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Abstract  30 

Plant NADPH oxidases, known as respiratory burst oxidase homologs (Rboh), belong to a multigenic 31 

family that plays an important role in the regulation of plant development and responses to biotic and 32 

abiotic stresses. In this study we monitored the expression profiles of five Rboh genes (MtRbohA, 33 

MtRbohB, MtRbohE, MtRbohG, MtRbohF) in the roots of the model species Medicago truncatula upon 34 

colonization by arbuscular mycorrhizal fungi. A complementary cellular and molecular approach was 35 

used to monitor changes in mRNA abundance and localize transcripts in different cell types from 36 

mycorrhizal roots. Rboh transcript levels did not drastically change in total RNA extractions from 37 

whole mycorrhizal and non mycorrhizal roots. Nevertheless, the analysis of laser microdissected cells 38 

and transgenic roots expressing a GUS transcriptional fusion construct highlighted the MtRbohE 39 

expression in arbuscule-containing cells. Furthermore, the down regulation of MtRbohE by an RNAi 40 

approach generated an altered colonization pattern in the root cortex, when compared to control roots, 41 

with fewer arbuscules and multiple penetration attempts. Altogether our data indicate a transient up-42 

regulation of MtRbohE expression in cortical cells colonized by arbuscules and suggest a role for 43 

MtRbohE in arbuscule accommodation within cortical cells. 44 

 45 

Keywords: Arbuscular mycorrhizal symbiosis, NADPH oxidase, Medicago truncatula, gene 46 

expression, reactive oxygen species, respiratory burst oxidase homolog 47 

 48 
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Introduction 52 

Plants generate reactive oxygen species (ROS) as signaling molecules to control various cellular 53 

mechanisms (Neill et al. 2002; Apel and Hirt 2004). Pharmacological, molecular, and genetic studies 54 

strongly support that the primary source of ROS is a superoxide-generating membrane-bound NADPH 55 

oxidase (Torres and Dangl 2005) that catalyzes the production of superoxide by transferring electrons 56 

from NADPH to molecular oxygen, with secondary generation of H2O2. Seven mammalian NADPH 57 

oxidase enzymes have been identified and characterized: the best studied member of this family is the 58 

mammalian gp91phox (NOX2), which is responsible for high-level production of superoxide in 59 

phagocytic cells in response to microbial invasion (Aguirre and Lambeth 2010). 60 

The NADPH oxidase homologs in plants, designated Rboh (respiratory burst oxidase homolog), are a 61 

family of enzymes, structurally more similar to mammalian calcium-regulated NADPH oxidase NOX5, 62 

which has an N-terminal calcium binding EF-hand motif (Oda et al. 2010; Suzuki et al. 2011; Marino 63 

et al. 2012). Arabidopsis thaliana possesses 10 Rboh homologues which differ in their expression 64 

profile and involvement in diverse processes of plant growth and metabolism (Sagi and Fluhr 2006; 65 

Suzuki et al. 2011). Only a few of these genes have been characterized: AtRbohD and AtRbohF are 66 

involved in ROS-dependent abscissic acid signalling in guard cells (Kwak et al. 2003), while AtRbohC 67 

plays a key role in root hair development (Foreman et al. 2003) and AtRbohB in seed germination 68 

(Müller et al. 2009). More recently, ROS production by AtRbohH and AtRbohJ has been clearly shown 69 

to be essential for proper pollen tube tip growth (Kaya et al. 2014). 70 

Rboh-dependent superoxide generation by plants in response to microbial pathogen colonization is a 71 

well-known plant defense mechanism. ROS generation is associated to the oxidative burst linked to the 72 

perception of microbe/pathogen-associated molecular patterns and to the hypersensitive response 73 

coupled to the recognition of specific pathogens avirulence factors (Torres et al. 2006; Torres 2010). 74 

The activation of particular Rboh isoforms is responsible for ROS accumulation in several plant-75 

microbe interactions (Simon-Plas et al. 2002; Torres et al. 2002; Torres and Dangl 2005; Yoshioka et 76 

al. 2003; for review see Torres 2010).  77 

The involvement of ROS and Rboh enzymes in the legume-rhizobium symbiotic interaction has also 78 

been proved (for review Puppo et al. 2013). ROS accumulation has been detected in the wall of 79 

infected cells and infection threads, in both early steps of the interaction (Santos et al. 2001; Ramu et 80 

al. 2002; Rubio et al. 2004; Lohar et al. 2006; Peleg-Grossman et al. 2007, 2012) and in mature nodules 81 
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(Santos et al. 2001; Rubio et al. 2004). Delayed nodulation has also been observed in Medicago 82 

truncatula inoculated with a catalase-overexpressing S. meliloti strain, which acts as a H2O2 scavenger 83 

