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ABSTRACT  

The potential biomedical applications of the MNPs nanohybrids coated with m-

carboranylphosphinate (1-MNPs) as a theranostic biomaterial for cancer therapy 

were tested. The cellular uptake and toxicity profile of 1-MNPs from culture media 

by human brain endothelial cells (hCMEC/D3) and glioblastoma multiform A172 

cell line was demonstrated. Prior to testing 1-MNPs’ in vitro toxicity, studies of 

colloidal stability of the 1-MNPs’ suspension in different culture media and 

temperatures were carried out. TEM images and chemical titration confirmed that 1-

MNPs penetrate into cells. Additionally, to explore 1-MNPs’ potential use in Boron 

Neutron Capture Therapy (BNCT) for treating cancer locally, the presence of the m-

carboranyl coordinated with the MNPs core after uptake was proven by XPS and 

EELS. Importantly, thermal neutrons irradiation in BNCT reduced by 2.5 the 

number of cultured glioblastoma cells after 1-MNP treatment, and the systemic 

administration of 1-MNPs in mice was well tolerated with no major signs of toxicity.  

 

 

Keywords. m-carboranyl, phosphinate, iron oxide nanoparticles, Boron Neutron 

Capture Therapy, nanomedicine. 
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BACKGROUND 

The synthesis of magnetic nanoparticles (MNPs) has been intensively developed for 

many technological1 and medical applications.2,3 Typical MNPs obtained by bottom 

up synthesis consist of a magnetic core and an organic or inorganic shell that provides 

a barrier between the core and its environment dispersing them in water at a range of 

different pH, among other tasks. While MNPs’ physical properties are determined by 

their inorganic magnetic core, their surface properties also play an important role, 

especially in effective interfacing (e.g., ensuring biocompatibility and specific site) 

with biological systems. Superparamagnetic iron oxide nanoparticles (SPIONs or 

MNPs) have been extensively investigated for numerous in vivo and in vitro 

applications, such as magnetic resonance imaging (MRI) contrast enhancement,4 

tissue repair, detoxification of biological fluids, hyperthermia, drug delivery, 

immunoassays and cell separation techniques.2 

All these biomedical applications require that MNPs have high magnetization values, 

a size smaller than 100 nm, and a narrow particle size distribution. These applications 

also require a demanding surface coating of the MNPs, which has to be nontoxic and 

biocompatible.5 Such MNPs have been bound to drugs, proteins, enzymes, 

antibodies, or nucleotides and can be directed to an organ, tissue, or tumour using an 

external magnetic field.6,7 However, only one example of o-carborane cages attached 

to MNPs through a long linker for cancer treatment can be found in the literature.8 

Among different surface coating o-carborane cages, carboranylphosphinates,9 have 

many advantages due to their good affinity towards MNPs, their highly 
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biocompatible tridimensional structure and their high boron content, that can be 

exploited for Boron Neutron Capture Therapy(BNCT) which is based on the nuclear 

capture and fission reactions that occur when the stable isotope 10B is irradiated with 

epithermal neutron beam radiation in clinical use, which become thermalized as they 

penetrate tissue.10 

The most studied carborane is 1,2-dicarba-closo-dodecaborane, 1,2-closo-C2B10H12, 

and its isomers (1,7 and 1,12-) that can be viewed as 3D aromatic systems11 whose 

volume approximates to that of one displayed by a benzene molecule rotating on one 

of its twofold axes.12 These carboranes exhibit an unusual combination of properties 

such as low nucleophilicity, chemical inertness, thermal stability,13,14 as well as 

stability and low toxicity in biological systems.15-21 The rigid geometry and the 

relative easy functionalization at the carbon vertexes of the carborane cluster13,22,23 

allow the preparation of a wide number of compounds potentially useful as 

precursors of more complex materials.24-29 Furthermore, the use of carboranes in 

supramolecular chemistry is a topic, which raises great interest for their particular 

properties 12,30-34 that may induce an unexpected behaviour in the supramolecular 

structures in which they are inserted. Our vision of the carboranyl substituent, 

however, is that it is unique as a ligand because it is a hollow rigid sphere appended 

to a metal coordinating site. This, along with its hydrophobicity and electron 

withdrawing properties through the carbon cluster, Cc,
35-37 suggests the possibility of 

inducing distinct geometrical behaviour in boron rich macromolecules or particles of 

significance for Boron Neutron Capture Therapy (BNCT),38-44 an alternative 
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radiotherapy used for aggressive and infiltrating types of cancer that can not be 

treated with surgery or standard radio or chemotherapy, and by drug delivery.45,46  

