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Abstract 

 
This paper analyses the role of the composition of the regional stock of knowledge in 

explaining innovation performance. The paper provides three main contributions. First, it 

investigates the relevance of Jacobs knowledge externalities in characterizing the 

technological capabilities at the regional level. Second, it applies the Hidalgo-Hausmann 

(HH) methodology to analyze knowledge composition by looking at patent data of 214 

regions, located in 27 state members of the European Union (EU) during the years 1994-

2008. Third, it econometrically assesses the role of knowledge base composition in a 

knowledge generation function. The results of the empirical analysis confirm that the 

characterization of regional knowledge base through the HH indicators provides interesting 

information to understanding its composition and to qualify it as a provider of the Jacobs 

knowledge externalities that account for the dynamics of regional innovative performance. 
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1. Introduction 

 

Economic literature has repeatedly tried to qualify the composition of an 

economic system and its consequences in terms of performance and dynamics. At the 

macro-level, according to Grossman and Helpman (1991) and Aghion and Howitt 

(1998), the variety of inputs and outputs that a system is able to produce positively 

affects its total factor productivity. Following this new emphasis of the economics of 

growth on the role of system composition a stream of investigations at the regional, 

industrial and technological levels have flourished (see for instance Baptista and 

Swann, 1998; Frenken et al., 2007; Boschma and Iammarino, 2009; Galliano et al., 

2014). Moreover, Glaeser, Kallal, Scheinkman and Shleifer (1992) showed that the 

variety of activities is one of the main determinants of the growth of cities.  

This paper implements this line of research and focuses on the regional level of 

analysis, which in the light of the literature on Regional Systems of Innovations 

appears to be particularly suited for our purposes (Cooke et al., 1997; Asheim and 

Coenen, 2005). In particular, we focus our analysis on the stock of knowledge 

embedded in each regional system as an endogenous endowment and explore the 

effects not only of its size, but also of its composition on the generation of 

technological knowledge. Our analysis provides three main contributions. First, we 

discuss the notion of Jacobs knowledge externalities in the framework of the 

recombinant generation of technological knowledge at the regional level (Boschma, 

2005; Usai, 2011; Antonelli, Patrucco and Quatraro, 2011). Second, we apply the 

approach used for qualifying the knowledge composition of economic systems 

developed by Hidalgo and Hausmann (2008 and 2009; HH hereafter) to a set of 

European regions, using patent data to map technological capabilities. In particular, 

the analyzed European regions have been mapped against three measures of the 

knowledge base: variety, ubiquity and complexity. The first measure captures the 

degree of regional diversification in terms of technological competences, while 

ubiquity accounts for the level of diffusion, and hence commonality, of the 

technologies in which a region is specialized. Finally, the complexity measure 
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provides a synthetic indicator that maps different regions according to their ability in 

specializing in sophisticated, and thus more rare, technologies emerging where large 

number of high skilled individuals and specific technological competences are 

available.  

The last contribution of the present study consists in providing empirical evidence on 

the relevance of the proposed indicators in explaining knowledge generation 

processes at the regional level.  

The paper is organized as follows. Section 2 provides the theoretical background for 

the analysis. Section 3 explains the data and methodology applied to measure the 

characteristics of the knowledge bases at the regional level. Section 4 provides a 

descriptive analysis of the distribution and dynamics of the relevant indicators across 

different regions. Section 5 presents an econometric test on the potential relevance of 

the identified indicators in the generation of new knowledge at the regional level. The 

last section summarizes the main results and discusses the implications of the present 

analysis for future research. 

 

2. Jacobs externalities and the composition of the knowledge base 

 

Jacobs externalities are well known to regional economists. Named after Jane 

Jacobs, they identify the positive effects exerted on economic growth by the 

composition of the -heterogeneous- activities that cluster in a geographic space. 

Jacobs externalities differ from Marshallian externalities. Although they both account 

for the positive effects of the regional clustering of activities, Marshallian 

externalities focus on the positive effects exerted by the sheer size and density of the 

cluster, while Jacobs externalities focus on the composition of the activities that 

cluster.  