(Jamet et al. 2007). Recently, Rboh genes were shown to regulate the early steps of rhizobial infection 84 

in Phaseolus vulgaris (common bean; Montiel et al. 2012) and affect nodule function in M. truncatula 85 

(Marino et al. 2011). ROS therefore appear to be produced in response to rhizobial infection, in 86 

association with nodule development, and are essential for optimal symbiosis establishment (Puppo et 87 

al. 2013).  88 

Even if the arbuscular mycorrhizal (AM) symbiosis is known to share several cellular and molecular 89 

features with legume nitrogen-fixing symbiosis (Guthjar and Parniske 2013; Venkateshwaran et al. 90 

2013), little is known about ROS and Rboh-related processes in AM associations. Salzer et al. (1999) 91 

provided the first evidence for the accumulation of H2O2 in M. truncatula-Rhizophagus irregularis 92 

(formerly Glomus intraradices) mycorrhizal interaction, in particular in arbuscule-containing cortical 93 

cells, and hypothesized the involvement of a plant plasma membrane NADPH oxidase. H2O2 94 

production was also observed in roots of M. truncatula and Lotus japonicus colonized by another AM 95 

fungus, Gigaspora margarita. In this case H2O2 accumulation was mainly associated with the fungal 96 

structures and this was mirrored by the up-regulation of a gene encoding a superoxide dismutase in 97 

intraradical fungal structures (Lanfranco et al. 2005). In this frame, Fester and Hause (2005), using 98 

three independent staining techniques, suggested that both AM-colonized root cortical cells and fungal 99 

structures were involved in the H2O2 production. 100 

Direct evidence of a specific role for an Rboh gene in the AM symbiosis has recently been provided by 101 

Arthikala et al. (2013), who demonstrated, through an RNA interference (RNAi) approach, that 102 

PvRbohB negatively regulates AM colonization in Phaseolus vulgaris. In line with this, the silencing of 103 

MtROP9, a small GTPase considered to be a positive regulator of Rboh enzymes, was shown to 104 

stimulate early mycorrhizal colonization in M. truncatula (Kiirika et al. 2012). Nevertheless, many 105 

questions remain open as to the involvement of other Rboh-encoding genes in the AM symbiosis. 106 

We here investigated the expression profiles of five Rboh genes (MtRbohA, MtRbohB, MtRbohE, 107 

MtRbohG, MtRbohF) in mycorrhizal roots of the model species M. truncatula: we used a 108 

complementary cellular and molecular approach  to monitor changes in mRNA abundance and localize 109 

transcripts within different root cell types. Our results show that MtRbohE is transiently expressed in 110 

arbusculated cells and has a role in root cortex colonization and arbuscule accommodation. 111 
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Materials and Methods 112 

 113 

Biological materials, growth conditions and inoculation methods 114 

Rhizophagus irregularis (Syn. Glomus intraradices, DAOM 197198) inoculum for seedlings and ROC 115 

(root organ cultures) mycorrhization, was produced through in vitro monoxenic cultures. These were 116 

established in bi-compartmental Petri dishes with a watertight plastic wall separating the root 117 

compartment (RC) from the hyphal compartment (HC) (Fortin et al. 2002). The RC was filled with 25 118 

ml of M minimal medium and an explant of transgenic chicory (Cichorium intybus) roots colonized 119 

with the AM fungus was added. The HC was filled with 25 ml of solid M Minimal medium lacking 120 

sugar. Once the mycelium of R. irregularis had grown over the plastic wall and completely filled the 121 

HC compartment, the medium was dissolved with sterile citrate buffer 10 mM, pH 6.0 (mix 0.018 ml 122 

of citric acid 0.1 M and 0.082 ml of sodium citrate 0.1 M and reach the final volume of 50 ml with 123 

sterile distilled water). Spores were then collected and used for plant colonization.  124 

Spores of Gigaspora margarita (BEG34) were collected from Trifolium repens L. pot cultures. 125 

Aliquotes of 100 spores were surface sterilized twice for 10 minutes with 3% chloramine-T and 0.03% 126 

streptomycine sulfate, then rinsed several times with sterile distilled water. 127 

To obtain seedlings colonized by R. irregularis or G. margarita the Millipore sandwich method 128 

(Giovannetti et al. 1993) was used. Seeds of Medicago truncatula Gaertn cv Jemalong were first 129 

scarified using sandpaper P180-200, sterilized with 5% commercial bleach for 3 minutes and rinsed 130 

three times for 10 minutes with sterile distilled water. Germination was induced under sterile 131 

conditions in 0.6% agar/water, incubated for 5 days in the dark (25°C) and then exposed at the light for 132 

4 days. Plants were watered with Long-Ashton solution containing a low phosphorus concentration (3.2 133 

μM Na2HPO4·12H2O) (Hewitt 1966) and they were grown in a growth chamber under 14 h light 134 

