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Eukaryotes host numerous intracellular and associated microbes in their microbiota. Fungi, the so-
called Mycobiota, are important members of both human and plant microbiota. Moreover, members 
of the plant mycobiota host their own microbiota on their surfaces and inside their hyphae. The 
microbiota of the mycobiota includes mycorrhizal helper bacteria (for mycorrhizal fungi) and 
fungal endobacteria, which are critical for the fungal host and, as such, likely affect the plant. This 
review discusses the contribution that these oftenoverlooked members make to the composition and 
performance of the plant microbiota. 

 

Introduction 

The Fungal kingdom encompasses a plethora of eukaryotic species that proliferate in diverse 
environments; fungi also have important roles as components of the microbiota, where they act as 
symbionts, endophytes, parasites, or saprotrophs. Characterizing the microbiota of diverse species 
across kingdoms has revealed an unexpected double nature of the fungi in the microbiome: they 
colonize higher eukaryotes from humans to plants [1,2]. In the mean time, as with all other 
eukaryotes, fungi host their own microbiota, consisting of microbial communities that adhere to the 
hyphal surface, develop among the pseudotissues produced by hyphal aggregation, or colonize the 
fungal cytoplasm. In this review, we illustrate the double role played by fungi in the microbiota 
(Figure 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Mycobiota: fungi of the plant microbiota 

The knowledge that fungi live strictly associated with plants in diverse niches, particularly in the 
rhizosphere, dates back more than 100 years [3]. However, only a minor part of the mycobiome is 
cultivable, in line with what is known about fungal diversity, where only a small portion of the 
estimated 3.8 million species [4] are in collections (http://www.wfcc.info/ccinfo/home/). Most of 
our knowledge of plant-associated fungi therefore comes from molecular analysis, where the 
internal transcribed spacer (ITS) of the nuclear rRNA operon is used as the official taxonomic 
barcode for fungi [5], providing species-level taxonomic delineation for most groups. Emerging 
‘omics’ techniques, as well as the concept of the microbiota as an additional plant genome 
(alongside the nuclear and organellar genomes), offer new views of fungal diversity. The numbers 
of operational taxonomic units (OTUs) units increase with sequencing and sampling depth [6], 
suggesting that many members of the mycobiota remain to be discovered. Fungi proliferate in 
different environments (soil, air, water) and with different nutritional strategies (saprotrophic, 
biotrophic, parasitic), but the highest numbers of fungi are found to be plantassociated and in the 
soil. These findings suggested a remarkable fungal/plant species ratio of 17/1. Moreover, these 
approaches revealed a variety of fungal communities associated with myriad plants in diverse 
environments [7]. Pioneering reports on the plant microbiota focused on identifying Arabidopsis 
thaliana bacterial assemblages [8], but recent papers consider eukaryotic and prokaryotic 
components of the microbiota. For example, Bergelson et al. [9] grew a worldwide panel of A. 
thaliana accessions and found that fungi influence root microbiota structure. Ascomycota and 
Basidiomycota are more common in leaves than in roots, whereas Mortierellomycota are 
moderately enriched in the root microbiota. Irrespective of their qualitative differences, the leaf and 
root microbiotas had similar fungal richness. Moving from identity to functions, Almario et al. [10] 
identified 15 fungal taxa consistently present in the root of Arabis alpina, including a Helotiales 
taxon that colonizes the root endosphere and transfers phosphate to the plant. Similar functions have 
been described for the endophyte Colletotrichum tofieldiae [11] and an endophytic strain of 
Fusarium solani was found to protect against root and foliar pathogens [12]. Emerging work is 
therefore discovering novel, beneficial members of the mycobiota in addition to long-standing 
studies on mycorrhizal fungi. Living in association with plants and exploring the soil with their 
network of extraradical hyphae make mycorrhizal fungi a perfect example of the plant microbiota. 
Their diversity in the most different environments has been deeply investigated [13]. 
Notwithstanding some pitfalls and potential biases when applied to fungal communities [7], high-
throughput sequencing has shown that fungi are unexpectedly diverse, important members of the 
plant microbiota. The challenge for the future will be to unravel the complex interactions among 
fungi and neighboring bacteria, and their effects on host physiology and metabolism [14]. 