Jacobs knowledge externalities are found when the composition of the knowledge 

base of an economic system exhibits high levels of organized complexity and, as 

such, is able to provide cheaper access to and use conditions of the stock of quasi-

public knowledge that is necessary for the recombinant generation of technological 
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knowledge. The generation of technological knowledge, in fact, consists in the 

recombination of heterogeneous and complementary knowledge items. When, 

because of the variety, rarity and relatedness of the components of the local 

knowledge base, they are available at low absorption costs, Jacobs knowledge 

externalities exert their positive –pecuniary- effects reducing the costs of knowledge 

both as input and output.  

A range of approaches and methodologies have been implemented to explore the 

characteristics of the composition of an economic system, and to identify their causes 

and effects. Let us consider them individually.  

 

Knowledge Variety 

 

Variety has been the first aspect of the composition of the system that has 

attracted the attention, and it has been defined and qualified in terms of products, 

technologies and industries. 

By focusing the analysis on products, a distinction has been made between related 

variety i.e. variety of the products and activities within industrial sectors and 

technological classes, and unrelated variety i.e. variety across sectors (Frenken and 

Boschma, 2007; Frenken et al., 2007; Saviotti and Frenken, 2008). According to the 

rich evidence collected at the regional level (Boschma and Iammarino, 2009; Neffke 

et al., 2011; Boschma, et al., 2013), variety, qualified in terms of product relatedness, 

plays a positive role in favoring the emergence of new industries. 

The analysis of variety in terms of technologies was pioneered by Archibugi and 

Pianta (1992) and Pianta and Meliciani (1996) that investigated technological variety 

by means of an international analysis of the distribution of patents across 

technological classes. They pointed out that the variety of the knowledge base and the 

advance of countries are strongly associated with a non-linear relationship. Similar 

results have been found by Imbs and Wacziarg (2003), who suggest that the 

relationship between the sectoral concentration of economic systems and output 
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follows a U-shaped pattern. Excess knowledge differentiation is not likely to exert 

positive effects on the innovative capabilities of local firms (Noteboom, 2000; 

Boschma et al., 2014; Rigby, 2015). Hence, Jacobs externalities have a limit. Excess 

diversification and dispersion at the regional level limit the working of Edgeworth 

complementarities, and reduce the benefits of the generation and exploitation of 

technological knowledge. However, next to the levels of related variety other aspects 

may play a role in shaping Jacobs knowledge externalities. The actual composition of 

a bundle, in fact, differs not only with respect to the levels of variety of the 

components, but also in terms of their interrelatedness, coherence and relative rarity.  

 

Knowledge interrelatedness 

      

The input-output matrices of industrial systems differ in terms of the set of 

complementary industries that use each other outputs to produce the final goods is 

complete. The differences in matrices completeness and hence in knowledge 

interrelatedness do play a role in assessing the levels of productivity (Leoncini, et al., 

(1996); Gehringer, (2011a and b, 2012). 

In parallel, network analysis contributes the analysis of knowledge 

interrelatedness with the investigation of the architectural composition of the 

knowledge base of aggregate economic systems, individual industries and firms. 

Some systems are characterized by higher levels of interrelatedness than others: 

patents and inventors cluster around nodes that have a central position in centered 

networks. Flat knowledge bases can be found at the other extreme when the 

distribution of links is symmetric and dispersed (Duguet and MacGarvie, 2005; Han 

and Park, 2006; Mina, Ramlogan, Tampubolon, Metcalfe, 2007; Sternitzke, 

Bartkowski, Schramm, 2008).  

With respect to these analyses, an important step forward was made by Nesta 

and Saviotti (2005 and 2006) who study the composition of a system with an ex-post 

analysis of the actual distribution of the different bundles. This approach allowed to 
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investigate knowledge composition in terms of its coherence through the analysis of 

co-occurrence: the frequency with which two knowledge items are found together. 

 

Knowledge coherence 

 

Nesta and Saviotti (2005 and 2006) provide a major contribution to the 

analysis of the composition of the system with the notion of technological coherence. 