(24°C)/10 h dark (20°C) regime. Plants were harvested 60 days post-inoculation (dpi). For mycorrhizal 135 

plants, only portions of the root system showing extraradical fungal structures were collected under a 136 

stereomicroscope. The colonization level was assessed according to Trouvelot et al. (1986). For the 137 

molecular analyses, roots were immediately frozen in liquid nitrogen and stored at -80°C. 138 

Agrobacterium rhizogenes-transformed lines of M. truncatula expressing GUS-GFP reporter genes 139 
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under the promoter of 5 different Rboh genes (MtRbohA, MtRbohB, MtRbohE, MtRbohF and 140 

MtRbohG; Marino et al. 2011) were inoculated with AM fungi. Spores of R. irregularis were collected 141 

and placed in Petri dishes containing the transgenic roots and cultured for 2 months at 26°C in the dark. 142 

For G. margarita the targeted AM inoculation technique developed by Chabaud et al. (2002) was 143 

chosen since it allows the direct observation of colonization events and easy collection of samples. 144 

Spores were placed in M medium and incubated at 30°C to induce germination. About ten germinated 145 

spores were then transferred to Petri dishes containing three growing M. truncatula hairy root explants 146 

and positioned below the growing lateral roots, to facilitate reciprocal contacts. Root cultures were 147 

incubated at 26°C in the dark and vertically oriented. Root and hyphal growth was followed daily under 148 

a stereomicroscope. After inoculation, G. margarita germ tubes grew upwards and branched, 149 

contacting root epidermis. Hyphopodia were generally observed after 5 days and first arbuscules were 150 

observed after 10 days. Root fragments surrounded by extraradical mycelium and displaying 151 

hyphopodia were selected under a stereomicroscope, excised and stored at -80°C. 152 

 153 

Nucleic acid extraction and RT-qPCR assays 154 

Total genomic DNA was extracted from R. irregularis extraradical structures, G. margarita spores and 155 

M. truncatula leaves using the DNeasy Plant Mini Kit (Qiagen), according to the manufacturer’s 156 

instructions. Conventional PCR assay were set up to exclude cross-hybridization of MtRboh specific 157 

primers described by Marino et al. (2011) on fungal DNA. 158 

Total RNA was isolated from about 20 mg root fragments for hairy roots and about 100 mg for 159 

seedling roots using the RNeasy Plant Mini Kit (Qiagen). Samples were treated with TURBOTM DNase 160 

(Ambion) according to the manufacturer’s instructions. The RNA samples were routinely checked for 161 

DNA contamination by RT-PCR analysis, using primers MtTef-f 162 

5’AAGCTAGGAGGTATTGACAAG 3’ and MtTef-r 5’ ACTGTGCAGTAGTACTTGGTG 3’ for 163 

MtTef (Vieweg et al. 2005) and the One-Step RT-PCR kit (Qiagen). The MtPT4 phosphate transporter 164 

gene was amplified using MtPT4F (5’TCGCGCGCCATGTTTGTTGT3’) and MtPT4R 165 
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(5’CGCAAGAAGAATGTTAGCCC3’) primers. For single-strand cDNA synthesis about 500 ng of 166 

total RNA were denatured at 65°C for 5 min and then reverse-transcribed at 25°C for 10 min, 42°C for 167 

50 min and 70° for 15 min in a final volume of 20 μl containing 10 μ M random primers, 0.5 mM 168 

dNTPs, 4 μl 5X buffer, 2 μl 0.1 M DTT, and 1 μl Super-ScriptII (Invitrogen). 169 

qRT-PCR experiments were carried out in a final volume of 20 μl containing 10 μl of Power Sybr 170 

Green PCR master mix (Applied Biosystems), 1 μl of 3 μM MtRboh specific primers, and 1 μl of 171 

cDNA. Samples were run in the StepOne Real-Time PCR system (Applied Biosystems) using the 172 

following program: 10 min pre-incubation at 95°C, followed by 40 cycles of 15 s at 95°C, and 1 min at 173 

60°C. Each amplification was followed by melting curve analysis (60°C to 94°C) with a heating rate of 174 

0.3°C every 15 s. All reactions were performed with three technical replicates and only Ct values with 175 

a standard deviation that did not exceed 0.3 were considered. The comparative threshold cycle method 176 

(Rasmussen 2001) was used to calculate relative expression level using the MtTef as reference gene. 177 

The analyses were performed on at least three independent biological replicates. Statistical tests were 178 

carried out through one-way analysis of variance (one-way ANOVA) and Tukey’s post hoc test, using a 179 

probability level of p<0.05. 180 

 181 

Semi-quantitative RT-PCR on laser microdissected cells 182 

Roots colonized by R. irregularis and uninoculated roots obtained with the millipore sandwich system, 183 

as described above, were dissected into 5-10 mm pieces and treated with ethanol and glacial acetic acid 184 