From nutrient transfer to truffles: fungal-associated bacterial communities 

Mycobiota-associated bacteria have diverse effects on their interacting fungi and plants, from nutrient 
transfer to production of aromatic metabolites. Mycorrhiza helper bacteria (MHB) were the first to 
be acknowledged for their positive effects; identified by Garbaye [15], they interact with ecto- and 
arbuscular mycorrhizal fungi (AMF), and belong to very diverse taxa including Proteobacteria such 
as Pseudomonas and Oxalobacteracea, Actinomycetes such as Streptomyces, and Firmicutes such as 
Bacillus [16,17]. MHB may enhance mycorrhizal functions, provide nutrients to the fungus and plant, 
and promote defenses. For example, the fructose exuded by the AMF Rhizophagus irregularis 
stimulates phosphatase expression and secretion in the MHB Rahnella aquatilis, thus promoting the 
mineralization of organic phosphorus (i.e. phytate) into inorganic phos- phorus [18]. Even if 
established in fully artificial conditions, this system reveals an interesting cooperation between AMF 



and bacteria. High-throughput sequencing gave a wider description of MHB communities: Iffis et al. 
[19] identified the domi-nant AMF-associated bacterial OTUs in the roots of plants growing in 
hydrocarbon-polluted soils. Vik et al. [20] explored the bacterial community composition of the 
ectomycorrhizal roots of Bistorta vivipara and concluded that Actinobacteria were significantly more 
abundant in ectomycorrhizas than in soil. A detailed profile of bacterial communities associated with 
Pinus sylvestris roots colonized by different fungi demonstrated that each ectomycorrhizal root 
harboured distinct bacterial communities [21]. Other root-associated fungi have their own microbiota. 
Glancing at a truffle under an electron microscope in the pre-microbiota era was a shocking 
experience that revealed diverse bacteria proliferating around the aggre- gating hyphae forming the 
fruiting body (Figure 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The existence of this complex system of bacteria and fungi opened the question of whether we are 
smelling and tasting bacteria or the precious truffles. Indeed, the Tuber borchii bacterial communities 
are dominated by a-proteo- bacteria and b-proteobacteria [22], which produce sul-phur-containing 
volatiles such as thiophene derivatives, characteristic of the captivating aroma of truffles. Many other 
bacterial communities associate with Basidiomycota fruiting bodies, from Chantarellus to 
Tricholoma [23,24]; soil is a major source of associated taxa, but the fungal host has a strong effect. 
Bacteria inhabiting fungal fruiting bodies may be selected based on their metabolic func-tions and 
habitat requirements [23]; for example, growth-promoting bacteria such as Dietzia, Ewingella, 
Pseudomonas, Paenibacillus, and Rodococcus could be positively selected for their beneficial effects 
on fungal growth. Bacterial–fungal interactions (BFIs) occur in many niches and affect 
biogeochemical cycles, plant and animal health, as well as drug, food, and toxin production (reviewed 
in Deveau et al. [25]). In the fungal microbiota, ‘fungiphiles’ explore soil niches using saprotrophic 
fungi as substrates [26] while others use mycorrhizal fungi as a highway to reach plant organs [27]. 
The phyllosphere microbial community is also strongly influenced by the interaction between 
microorganisms: particular taxa, including fungi, act as ‘hub microbes’ due to their rele-vance in 



shaping the plant microbiota [28]. In another special environment, cheese rinds, Serratia isolates dis-
perse on fungal networks by swimming in the liquid layers formed on Mucor hyphae [29]. Indeed, 
by mecha-nisms including flagella-mediated motility, fungal-associated bacterial dispersal can shift 
the cheese rind microbiota composition by promoting the growth of motile over non-motile 
community members. 