Technological coherence measures the average technological proximity of patents 

proxied by the number of co-occurrences in different technological classes of the 

patents belonging to a bundle. Technological coherence explores a new aspect of the 

composition of a system that is quite different from the related variety as it is able to 

appreciate the levels of complementarity of the components. According to a large 

number of empirical studies that have implemented this approach, the performances 

of a technological system are better for high levels of technological coherence 

(Antonelli, Krafft, Quatraro, 2010; Quatraro, 2010; Colombelli, Krafft and Quatraro, 

2013).  

 

Knowledge rarity 

 

The qualification of the composition of a system in terms of the ex-post 

revealed rarity of its constituent elements enables a further major step. Bundles that 

are made of items that happen to be frequently associated are more homogeneous 

than bundles that include rare items. The frequency of their occurrences is in fact 

low. The notion of rarity begins to play a role. Not only the number of the activities 

and the related knowledge bases matter, but also, and above all, so does their relative 

scarcity. Hence, the composition of the bundle of activities that are likely to engender 

high-level Jacobs externalities can be qualified by their relative scarcity (Hidalgo and 

Hausmann, 2008 and 2009).  
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The appreciation of the levels of ubiquity of the activities that are part of a system 

provides the opportunity to integrate the different aspects of the composition that 

have been identified in the literature in a single framework. A good composition able 

to yield strong Jacobs externalities can be identified from the levels of inclusion of 

rare activities. In this context, the knowledge composition measures that can be 

derived by applying the HH framework seem most appropriate to grasp the pecuniary 

effects of the organized complexity of a system in terms of Jacobs knowledge 

externalities.  

      Table 1 summarizes this approach. When the variety of the bundle of activities is 

high, but it is able to include only ubiquitous products and competencies, the levels of 

Jacobs externalities are low. When the variety of the bundle of activities is high and 

the bundle includes rare items, there is strong likelihood that the levels of Jacobs 

externalities are high. When the variety of the bundle is low and includes only 

ubiquitous items, the levels of Jacobs externalities are deemed to stay low. When, 

finally, the variety of the bundle is small, but includes rare items, the levels of Jacobs 

externalities are likely to exhibit high levels of variance because, on the one hand, the 

limited variety reduces the working of the recombinant generation of technological 

knowledge, but can yield rare combinations that characterize the generation of radical 

new knowledge that yield high profits and total factor productivity increases with 

positive effects on output growth. 

 
[ TABLE 1 AROUND HERE ] 
 

Building on this analytical framework we want to assess, firstly, if the knowledge 

composition indicators proposed by HH represent a meaningful and informative 

measure for classifying and understanding regional performances. Secondly, building 

on the path breaking explorations of Pakes and Griliches (1984) and Jaffe (1986), we 

aim to test the role of knowledge composition in the generation of technological 

knowledge. With respect to this latter aspect, so far the literature has analytically 

assessed the causes of the positive effects of the (Marshallian) knowledge 
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externalities that stem from the size of the existing knowledge base (Adams, 1990 

and 2006; Weitzman, 1996, 1998; Arthur, 2009; Antonelli and Colombelli, 2015). In 

the present analysis we claim that, next to Marshall knowledge externalities, Jacobs 

knowledge externalities that capture the composition and the organized complexity of 

the stock of quasi-public knowledge, do play a role in shaping the knowledge 

generation at the regional level and that this effect can be grasped by analyzing the 

enhancing role played by qualified variety in knowledge composition (Antonelli and 

David, 2016). 

 

3. Measuring knowledge base composition 

 

3.1 Methodology 

 

In order to analyze the composition of the knowledge structure and technological 

capabilities of European regions, the indicators proposed by Hidalgo and Hausmann 

(2008 and 2009) have been adopted with the aim of capturing the degree of 

diversification, the average ubiquity and the complexity of innovation activities. The 

HH method has been applied to regional patent portfolios data, based on the location 

of the inventors. The use of international patent classification allows developing a 

fine-grained analysis of the technological composition of innovation activities carried 

out in a specific area.  