(3:1) under vacuum for 30 min, then placed at 4°C overnight. Roots were subsequently dehydrated in a 185 

graded series of ethanol (50%-70%-90% in sterilized water and 100% twice) followed by Neoclear 186 

(twice) with each step on ice for 30 min. Neoclear was gradually replaced with paraffin (Paraplast Plus; 187 

Sigma-Aldrich, St. Louis) according to PPlus; Pérez-Tienda et al. (2011). A Leica AS LMD system 188 

(Leica Microsystem, Inc.) was used to collect cortical cells from paraffin root sections as described by 189 

Balestrini et al. (2007). 190 
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RNA was extracted using the PicoPure kit protocol (Arcturus Engineering) and treated with RNase-free 191 

DNase (Promega Corp., Madison, WI, USA) following the manufacturer’s instructions. RNAs were 192 

precipitated using Na-acetate-ethanol, and resuspended in 21 μl of sterile water.  193 

All RT-PCR assays were carried out using the One Step RT-PCR kit (Qiagen). DNA contaminations 194 

were assessed using the MtTef primers described above. RNAs extracted from the three different cell 195 

populations were then calibrated using MtTef as housekeeping gene. In detail, reactions were carried 196 

out in a final volume of 25 μl containing 5 μl of 5X buffer, 1.2 μl of 10 mM dNTPs, 0.6 μl of each 197 

primer 10 mM, 0.5 μl of One Step RT-PCR enzyme mix and 1 μl of RNA. Samples were incubated for 198 

30 min at 50°C, followed by 15 min incubation at 95°C. Amplification reactions were run for 40 cycles 199 

of 94°C for 30 sec, 60°C for 30 sec, and 72°C for 40 sec. An aliquot of the PCR reaction was taken 200 

after the 36, 38 and 40 cycles. 201 

Reactions with MtRboh specific primers (Marino et al. 2011) were carried out in a final volume of 10 202 

μl containing 2 μl of 5X buffer, 0.4 μl of 10 mM dNTPs, 1 μl of each primer 10 mM, 0.2 μl of One 203 

Step RT-PCR enzyme mix, and 1 μl of a total RNA diluted 1:1. The samples were incubated for 30 204 

min at 50°C, followed by 15 min incubation at 95°C. Amplification reactions were run for 40 cycles of 205 

94°C for 30 sec, 60°C for 30 sec, and 72°C for 40 sec. RT-PCR experiments were conducted on two 206 

different biological replicates of 1500-2000 microdissected cells each. 207 

 208 

GUS histochemical assay 209 

Root fragments from Agrobacterium rhizogenes-transformed lines showing extraradical fungal 210 

structures and hyphopodia were selected under a stereomicroscope, excised and placed in a single wells 211 

of a Multiwell plate and covered with freshly prepared GUS-buffer (0.1 M sodium phosphate buffer pH 212 

7.0, 5 mM K4Fe(CN)6, 5 mM K3Fe(CN)6, 0.3% Triton X, 0.3% x-Gluc). The samples were incubated at 213 

37°C for 16 hours in the dark, destained with distilled water and observed under an optical microscope 214 

(Nikon eclipse E300). Two independent lines were analysed for each construct; GUS assays were 215 
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conducted on about 20 root fragments for each condition collected from 5 distinct Petri dishes in two 216 

independent colonization experiments. 217 

 218 

RNAi lines 219 

A 344-bp cDNA fragment of 3’-UTR of MtRbohE (Mt4.0, Medtr8g095520.1) was amplified by PCR 220 

using the following primers: forward 5’-TGAGGATAACAGTGGAAGG-3’ and reverse primer 5’- 221 

TCTCCTGGGACGACTATAA-3’ and cloned into the pDNOR207 vector using the BP Gateway 222 

technology (Invitrogen). The resulting vector was recombined with the pK7GWIWG2D(II) vector 223 

(Karimi et al. 2002) using the LR Gateway technology (Invitrogen), according to the manufacturer’s 224 

recommendations. The construct was checked by DNA sequencing introduced by electroporation into 225 

Agrobacterium rhizogenes strain ARqua1, and used for M. truncatula root transformation as previously 226 

described (Medicago handbook). The pK7GWIWG2D(II) empty vector has been used as control. After 227 

2 weeks, transgenic roots were selected under fluorescent microscope (Leica), and transferred on 228 

SHb10 medium (Medicago handbook) supplemented with 200 mg L-1 augmentin 229 

(amoxicillin:clavulanic acid [5:1]) and 20 mg L-1 kanamycin (Sigma-Aldrich). Root cultures were 230 

keept at 20°C in the dark and subcultured each 3 weeks on new medium. After 3 subculturing, 231 

augmentin was removed and the level of MtRbohE was evaluated by qRT-PCR (Fig. S2). 232 