The theoretical advantage of BNCT is that it can selectively destroy tumour cells 

infiltrating normal tissue with the requirement that sufficient amounts of 10B and 

thermal neutrons are properly delivered to the site of the tumour.38-46 Clinical interest 

in BNCT has focused primarily on high grade gliomas and on recurrent tumours of 

the head and neck region who have failed conventional therapy. BNCT integrates the 

focusing approach of chemotherapy and the gross anatomical localization advantage 

of traditional radiotherapy, offering the ability to deposit an immense dose-gradient 

between the tumour cells and normal cells.47 For this, new and better boron delivery 

agents targeting cancer cells are needed for the clinical use. 

Particularly in this work, the carborane derivative utilized, is m-

carboranylphosphinate and its acid form that is m-carboranylphosphinic acid 

(Figure1), which was recently reported.9 The ligand is subjected to the properties 

bestowed by the m-carborane, though the most notable properties in reference to the 

results obtained in this work are the reduced tendency of the phosphinate coordinated 

group to be oxidized (a property which is uncommon among organic phosphinates), 

the spherical nature of the carborane (driving to space-filling efficiency) and the 

hydrophobicity of the carboranyl unit. 

In this paper, we have assessed the in vitro and in vivo properties of the boron cluster-

MNPs nanohybrids coated with m-carboranylphosphinate ([1]-), which were 

prepared (1-MNPs)48 by the classic co-precipitation synthesis. 
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To illustrate their potential biomedical applications, we have demonstrated the 

cellular uptake of these 1-MNPs from culture media by a tumour glioblastoma cell 

line (A172) and in a human cell line of capillary-derived human brain endothelial 

cells (hCMEC/D3) as normal tissue cells. We show by TEM images that the 1-MNPs 

penetrate into these cells in membrane vesicles and remain within the cell cytoplasm. 

Additionally, their potential ability to penetrate into malignant glioblastoma cells as 

boron carriers for selective cancer treatment with BNCT is explored together with 

the in vivo tolerance after intravenous administration. Based on the presented results, 

the bifunctional MNPs nanohybrids coated with m-carboranylphosphinate are new 

nanomaterials that could act in dual therapies (BNCT and thermotherapy) with the 

aim to obtain the best therapeutic effects using the lowest doses and therefore 

avoiding unwanted organism toxicity and side effects in healthy tissues. 

 

METHODS 

The conducted study overlaps nanoscience experiments (stability studies of coated 

MNPs with Boron clusters) with functional in vitro and in vivo experiments (cellular 

uptake and imaging, BNCT irradiation in glioblastoma cells, and nanohybrid 

biocompatibility in mice) including: Dynamic Light Scattering (DLS) and Zeta 

Potential; Superconductive Quantum Interference Device (SQUID) magnetometer 

(Quantum Design MPMS5XL); TEM of cells; preparation of 1-MNPs aqueous 

suspension at the physiological pH; cellular uptake of 1-MNPs; cell viability assays; 
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cell count; dried cells preparation for magnetization measurements, XPS, HRSTEM, 

EELS and EFTEM studies; cytoplasmic 1-MNPs detection by Prussian blue and 1-

MNPs visualization by Transmission Electron Microscopy (TEM); Magnetic 

Resonance Imaging (MRI); Boron and Iron determination by Inductively Coupled 

Plasma Mass Spectrometry (ICP-MS) analysis; Cell irradiation and proliferation 

assays and “in vivo” 1-MNPs administration in mice. Detailed descriptions can be 

found in the S.I. Animal procedures for the MNPs administration were approved by 

the Ethics Committee of Animal Experimentation of the Vall d'Hebron Research 

Institute and were conducted in compliance with Spanish legislation and in 

accordance with the Directives of the European Union. A detailed description of the 

techniques and conducted experiments can be found in the supplementary 

information (S.I). 

The uptake of 1-MNPs was measured through the MNPs core and calculated as 

follows: first, dividing the MR value of the treated cells by the total number of cells 

at 5K, which provides the magnetization per cell (emu/cell), then further dividing 

this value by the remanent magnetization of the 1-MNPs (emu/g 1-MNPs) at 5K to 

obtain the amount of iron per cell. 

 

RESULTS 

Colloidal stability of the 1-MNPs suspension.  