The peculiar aspect of the HH method is that it makes no use of ex-ante technological 

distances to qualify the degree of diversification of the knowledge base. Such 

distances are commonly computed on large samples of patents and are by definition 

generated irrespectively of the geographic distribution of the patents. On the contrary, 

the HH method derives implicitly such patterns from the empirical observation of the 

distribution of patenting activities across regions. In this perspective the method 

appears to be superior in capturing the localised dynamics of knowledge generation: 

it is the degree of geographical clustering of different activities that reveals the 

properties of knowledge. Hence, the outcome of the HH methods encompasses 
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jointly diversity in the technological and geographical space. The method can be 

regarded as a bottom-up approach in which the observed evolution of the 

specializations of innovation systems provides hints on the actual complementarities 

among technological domain, rather than a top-down approach in which the structure 

of interdependency (or relatedness) between technologies are pre-defined on pure 

technological evidence. 

A preliminary step, before the “Method of Reflections” developed by Hidalgo 

and Hausmann (2008 and 2009) is applied, consists in identifying whether region 

r = 1, …, R is specialized in technology t = 1, …, T.1  

Even though various indicators of specialization are available (Archibugi and 

Pianta, 1992), we followed HH and computed a Revealed Technological Advantage 

index (RTA), which is defined as: 

 

𝑅𝑇𝐴𝑟𝑡 =
𝑃𝑟𝑡 (∑ 𝑃𝑟𝑡

𝑅
𝑟=1 )⁄

∑ (𝑃𝑟𝑡) (∑ ∑ (𝑃𝑟𝑡
𝑅
𝑟=1 )𝑇

𝑡=1⁄ )𝑇
𝑡=1

 (1) 

 

where 𝑃𝑟𝑡 is the number of patents of region r in patent class t, R is the number of 

regions, and T is the number of technological fields. RTA is the share of patents in 

technology t of region r normalized by the share across all technologies. Thus, it 

follows that RTArt = 1 represents a threshold of specialization: when RTArt > 1, region 

r is considered to be specialized in technology t. 

The next step is to define a “specialization matrix” 𝕄 as a binary-valued matrix, in 

which the rows represent regions and the columns represent technologies, whose 

generic element (r, t) is equal to 1 if region r is specialized in technology t:2 

 

                                                        
1 A notational caveat: while Hidalgo and Hausmann use p to indicate “products”, we prefer to use t (for 
technological fields that are based on patent class). 
2 In the definition of the generic element of 𝕄, HH give a value of 1 also when RTArt = 1. We preferred to assign a 
unitary value only if RTArt is strictly greater than 1, as RTArt = 1. This different approach is simply a clarification, 
as in our database no unitary RTA index is present. 
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𝕄(𝑟, 𝑡) = {
1    if    𝑅𝑇𝐴𝑟𝑡 > 1
0    if    𝑅𝑇𝐴𝑟𝑡 ≤ 1

 (2) 

 

The Method of Reflections uses the specialization matrix 𝕄 in an iterative way in 

order to obtain various indicators that represent different aspects of the specialization 

structure of the regions and technologies. Considering IX as a unitary vector of 

dimension X = R, T, the initial conditions can be computed as 

�⃗⃗� 𝑟,0 = 𝕄𝐼𝑅 (3) 

 

�⃗⃗� 𝑡,0 = 𝕄′𝐼𝑇 (4) 

 

which represent the summation of 𝕄  by rows and columns, respectively. In 

particular, the former vector, �⃗⃗� 𝑟,0 , has a generic i-th element given by 𝐾𝑟,0(𝑖) =

∑ 𝕄(𝑖, 𝑡)𝑇
𝑡=1  which indicates variety, i.e., the number of technologies in which region 

i is specialized; �⃗⃗� 𝑡,0 , on the other hand, has as generic j-th element 𝐾𝑡,0(𝑗) =

∑ 𝕄(𝑟, 𝑗)𝑟  which represents the ubiquity of a specific technology, i.e., the number of 

regions specialized in technology j. 