 233 

Confocal microscopy 234 

Mycorrhizal roots were counterstained with 0.01% (w/v) acid fuchsin in lactoglycerol (lactic acid-235 

glycerol-water, 14:1:1; Kormanik and McGraw 1982) and screened under an optical microscope 236 

(Nikon eclipse E300). Confocal microscopy observations were done using a Leica TCS-SP2 237 

microscope equipped with a 40x long-distance objective. Acid fuchsin fluorescence was excited at 238 

488nm and detected using a 560-680 nm emission window.  239 

Alternatively, colonized root segments were excised under a stereomicroscope, rapidly embedded in 240 

8% agarose Type III (Sigma-Aldrich) and cut into 100 μm-thick longitudinal sections using a 241 

Vibratome 1000 microtome. Sections were stained with FITC-labelled wheat germ agglutinin to mark 242 

the fungal cell wall and imaged in confocal microscopy. FITC fluorescence was excited at 488 nm and 243 

recorded at 500-550 nm. Transmitted light images were acquired concomitantly and overlaid to the 244 

fluorescence images through the Leica Confocal Software. 245 
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 246 

Results 247 

 248 

MtRbohE is upregulated in arbuscule-containing cells 249 

To analyse Rboh gene expression profiles in Medicago truncatula arbuscular mycorrhizas we focused 250 

our attention on five genes, MtRbohA, MtRbohB, MtRbohE, MtRbohF and MtRbohG, since they were 251 

shown to be expressed in the M. truncatula root system by Marino et al. (2011). To this purpose qRT-252 

PCR assays were first set up on fresh biological material obtained from whole roots of seedlings 253 

inoculated in the semi-sterile sandwich system with Rhizophagus irregularis (DAOM 197198) over a 254 

time course of 7, 14, 28 and 60 days post-inoculation (dpi). Morphological analyses of roots revealed 255 

almost no fungal structures at 7 or 14 dpi, while mycorrhization frequency increased from 28 to 60 dpi. 256 

Arbuscules were detected starting from 28 dpi while decreased at 60 dpi (Table 1). These data were 257 

confirmed by molecular analyses showing the parallel accumulation of MtPT4 mRNA, the M. 258 

truncatula phosphate transporter which is considered a molecular marker for functional arbuscules 259 

(Harrison et al. 2002; Fig. 1a).  260 

Specific primers designed for MtRboh genes (Marino et al. 2011) were first tested on M. truncatula 261 

DNA as a positive control and also on R. irregularis genomic DNAs to exclude any cross-262 

hybridization. All the primers amplified a DNA fragment of the expected size from M. truncatula 263 

genomic DNA while no signal was detected from fungal DNA (data not shown). The M. truncatula 264 

MtTef was used as a housekeeping gene for the normalization of the Rboh expression levels. Among 265 

the 5 genes MtRbohG showed the highest expression levels in all the samples and slight fluctuations 266 

between control and mycorrhizal roots along the 4 time points. Almost no significant variation in 267 

transcripts abundance for the other genes (MtRbohA, MtRbohB, MtRbohE, and MtRbohF) was observed 268 

in most of the time points (Fig. 1b).  269 

Since the AM colonization is an asynchronous process, whole roots analyses may hinder expression 270 

patterns limited to specific tissues or cell sub-populations (Balestrini et al. 2007).  We therefore chose 271 

to monitor gene expression in different cell types, by using laser microdissection (LMD) coupled to 272 

semi-quantitative RT-PCR. Three different cell populations were collected from M. truncatula roots: 273 

cortical cells from control non-inoculated roots (C), non-colonized cells (NcMyc) and arbusculated 274 

cells (Arb) from roots colonized by R. irregularis. The quality of LMD samples was verified by 275 

Formattato: Inglese (Regno Unito)
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monitoring MtPT4 expression. The corresponding PCR product was only detected in the arbuscule-276 

containing cells while no signal was obtained from the other two samples (Fig. 2b). In order to calibrate 277 

the amount of RNAs in the three different samples, RT-PCR assays using MtTef primers were 278 

performed (Fig. 2a).  279 

MtRbohB and MtRbohF mRNAs were not detected in any cell type, while a weak MtRbohA signal was 280 

detected in cortical cells from control roots (Fig. 2b). By contrast, MtRbohE and MtRbohG transcripts 281 

were detected in all three cell types. MtRbohE displayed a slightly stronger signal in arbusculated cells 282 

compared to the other two cell types (Fig. 2b). These results were confirmed in a second independent 283 

experiment (data not shown). 284 

To better localize gene expression in the root, histochemical staining was performed using a promoter 285 

transcriptional fusion approach based on Agrobacterium rhizogenes-transformed root of M. truncatula 286 

expressing the GUS reporter gene under Rboh promoters (Marino et al. 2011). Hairy roots expressing 287 

pRboh:GUS constructs were colonized by the AM fungus G. margarita using the targeted inoculation 288 

technique and then subjected to the GUS histochemical reaction. GUS staining was observed in root 289 

tips and central cylinders for all transgenic lines, in both control and mycorrhizal roots (Fig. 3). These 290 

results are largely in line with the observations by Marino et al. (2011) in composite plant roots. 291 