The stability of the colloidal dispersions of 1-MNPs (50 g 1-MNPs/mL) was studied 

by DLS in different culture media (DMEM-F12-1% FBS, DMEM-1% FBS, EGM2-
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2%FBS and RPMI) and as well as in phosphate-buffered saline (PBS) solution that 

contains inorganic salts (NaCl, Na2HPO4, KH2PO4, KCl) at different time intervals 

(10 min. and 24 h.) and temperatures (r.t. and 37°C). The results are on display in 

Table 1. 

In all tested culture media no precipitation was observed neither after 10 min nor 

after incubating 24 h at r.t. or at 37ºC, while in PBS 1-MNPs sediment within 24 h at 

r.t. In the case of DMEM F12-1% FBS, 1% non-essential amino acids and 1% 

antibiotics, and in RPMI the size of detected particles was close to the mean particle 

diameters determined by TEM, ØTEM = 7.6±0.6 nm. In EGM-2 medium with 2%FBS 

and in DMEM-1%FBS 1-MNPs rapidly formed aggregates with hydrodynamic 

diameters in the range of 50-140 nm and 60-170 nm, respectively, maintaining an 

invariable size for 24 h. Comparing results at r.t. and 37oC, a slight increase in 

hydrodynamic diameters was observed in all culture media (Table 1). To know more 

about the stability of 1-MNPs in PBS, DLS measurements at 10 and 30 minutes as 

well as at 2, 4 and 8 hours were conducted (see S. I.). 

Determination of 1-MNPs uptake by endothelial and glioblastoma cells. 

The first step of the biological studies was to confirm the uptake of the sterilized 1-

MNPs by the cultured cells (hCMEC/D3 and A172). As shown in the right panels of 

Figure 2, the Prussian blue stain enables us to identify the presence of intracellular 

iron after 24 h treatment with 1-MNPs. Cell viability assay also shows that brain 

endothelial (hCMEC/D3) cells were more sensitive to 1-MNP toxicity than 

glioblastoma A172 cells (Figure 2A and 2B) since doses of 25 g Fe2+/3+/mL 
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significantly reduced endothelial cell viability.  The reduction in hCMEC/D3 

viability could be only partially explained by the vehicle solution consisting in equal 

content of m-carboranylphosphinic acid (H[1]) and [NMe4]OH as in a 1-MNPs 

colloidal suspension, but certainly the 1-MNPs nanohybrid induced cell toxicity 

starting at 25 g/mL. Under the same administered doses of 1-MNPs, glioblastoma 

A172 cells presented full viability as observed in Figure 2B. However, higher doses 

induced cell toxicity to the cancer cells, maybe due to the acidity of m-

carboranylphosphinic acid present in the vehicle solution. These results provide a 

prove of dose-dependent effects of the 1-MNPs compound in normal tissue 

(endothelial) and tumour cells (glioblastoma) which are considered for further 1-

MNPs loading experiments. 

Quantification of the cellular 1-MNPs uptake. 

To confirm the uptake of MNPs core by the A172 and hCMEC/D3 cells after 6 or 24 

h of incubation in the presence of 1-MNPs, the cells were dried, as described in the 

experimental section and the magnetism measurements were run (see the S. I.). The 

results determine the amount of iron per cell and show a clear time and dose-

dependent relationship with both endothelial and glioblastoma cell lines as shown in 

Figure 3A. Moreover, with the same dose of 1-MNPs (25 ug/ml) A172 cells 

presented larger cellular iron content than endothelial cells (6-fold and 4-fold 

increase after 6 and 24 hours, respectively) as shown in Figure 3B, indicating a higher 

capacity of cellular load with iron oxides without toxic effects (Figure 3). These are 

interesting results suggesting that by using low doses of 1-MNPs, glioblastoma 
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cancer cells may be largely loaded with the 1-MNPs compound compared to other 

healthy neighbouring cells in the tissue such as endothelial cells. 

Cell Visualization of 1-MNPs uptake. 

The presence of cytoplasmic 1-MNPs core and its intracellular localization into 

hCMEC/D3 and A172 cells was visualized by TEM analysis in membrane-bound 

compartments matching with endosomal or lysosomal organelles (Figure 4) at least 

24 hours after labelling, as described for other iron oxide compounds.49-51 This result 

confirms the cellular load with the 1-MNP compound and confirms the cell-

dependant 1-MNP load, being higher in A172 glioblastoma cells. 