Life on the inside: endobacteria of fungi 

In addition to their surface bacteria, numerous fungi have cytoplasmic endobacteria. They represent 
the most extreme and specialized type of BFI since, in many cases, these bacteria have lost their 
capacity to live indepen-dently, have experienced a strong genome reduction, and exploit the fungal 
cytoplasm as a niche to complete their life cycles [25,30 _,31,32]. Bacteria with this intracellular 
habit are transmitted by diverse strategies: Listeria patho-gens in human cells and Phytoplasma in 
plant cells often colonize their host cells by horizontal transmission [33,34]. By contrast, the 
beneficial bacteria that live in insect tissues and complement the host diet with essential nutrients [35] 
are often transmitted vertically and have been maintained by co-evolution events. Fungi offer a wide 
range of examples of endobacteria. Endobacteria have been detected in Ascomycota and 
Basidiomycota [25], even if their presence seems to be transient, and often only supported by 
detection of their 16S ribosomal DNA. For these reasons, and because they are cultivable, they are 
described as facultative endobac- teria. A good example is given by the Rhizobium radiobacter strain 
F4 detected inside Serendipita indica, but able to induce plant growth like the conventional plant 
growth-promoting rhizobacteria [36]. In contrast to the Ascomycota and Basidiomycota, the basal 
group of Mucoromycota [37] contains endobacteria that have been consistently detected and are 
vertically transmitted. The endobacteria include rod-shaped Beta- proteobacteria (Burkholderia-
related endobacteria, BRE) and coccoid-shaped Mollicutes (Mycoplasma-related endobacteria, 
MRE). These microbes have been detected in Gigaspora (Figure 3), Diversispora, Rhizophagus, 
Geosiphon pyriforme (Glomeromycotina), Rhizopus, Endogone (Mucoromycotina), and Mortierella 
(Mortierellomycotina). 

 

 

 

 

 

 

 

 

 

 

Some BRE and MRE genomes have been sequenced (Table 1) [38–44] revealing common features: 
reduced genomes (BRE: 3.7–1.8 Mbp; MRE: 0.6–1.3 Mbp), loss of biosynthetic capabilities related 
to primary metabolism, and specialization in fungal metabolite uptake. 

 



 

 

 

 

 

 

 

 

 

 

 

 

Burkholderia rhizoxinica, the BRE of Rhizopus microsporus, uses host-derived lipids for energy, but 
Mycoavidus cysteinexigens and Candidatus Glomeribacter Gigasporarum (CaGg), the BRE of 
Mortierella elongata and Gigaspora margarita, respectively, import fungal amino acids and use 
fungal organic acids for energy. Most BRE have retained secondary metabolite gene clusters and 
secretion systems. B. rhizoxinica, which has limited free-living capacities, relies on a Type II 
secretion system (TIISS) to re-invade fungal hyphae and diffuse horizontally [45]; other endobacteria 
that are thought to be exclusively vertically transmitted retain TIISS and TIIISS for unknown 
functions [39,42]. All known BREs retained several toxin/antitoxin operons in their genomes, but this 
has not been documented in MREs [46]. At least for CaGg, these gene clusters are finely regulated 
across the life cycle of G. margarita: the bacterium overexpresses toxin in the spores and expresses 
more of the antitoxin during AMF symbiosis. Therefore, endobacteria likely adapted to survive inside 
their hosts by modulating potentially dangerous activities. Lastly, and remarkably, despite being 
strongly reduced, MRE genomes contain a number of horizontally transferred genes of fungal origin. 
The impact of the MRE on the fungal host remains mostly undiscovered, but recent findings indicate 
that MRE may have adopted a non-lethal parasitic lifestyle in Mortierellomycotina [47]. By contrast, 
BRE and Mucor-omycota fungi have been more deeply characterized [39,48–50]. B. rhizoxinica 
supports the pathogenic ability of R. microsporus by synthesizing a powerful toxin, rhizoxin, which 
affects rice health [51]. M. cysteinexigens has been detected in many Mortierella isolates; surprisingly 
it decreases the growth of its host under laboratory condi- tions, probably due to lipid depletion. 
However, it may increase fungal competitiveness through secondary metabolite biosynthesis, 
including a toxin predicted to have insecticidal activity [52]. Some Mortierella species grow on insect 
exoskeletons; they may have been the ancestral hosts of MRE currently hosted by Mucoromy- cota 
[47]. These observations shed light on the origin of this association and on the potential contribution 
of M. cysteinexigens to its host’s ecological success, challenging the hypothesis of an exclusively 
parasitic interaction. CaGg, closely related to M. cysteinexigens, lives inside the AMF G. margarita, 
where it positively influences pre-symbiotic growth and increases lipid storage [53,54]. Omics and 
biochemical analyses revealed that CaGg leads to higher ATP production and more efficient 
responses to oxidative stress [49,55,56]. Evidence emerging from these studies suggests that the 
fungal counterpart can survive without its endobacterium, and not all individuals from the same 