Altogether, these experiments highlight the role of Rboh genes during root growth, where they could 292 

have a role in cell wall extension (Monshausen et al. 2007; Macpherson et al. 2008).  293 

When mycorrhizal roots were analyzed, the pattern of GUS activity largely overlapped to that observed 294 

in non mycorrhizal roots. Nevertheless, an additional GUS-positive district was found in the MtRbohE 295 

transgenic line, corresponding to some of the inner cortical cells (Fig. 3q,r). The same pattern was 296 

confirmed in a second set of experiments, where all five transgenic lines were inoculated with R. 297 

irregularis; a detail for the MtRbohE line is shown in Fig. 4. Since inner cortical cells are the site of 298 

arbuscule development, we verified the presence of fungal structures in GUS-positive cortical cells. To 299 

this aim, roots were counterstained with acid fuchsin. Since the blue GUS staining dominated the acid 300 

fuchsin pink color, a more detailed visualization of arbuscules was obtained with confocal microscope 301 

observations, taking advantage of acid fuchsin fluorescence. The results clearly showed that the cortical 302 

cells where GUS activity was detected also contained arbuscules (Fig. 5). 303 

In short, different approaches consistently suggest that MtRbohE is upregulated in arbuscule-containing 304 

cells. 305 



 12 

 306 

MtRbohE silencing affects arbuscule development  307 

To better understand the role of MtRbohE in the AM symbiosis, hairy roots expressing an RNA 308 

interference (RNAi) construct for the MtRbohE gene or the empty vector (EV) were obtained by A. 309 

rhizogenes transformation. Different independent transgenic lines displayed an average of 50% 310 

MtRbohE silencing (Fig. S1). To study their mycorrhizal phenotype, these roots were inoculated with 311 

G. margarita by the targeted inoculation method (Chabaud et al. 2002). EV roots showed the typical 312 

AM colonization pattern with abundant, fully developed arbuscules in the root cortex (Fig. 6). By 313 

contrast, MtRbohE RNAi lines displayed abundant intercellular hyphae, but rare arbuscules. In more 314 

detail, short - and occasionally multiple - hyphal protrusions were observed along the cell wall of 315 

cortical cells (Fig. 6; Fig. S2). We interpret these structures as cell penetration attempts from the 316 

intercellular hyphae that did not result in arbuscule formation. These observations strongly suggest that 317 

MtRBohE plays a role in arbuscule accommodation in the root cortex. 318 

Intestingly, inoculation of MtRbohE RNAi roots of composite plants with S. meliloti showed no 319 

significant effect on nodule number (Fig. S3). Altogether, these results suggest that MtRbohE is 320 

involved in mycorrhizal but not in the rhizobial symbiosis. 321 

 322 

Discussion 323 

Many processes in the AM symbiosis have been hypothesized to be mediated by ROS: from the control 324 

of host compatibility and fungal morphogenesis (Lanfranco et al. 2005; Fester and Hause 2005) to the 325 

regulation of plant responses to biotic (Pozo and Azcon-Aguilar, 2007) and abiotic stress conditions 326 

(Dumas-Gaudot et al. 2000; Linderman 2000), but the precise underlying mechanisms are far from 327 

being completely elucidated. 328 

Since the literature reports evidence of H2O2 accumulation in arbuscular mycorrhizas (Salzer et al. 329 

1999; Fester and Hause 2005; Lanfranco et al. 2005) in this work we monitored the expression profiles 330 

of five M. truncatula Rboh genes during the AM interaction. 331 

Investigations on RNA from whole roots revealed that Rboh transcript levels did not drastically change 332 

in M. truncatula roots upon colonization by R. irregularis. Similar results were obtained in mycorrhizal       333 

roots of Phaseolus vulgaris (Arthikala et al. 2013) although a weak up-regulation of putative orthologs 334 

of MtRbohB, MtRbohA, MtRbohE and MtRbohF (PvRbohB, PvRbohD, PvRbohA and PvRbohH 335 
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respectively; Montiel et al. 2012) was reported. 336 

Since a mycorrhizal root is a heterogeneous environment where different cell types, either colonized or 337 

not by the AM fungus, coexist, we took advantage of the laser microdissection technique to investigate 338 

whether a fine tuning of gene expression was associated to specific cells. In recent years this method 339 

has been successfully applied to identify transcripts specifically or preferentially associated to the key 340 

structures of the AM symbiosis, that is arbusculated cells (Fiorilli et al. 2009; Gomez et al. 2009; 341 