Given 𝕄 and the starting values, �⃗⃗� 𝑟,0 and �⃗⃗� 𝑡,0, the iterative formulae of the Method 

of Reflections are: 

 

�⃗⃗� 𝑟,𝑛 = diag(1 �⃗⃗� 𝑟,0⁄ )𝕄�⃗⃗� 𝑡,𝑛−1 (5) 

 

�⃗⃗� 𝑡,𝑛 = diag(1 �⃗⃗� 𝑡,0⁄ )𝕄′�⃗⃗� 𝑟,𝑛−1 (6) 

 

where n indicates the iteration number (n > 0), diag(1/�⃗⃗� 𝑥,0) is a diagonal matrix of 

dimension X = R,T, whose elements are given by the (1/Kx,0(1), 1/Kx,0(2), …, 1/Kx,0(X)) 

vector for x = r, t. 
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The various iterations of �⃗⃗� 𝑟,𝑖 and �⃗⃗� 𝑡,𝑖 for n = 1,…, N provide interesting properties of 

the specialization patterns within and across regions. If n = 1, the generic i-th element 

of �⃗⃗� 𝑟,1 is 

𝐾𝑟,1(𝑖) =
1

𝐾𝑟,0(𝑖)
𝕄(𝑖, 𝑡)′�⃗⃗� 𝑡,0 (7) 

 

which represents the average ubiquity of the technologies in which region i is 

specialized, while the generic j-th element of �⃗⃗� 𝑡,1 is 

𝐾𝑡,1(𝑗) =
1

𝐾𝑡,0(𝑗)
𝕄(𝑟, 𝑗)�⃗⃗� 𝑟,0′ (8) 

 

which represents the average variety of the regions that are specialized in technology 

j. For n = 2, the i-th element of �⃗⃗� 𝑟,2 measures the average variety of regions with a 

technological structure similar to region i, while the j-th element of �⃗⃗� 𝑡,2denotes the 

average ubiquity of the technologies of the regions that are specialized in technology 

j. For a discussion on the meaning of �⃗⃗� 𝑟,𝑛  and �⃗⃗� 𝑡,𝑛  for n ≥ 3, see Hidalgo and 

Hausmann (2009; Suplementary Material).  

By focusing only on �⃗⃗� 𝑟,𝑛, it is easy to see that its n-th iteration, for n ≥ 2, can be 

written as 

�⃗⃗� 𝑟,𝑛 = �̂��⃗⃗� 𝑡,𝑛−2 (9) 

 

where 

 

�̂� = diag(1 �⃗⃗� 𝑟,0⁄ )𝕄diag(1 �⃗⃗� 𝑡,0⁄ )𝕄′ (10) 

 

The previous matrix plays an important role in the construction of the Technology 

Complexity Index (TCI) that synthetically measures the complexity of regional 
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technological capabilities. Such a measure is computed by normalizing �⃗⃗� , which is 

the eigenvector associated to the second highest eigenvalue of matrix �̂�:3 

 

𝑇𝐶𝐼⃗⃗⃗⃗⃗⃗  ⃗ =
�⃗⃗� − average(�⃗⃗� )

stdev(�⃗⃗� )
 (11) 

 

The said eigenvector captures the largest amount of variance in the system and is the 

adaptation to the case of technologies of the Economic Complexity Index (ECI) 

proposed by Hidalgo and Hausmann (2008 and 2009). 

 
3.2 Dataset description 

 

The dataset consists of a large collection of patent applications at the European Patent 

Office that have been regionalized according to the corresponding addresses of the 

inventors4. We dropped regions belonging to the first quintile, in terms of patent 

applications, during the 1994-2008 period5. The final database covers the inventive 

activity of 214 geographical regions, located in 26 members state of the European 

Union (EU) over the 1994-2008 time interval. Patent applications have been collected 

and elaborated through the REGPAT database. REGPAT is built upon the Worldwide 

Statistical Patent Database (PATSTAT) published by the European Patent Office 

(EPO) twice a year and the OECD Patent Database, which relies on the EPO 

Bibliographic Database and Abstracts (EBD). Each record provides detailed 

information concerning the application and priority dates of the corresponding patent, 

the assignee and inventor’s names, their addresses, the country identifier, the region 

                                                        
3 The first eigenvector is a vector of ones, and has thus been excluded as it is not informative. 
4 The use of patent data in innovation studies is affected by some well-known limitations. In particular, we are 
aware that the use of patent data might lead to an underestimation of the contribution to the overall innovation 
output in a specific region from smaller companies relying on informal incremental innovation models, firms 
operating in the service sectors as well as firms relying on alternative approaches to protect the value of 
innovation. 
5 We chose to exclude the regions in the first quintile given that the number of patents in these regions is 
extremely limited and this could bias the analysis. 
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codes, the application and publication numbers. Patents have been assigned to 

regions on the basis of the addresses of the inventors6. 

