Cnα`(n)},

(46)

where λmax is defined in (31), and C is a suitable positive constant.

Proof As for the first exponential function in (46), one can remember that E[Mn,r] =
(r + 1)E[Kn+1,r+1]/(n+ 1) and v−n,r = (r + 1)(r + 2)E[Kn+2,r+2]/((n+ 1)(n+ 2)), thus an
application of Theorem 11 leads us to conclude that

exp

{
−ε

2(E[Mn,r])
2

2v−n,r

}
' exp{−C̄1n

α`(n)} (47)

as n→ +∞, where C̄1 > 0 is a constant depending on r and ε.

We now concentrate on the second exponential function in (46). We define

An :=
1

v+
n,r

[
λmax(εEMn,r)εEMn,r

− v+
n,r

((
1 +

εEMn,r(n− r)
(r + 1)v+

n,r

) r+1
r+2 − 1− λmax(εEMn,r)(r + 1)

n− r

)]
,

(48)
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and we first show that An can be written as a function of the term λn := λmax(εEMn,r)).
From the definition of λn and thanks to (31), it follows that(

1 +
εEMn,r(n− r)

(r + 1)v+
n,r

)− 1
r+2

= 1− λn
n− r

,

thus one has(
1 +

εEMn,r(n− r)
(r + 1)v+

n,r

) r+1
r+2

− 1− (r + 1)λn
n− r

=

(
1− λn

n− r

)−(r+1)

− 1− (r + 1)λn
n− r

; (49)

analogously, exploiting (31) again, it is immediate to see that

εEMn,rλn

v+
n,r

=
(r + 1)λn
n− r

((
1− λn

n− r

)−(r+2)

− 1

)
. (50)

Thanks to Theorem 11, we know that, as n → +∞, the following asymptotic relations
hold true: v+

n,r ' C1n
α`(n) and (n − r)EMn,r ' C2n

α`(n) for suitable positive constants
C1, C2 > 0. As a consequence of these relations and by (31), it is easy to show that
λn = λmax(εEMn,r)) ' C3(n− r), with C3 ∈ (0, 1). Since An can be expressed as the sum
of the two terms in (49) and (50), which depend only on λn ' C3(n− r), it follows that, as
n→ +∞, An converges to

A∞ = (r + 1)C3[(1− C3)−(r+2) − 1]− (1− C3)−(r+1) + 1 + (r + 1)C3

= (r + 1)C3(1− C3)−(r+2) − (1− C3)−(r+1) + 1

=
(
(r + 2)C3 − 1 + (1− C3)r+2

)
(1− C3)−(r+2),

and Bernoulli’s inequality gives that A∞ > 0. Therefore we conclude that

exp(−v+
n,rAn) . exp(−C̄2n

α`(n)), (51)

with C̄2 > 0. The thesis now follows as a consequence of (47) and (51).
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