Additionally, to assess whether the amount of Fe internalized in A172 cells was 

enough to allow MRI visualization on a T2-weighted image, cells were incubated in 

the presence of 1-MNPs (25 and 50 µg/mL Fe) for 6 or 24h and prepared for MRI as 

described in the S.I. As shown in Figure 4 the acquired signal intensity is dramatically 

lower (hypointense) in all the treated samples with respect to non-treated control 

cells. This opens the opportunity to use MRI to carry out a non-invasive 

quantification of Fe and consequently Boron taken up by target cells, respectively. 

However, the presence of the m-carboranyl cluster surrounding the observed MNPs 

core present in the glioblastoma A172 cytoplasm could not be confirmed by EELS 

and EFTEM elemental maps, probably because of the low levels of boron, thus only 

Fe was clearly detected (see S. I.). To overcome this drawback and to unambiguously 

prove the presence of the m-carboranyl cluster coordinated at the MNPs core, high 

resolution XPS and EELS spectra on the A172 dried-cells sample were done. Peaks 
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at 189 and 133 eV in the XPS analysis, which are characteristic of B-B52 and P-O 

bonding, were observed and that clearly confirmed the presence of m-carboranyl 

phosphinate coordinated to the MNP core (Figure 5). EELS analysis on the A172 

dried-cells sample also shows the B-K and PL2,3 edges present in the sample proving 

that the carboranylphosphinate coordinates to MNPs surface. 

Cell toxicity to the ligand shell coating of 1-MNPs. 

Finally, the toxicity of the ligand shell coating the MNPs core (Na[1] salt) was 

determined in both A172 and hCMEC/D3 cells in a dose-response cell viability 

assay. As observed for the whole 1-MNPs compound, endothelial cells were more 

sensitive to the Na[1] salt than the glioblastoma cells since Lethal Dose 50 was 

around 1 mM compared to the 7.5 mM observed in A172 cells; see Figure 6A and 

6B. Those doses correspond to 230 gNa[1]/mL and 1725 gNa[1]/mL of Na[1], 

respectively. 

Cell neutron irradiation. 

BNCT studies were carried out incubating A172 cells for 24h with 1-MNPs (20 

µg/mL Boron). The amount of internalized Boron measured by ICP-MS was of 

133±25 µg/g corresponding to a 10B concentration of 26±5 µg/g. Using the above 

mentioned condition, two groups of A172 cells were irradiated for 15 min in the 

thermal column of the TRIGA Mark II reactor at the University of Pavia (Reactor 

Power 30 kW): untreated control cells and 1-MNPs-treated cells. These were further 

compared with the respective non-irradiated controls. The proliferation rate (Figure 

7) of irradiated and 1-MNPs treated cells re-plated the day after BNCT is 
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considerably lower than both control cells, thus demonstrating the efficacy of 1-

MNPs as boron carriers for this cancer therapy. On day 6, BNCT irradiation reduced 

by 2.5 the number of cancer cells treated with 1-MNP when compared to non-treated 

cells. 

Evaluation of in vivo toxicity of the 1-MNP compound in mice. 

We aimed at proving for the first time that the 1-MNPs were well-tolerated and did 

not induce major acute toxicity signs such as death, seizures or convulsions but also 

acute pain, distress, decreased/increased motor activity or dehydratation by 

monitoring body weight before and after treatment. Briefly, mice received 80 L of 

1-MNPs intravenously that corresponds to 0.58±0.03 mg/kg of body weight, very 

close to the approved dose for Feridex® in humans (0.56 mg/Kg of body weight) and 

previously tested in other “in vivo” studies.53 Importantly, all mice survived the study 

period (10 days) with no major signs of toxicity. In particular, we found that the 

individual body weight of the 2 treated groups were comparable with the control 

group (naïve mice) with day to day fluctuations but without showing significant 

differences between groups in the body weight (p = 0.9; Figure 8A). 

 

DISCUSSION 

The development of multifunctional hybrid nanomaterials which could be applied 

in multi-modal treatments to obtain more efficient drugs with diminishing secondary 

effects is of great interest nowadays. Thus, based on the biofunctional properties of 

the multifunctional hybrid nanomaterials, our aim in the present study was to prepare 
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MNPs coated with m-carboranylphosphinate ([1]-)) to be applied as a theranostic 

biomaterial for cancer therapy: biocompatible agents for cell labelling used for both 

tracking purposes and BNCT treatments  

The present study shows that the newly synthesized nanohybrid 1-MNPs could be 

used to target cancer cells for tumour imaging and treatment with BNCT therapy. 