Guether et al. 2009; Hogekamp et al. 2011; Gaude et al. 2012). Cortical parenchyma, the exclusive 342 

niche of arbuscule differentiation, was therefore the target of our analysis. Semi-quantitative RT-PCR 343 

showed that MtRbohE and MtRbohG were expressed in cortical cells from both mycorrhizal and 344 

control roots, but a slightly stronger intensity was detected for MtRbohE in arbusculated cells compared 345 

to adjacent, non-colonized, cortical cells or cortical cells from non mycorrhizal roots. This result is in 346 

agreement with data obtained from transcriptional fusion lines: upon colonization by AM fungi the 347 

MtRbohE line showed GUS activity in certain cells of the inner cortical parenchyma where arbuscules 348 

were present. This promoter activity appears a common response to colonization by AM fungi since it 349 

was observed with both G. margarita or R. irregularis inoculation.  350 

In their whole the data suggest that MtRbohE gene is activated in cortical cells possibly in relation to 351 

specific events of formation, differentiation and/or senescence of arbuscules. We propose a transient 352 

activation of MtRbohE since the up-regulation was not evident in the qRT-PCR from whole roots. The 353 

molecular mechanisms underlying the formation and the turnover of arbuscules are largely unknown 354 

and remain a very enigmatic aspect of the AM symbiosis (Guthjar and Parniske 2013). It can be 355 

hypothesized that the spatio-temporal localized production of ROS mediated by MtRbohE may 356 

contribute to control the formation or the life span of these ephemeral intracellular structures. This 357 

hypothesis is also supported by the mycorrhizal phenotype of MtRbohE silenced lines; although the 358 

down regulation was only partial (about 50%) MtRbohE RNAi roots displayed abundant intercellular 359 

hyphae with many cell penetration attempts, but rare arbuscules. 360 

As far as concerns the five genes under analysis, the situation is clearly different from that described in 361 

the nitrogen fixing symbiosis (Marino et al. 2011; 2012) and adds some points of divergence between 362 

the two root symbioses. Based on our expression data MtRbohA does not seem to have a role in the AM 363 

symbiosis. This is not surprising since MtRbohA was shown to control nodule nitrogen fixation activity 364 

also through the modulation of genes encoding the microsymbiont nitrogenase, a process which is 365 
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indeed specific to the rhizobial symbiosis. However, we can not exclude regulations occurring at post-366 

translational level (Marino et al. 2012). On the other hand, it has been recently demonstrated that the 367 

PvRbohB gene from Phaseolus vulgaris (homolog of MtRbohG), is required for root infection by 368 

rhizobia but acts as a negative regulator of the AM symbiosis (Arthikala et al. 2013). Also our data, 369 

showing that MtRbohE silencing did not impact the nodulation process, further hint at a divergent role 370 

for Rboh/ROS-related processes in the two root symbioses.  371 

Two recent works on the model legume M. truncatula have provided indirect evidence for a role of 372 

Rboh genes in the AM symbiosis. The silencing of MtROP9, a small GTPase considered a positive 373 

regulator of Rboh enzymes, led to a stimulation of early mycorrhizal colonization (Kiirika et al. 2012). 374 

However, the specific Rboh isoform involved remain to be identified. 375 

In a second publication, M. truncatula transcriptomic responses to a combined phosphate and nitrogen 376 

limited condition were supposed to be mediated by the action of a Rboh gene which would lead to 377 

alteration of plant defence and, in the end, to a better AM root colonization. Interestingly, the same 378 

authors, based on in silico analyses of expression profiles, identified MtRbohE as a candidate gene that 379 

deserves further investigation (Bonneau et al. 2013): our current results are in line. 380 

Based on genomic analyses, M. truncatula possesses 10 Rboh genes some of which were proposed to 381 

have arisen by a recent whole genome duplication event (Shoemaker et al. 2006). It will be interesting 382 

to extend this investigation to other members of the MtRboh family to highlight potential specific roles 383 

of ROS in controlling root symbioses. Furthermore, given the emerging role of fungal NADPH 384 

oxidases in controlling many aspects of fungal development and interactions with plants (Tudzynski et 385 

al. 2012), NADPH oxidases in AM fungi will also deserve careful investigation. 386 
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 554 

 555 

Figure legends 556 

 557 

Fig. 1 Relative expression values of MtPT4 (a) and MtRbohA, B, E, F and G genes (b) in roots of M. 558 

truncatula colonized with R. irregularis at 7, 14, 28 and 60 days post-inoculation (dpi). Expression 559 

values (bars = standard deviations) are normalized to the MtTef housekeeping gene. In panel b, Y axis 560 

has a log10 scale. Letters or asterisks indicate statistically significant difference (p<0.05, ANOVA). 561 