species harbor endobacteria. The same is not true for the endobacteria, which likely have strategies 
for maintenance inside the host population, avoiding trans- mission bottlenecks and genetic drift [32]. 
In B. rhizoxinica these strategies include horizontal transmission and dispersal through manipulation 
of host sexuality. BRE and MRE have been useful for exploring the origin of Mucoromycota–
endobacteria interactions [38,43,47]. On the basis of examination of endobacteria diversifica- tion, 
which seems to be encompassed by the diversity of their Mucoromycota hosts, Bonfante and Desiro` 
[30], suggested an invasion event that predates the diversifica- tion of Mucoromycota (550–700 
MYA). The striking dis-tribution of endobacteria in Mucoromycota may be due to their aseptate 
mycelium, which could favour diffusion and transmission [30]. Moreover, the Mucoromycota 
genomes possess up to 3% 6-methyladenine (6 mA) [57], a DNA modification that regulates gene 
expression and is rather common in bacteria. The shared use of 6 mA may have allowed the 
endobacteria to manipulate the Mucoromycota genome [32]. Endobacteria are emerging as more 
widespread than expected in fungal isolates. To better decipher their role, the next step will be to set 
up metagenomics protocols that detect their presence in natural environments, as suggested by the 
pioneering results of Bodenhausen et al. and Lastovetsky et al. [58,59] Indeed, these new results 
suggest that fungi may act as vectors of bacteria that increase plant microbiota complexity, while their 
endobacteria operate as multipliers of fungal genetic variabil-ity, providing diversity for natural 
selection. 

 

Mycobiota in the future: discoveries and agricultural applications 

 

Mycobiota and fungal-associated bacterial communities may have applications in agriculture as part 
of the micro-bial revolution, the widespread use of beneficial microbes to improve crop yields and 
prevent diseases. Fungi and their associated bacteria may be used to produce inocula to coat seeds 
[60], but the development of synthetic microbial consortia represents a new target for high qual-ity 
crops [61]. Many AMF have already been used in in field experi-ments, leading to remarkable 
successes [62]. Like some soil bacteria [63], AMF with their endobacteria may represent a source of 
novel natural products, such as antibiotics and other pharmaceutical compounds. How-ever, new 
approaches like microfluidics [64] have to be developed to set up the experimental conditions where 
fungi and bacteria interact leading to the synthesis of these potential new molecules. As is done for 
the human microbiota [65], it will be crucial to use multiple culture conditions for the plant micro- 
biota, and to push a rebirth of classical microbiological techniques to grow currently uncultivable 
microbes. Like opening Russian nesting dolls, exploring the complex interactions of plants, their 
mycobiota, and the microbiota of the mycobiota is vastly expanding our understanding of what it 
means to be a holobiont. 
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