This technique is a highly selective type of radiation therapy that can target tumour 

cells without causing radiation damage to the adjacent normal cells. Specifically, the 

1-MNPs compound is taken up from culture media by glioblastoma multiform cell 

line A172 in a higher amount than in the endothelial cells with cell-tracking 

properties due to the magnetic core of 1-MNPs by showing a reduced signal on T2 

weighted Magnetic Resonance Imaging (MRI). This characteristic could allow the 

indirect quantitative determination of boron at the target site before and during 

neutron irradiation becoming an advantage during cancer treatment since it allows 

the determination of the optimal neutron irradiation time and a precise calculation 

of the delivered dose.54,55 Moreover, BNCT was performed on A172 cells treated 

with 1-MNPs, demonstrating the eligibility of 1-MNPs as boron vectors for an 

efficient BNCT. Finally, it was assessed that the systemic administration of these 1-

MNPs in adult mice is well tolerated at mid-term with no major signs of toxicity. 

It has been recently reported that pH produces an effect on the hydrodynamic radius 

of aqueous 1-MNPs suspensions and many studies have revealed that MNPs behave 

differently in biological media than in water at physiological pH (7.45)56 because of 
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the presence of inorganic salts, proteins, amino acids or polysaccharides in biological 

media.57 Our newly synthesized boron nanohybrids 1-MNPs showed colloidal 

stability in different culture media and at temperatures (room temperature and 37°C) 

and a nanometric size, supporting their use in biological studies. 

The hybrid nature of MNPs is conceptually divided into the inorganic core, the 

engineered surface coating comprising the ligand shell and the corona of adsorbed 

biological molecules. Empirical evidence shows that all three components may 

degrade individually in vivo and can drastically modify the life cycle and 

biodistribution of the whole heterostructure.5,6,7 Thus, MNPs may be decomposed 

into different parts, whose biodistribution and fate would need to be analysed 

individually. In this regard, functional studies confirmed the uptake of 1-MNPs by 

the cultured cells by Prussian blue staining identifying the presence of intracellular 

iron after 24 h treatment with 1-MNPs. These experiments suggest that there has 

been cytoplasmic endocytosis of the iron core of the 1-MNPs, as previously 

described for other iron oxide nanoparticles by other authors.58,59 These findings 

were further confirmed by electron microscopy on both endothelial and glioblastoma 

cells treated with 1-MNPs showing internalized iron particles in membrane vesicles 

(endosomes/lysosomes). 

On the other hand, high resolution XPS and EELS spectra on the A172 dried-cells 

sample unambiguously proved the presence of the m-carboranylphosphinate;peaks 

at 189 and 133 eV, which are characteristic of B-B52 and P-O bonding, thus, 

confirming the presence of boron cluster ligands in the treated cells. Quantification 
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of 1-MNPs uptake by cells displayed that glioblastoma A172 cells presented larger 

cellular iron contents than brain endothelial (hCMEC/D3) cells when treated at 

similar conditions of the 1-MNPs compound, suggesting that by using low doses of 

MNPs, glioblastoma cancer cells might be largely labelled with the 1-MNPs 

compound compared to other neighbouring cells more sensitive to the compound 

such as endothelial cells. These newly synthesized boron nanohybrids have 

significant biocompatible properties at certain administered doses allowing cell 

labelling with potential applications to penetrate into malignant tumour cells as drug 

carriers or for Boron Neutron Capture Therapy. The amount of both Fe and Boron 

internalized by A172 tumour cells in our study are sufficient to allow a successful 

MRI guided BNCT since it exceeds the minimum amount of 10B necessary to 

perform BNCT60. Moreover, nanoparticles could also be prepared using 10B enriched 

carboranes to improve the toxic effect of neutrons.  

Importantly, in terms of drug safety we have shown that the systemic administration 

of the 1-MNPs nanohybrids does not show major signs of toxicity in mice, supporting 

its potential translation into the biomedical setting. This is a preliminary but relevant 

result before moving to the efficacy studies in the pre-clinical setting using tumour 

models in rodents.  

In conclusion, we believe that these new boron cluster-MNPs nanohybrids, 1-MNPs, 

might offer a broad scope for exciting research and future biomedical applications, 

including cancer therapy. 