 562 

Fig. 2 Gel electrophoresis of RT-PCR products obtained from laser microdissected samples from roots 563 

colonized by R. irregularis (Arb: arbusculated cortical cells; NcMyc: non colonized cortical cells from 564 

mycorrhizal roots; C: cortical cells from non mycorrhizal roots) using primers specific for the 565 

housekeeping gene MtTef (a) and for the different MtRboh genes or for MtPT4, used as marker of 566 

arbuscule-containing cells (b). 567 

 568 

Fig. 3 GUS histochemical staining of M. truncatula hairy roots expressing pRboh:GUS transcriptional 569 

fusion colonized (Myc) or not (Non myc) with the AM fungus G. margarita. In non mycorrhizal roots 570 

(figures from a to l) the GUS staining is localized in the root apex (arrows) and in the vascular system 571 

(asterisks). In roots colonized by the AM fungus G. margarita (figures from m to v) the GUS staining 572 

is localized in all the transgenic lines (as in the non mycorrhizal roots) in the root tips (arrows) and in 573 

the vascular system (asterisks). Only in MtRbohE transgenic roots the GUS staining is also localized in 574 

some cells of the inner cortex (arrowheads) where usually arbuscules are formed. 575 
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 576 

Fig. 4 GUS histochemical staining of M. truncatula MtRbohE transgenic hairy roots expressing 577 

pRboh:GUS transcriptional fusion colonized (Myc) or not (Non myc) with the AM fungus R. 578 

irregularis. In non mycorrhizal roots (figures a and b) the GUS staining is localized in the root apex 579 

(arrowhead) and in the vascular system (asterisks). In roots colonized by the AM fungus R. irregularis 580 

(figures c and d) the GUS staining is localized in the vascular system (asterisks) and in some cells of 581 

the inner cortex (arrows) where usually arbuscules are formed. 582 

 583 

Fig. 5 GUS histochemical staining of M. truncatula MtRbohE transgenic hairy roots expressing 584 

pRboh:GUS transcriptional fusion colonized with the AM fungus G. margarita and counterstained with 585 

acid fuchsin to localize the intraradical hyphae. Under a confocal microscope (figures a, b and c) the 586 

acid fuchsin autofluorescence allows to localize the arbuscules (A) in some cortical cells. The 587 

observation of the same cortical cells under a light microscope (figures d, e and f) allow to appreciate 588 

the overlap of the GUS staining (blue) and the acid fuchsin staining (pink), clearly indicating the co-589 

localization of the GUS staining and the arbuscules. Bars: 20 µm. 590 

 591 

Fig. 6  Confocal microscopy images representative of hyphal and arbuscule development in WT (a-c) 592 

and MtRbohE RNAi-silenced lines (d-f). Both hyphae (h) and arbuscules (ar) are abundant in WT roots 593 

(a). Higher magnifications (b and c) show details of arbuscule morphology, with the fine branches 594 

occupying most of the cell volume and the large trunk (t) branching from the intercellular hypha 595 

(arrowhead). By contrast, arbuscules are much more sparse in MtRbohE RNAi-silenced lines (d), 596 

where extensive areas are mostly colonized by intercellular hyphae (h). When present, arbuscule have a 597 

WT-like morphology (e, f), while intercellular hyphae often show short protrusions that we interpret as 598 

recursive, aborted cell penetration attempts (arrowheads). Bars = 80µm in a, d, e; 40µm in b, f; 20µm 599 

in c. 600 

 601 

Table 1 Mycorrhization level in M. truncatula roots at different days post inoculation (dpi). Different 602 

letters indicate statistically significant differences (p>0.05, ANOVA). 603 

 604 



 22 

Fig. S1 Relative expression of MtRbohE in transgenic root cultures. MtRbohE expression was 605 

evaluated by qRT-PCR on established transgenic root cultures expressing either an empty (EV) or a 606 

MtRbohE RNAi construct (RNAi). Values were normalized against the 40S2 ribosomal protein (Andrio 607 

et al. 2013). Data are reported as mean ± standard error. Asterisk indicates a statistically significant 608 

difference between control (EV) and RNAi lines using t-test (p<0.05). 609 

 610 

Fig. S2 Details of intraradical fungal structures in the cortex of EV (a) or MtRbohE RNAi-silenced 611 

lines (b). A young arbuscule is displayed in a, filling up most of the host cell lumen with its trunk (t) 612 

and branches (b). A root segment only containing intercellular hyphae is shown in b: several short 613 

branches are evident, protruding from an intercellular hypha, corresponding to aborted cell penetration 614 

events. Bars = 20µm in a; 80µm in b. 615 

Fig. S3 Nodulation of composite plants expressing either an empty (EV) or a MtRbohE RNAi 616 

construct. Nodule number was evaluated 4 and 10 days after inoculation with Sinorhizobium meliloti.  617 

Data are reported as mean ± standard error. Values are representative of two independent biological 618 

replicates (n>30). Differences are not statistically significant (t-test). 619 
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