Electronic Supplementary Information (S.I) is available. 
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Figure legends 

Figure 1. Schematic representation of m-carborane, m-carboranylphosphinic acid 

(H[1]), its sodium salt (Na[1]), and bidentate bridging coordination mode of [1]- 

onto the MNPs’ surface. 

 

Figure 2. Cell viability was tested after exposing brain endothelial cells (A), and 

Glioblastoma cells (B) to increasing doses of 1-MNPs and corresponding vehicle 

solutions for 24 hours. Data is expressed as mean ±SD of n=3/4 per condition; * 

p<0.05 indicates differences vs. control media (dashed line). Right panels 

correspond to images of each cell line (a) and to iron deposits observed after Prussian 

Blue Stain (b, treatment dose 10 µg/mL). 

 

Figure 3. The amount of Fe2+/3+ per viable cell was determined after treating cells 

with increasing doses of 1-MNPs for 6 or 24 hours. Bar graph (A) shows that the 

amount of Fe/cell was time- and dose-dependent in both cell lines. The tested 

glioblastoma cells (A172) were capable to uptake the largest amounts of iron at all 

sub-toxic tested doses (B). Data is expressed as mean ±SD pg Fe2+/3+/Cell of n=3 

independent experiments per condition. 

 

Figure 4. Transmission electron microscope (TEM) image of A) glioblastoma cells 

(A172) and B) endothelial hCMEC/D3 cells showing the presence of 1-MNPs into 

the cytoplasm with a larger load in A172cells. Glioblastoma cells (A) were also 
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imaged by T2-weighted MRI at 7T in glass capillaries containing cell pellets of 

untreated A172 cells (1) or A172 cells incubated for 6h with 25 or 50 µg Fe/mL 1-

MNPs (2 and 3, respectively) or for 24h with 25 or 50 µg Fe/mL NPs (4 and 5, 

respectively). 

 

Figure 5. High resolution spectra XPS of 1-MNPs and A172 cells treated with 1-

MNPs (A) in the B 1s and P 2p regions, (B) and (C), respectively. 

 

Figure 6. Cell viability after exposing brain endothelial cells (hCMEC/D3) and 

glioblastoma cells (A172) to increasing concentrations of the Na[1] salt compared to 

control treatment (vehicle). A) bar graph representing cell viability after 24 h 

treatment (mean ±SD). B) Representative images of cells after MTT assay. 

 

Figure 7. Proliferation curves of A172 cells re-plated one day after BNCT treatment. 

Data are the mean ± SD of two different experiments. 

 

Figure 8. Mouse weight after in vivo administration of 1-MNPs or vehicle in mice. 

(A) Mice were weighted before 1-MNPs (n=6) or Vehicle (n=7) intravenous 

administration, and followed up at 1, 2, 3 and 10 days of injection. A group of naïve 

mice who did not receive any treatment were also weighted at the same days (n=3). 

(B) The Individual weight increase or decrease at day 10 was calculated for each 

mouse and represented, showing no differences between treatment groups.  
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Table 1. Hydrodynamic diameter and diffusion coefficients values of 1-MNPs 

suspensions at different culture media and temperatures (r.t. and 37°C) measured by 

DLS. 

Media T, ºC ØHYD, (nm) Diffusion 

Coefficient, (m2/s) 

10 min 

DMEM F12–1% 

FBS 

r.t 9.8 ± 2.5 3.40 

37 8.2 ± 2.6 3.63 

EGM-2  medium 

with 2%FBS; 

r.t 90.3 ± 40.7 4.43 

37 98.7 ± 41.6 5.69 

DMEM-1% FBS 

r.t 103.4 ± 40.7 4.14 

37 106.6 ± 42.9 5.13 

RPMI 

r.t 9.0 ± 2.3 4.16 

37 8.4 ± 2.0 4.19 

PBS r.t 76.1 ± 31.1 4.90 

24 hours 

DMEM F12–1% 

FBS 

r.t 9.5 ± 2.2 3.50 

37 8.5 ± 2.3 4.03 

EGM-2  medium 

with 2%FBS; 

r.t 99.5 ± 41.9 4.31 

37 101.0 ± 42.6 5.54 

DMEM-1% FBS 

r.t 123.6 ± 40.8 3.42 

37 133.3 ± 43.4 4.24 
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RPMI 

r.t 10.8 ± 4.4 3.92 

37 11.0 ± 12.9 4.09 

PBS 1276 ± 435 (precipitated) 
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Figure 3.  
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Figure 7. 

 

 

 

  



36 
 

Figure 8.  

 

             

 