Each patent application reports one or more International Patent Classification (IPC) 

codes. Such codes are the basis for our analysis of the technological composition of 

the regional portfolios. We used 4-digit IPC codes obtaining a mapping of all patents 

into 623 technology areas. Hence, for each region we have computed the number of 

patent application in each of the 623 technology areas by year. Patents with more 

than one IPC codes have been double counted.  

 
4. Descriptive analysis 

 

In this section we illustrate and discuss the descriptive evidence on the distribution of 

the indicators of knowledge composition among the analyzed regions.  

In the graphs we make use of the following indicators: a) Kr0 – a measure of variety 

across technologies of the patent portfolio of a region; b) Kr1 – a measure of the 

average ubiquity of the technologies in which a region is specialized, which provides 

information about how common are the technological competencies of one region 

compared to other regions; c) TCI – the measure of technological complexity derived 

through the method of reflection as illustrated in the previous section 3.1. 

We have grouped regions in clusters of high-, medium-, and low-performance 

regions. The performance metric is based on the 2013 Regional Competitiveness 

Index (RCI). The RCI is calculated for all the EU28 NUTS2 regions and summarizes 

the information coming from a set of 73 variables that pertain to the following 

“pillars”: institutions, macroeconomic stability, infrastructures, health, quality of 

primary and secondary education, higher education, training and lifelong learning, 

labour market efficiency, market size, technological readiness, business 

sophistication, innovation (see Annoni and Dijkstra, 2013). In particular we have 

classified as high- and low-performance regions those belonging respectively to the 

                                                        
6 Patents can be allocated to geographical zones according to the corresponding addresses of either their applicants or 

inventors. The latter approach provides a better representation of the actual location of R&D labs and is not influenced 

by patent application policies adopted by firms. 
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upper and lower 30th percentiles of the distribution of the overall RCI, calculated on 

all 272 regions, while the remaining regions are classified as medium-performance 

regions.7 

 

Fig. 1 shows the distribution of Kr0 against Kr1 by considering their averages in the 

1994-1998, 1999-2003, and 2004-2008 sub periods. The two indicators are 

negatively correlated, suggesting that the regions with highly diversified 

technological capabilities are those that are able to generate new knowledge in 

sectors where only a limited number of regions are capable of producing innovations. 

In this respect, the graphs show the existence of polarization phenomena across 

different groups of regions, with the high-performance regions being concentrated in 

the lower-right side of the graph and low-performance regions positioned mostly in 

the upper left-hand side of the figure. As clearly visible in Fig. 1, the negative 

relationship between Kr0 and Kr1 is confirmed and even reinforced over time. 

 

[ FIGURE 1 AROUND HERE ] 

 

In Fig. 2 and Fig. 3 we further explore the dynamics of the indicators during the 

observed years. In particular, Fig. 2 reports the variation of Kr0 from 1994-1998 to 

2004-2008 with respect to its initial value. The graph shows a process of convergence 

among regions in terms of technological diversification. Less diversified regions in 

the first period of observation show the highest growth of the index. Interestingly, the 

variance in the growth of Kr0 is quite relevant in the group of high performing 

regions, suggesting the presence of a strong heterogeneity in the diversification 

patterns of the “strongest” group of regions. 

 

[ FIGURE 2 AROUND HERE ] 

 

 

                                                        
7  The RCI data can be accessed at: http://ec.europa.eu/eurostat/statistics-
explained/images/3/3c/Focus_on_competitiveness_RYB2014.xlsx  

http://ec.europa.eu/eurostat/statistics-explained/images/3/3c/Focus_on_competitiveness_RYB2014.xlsx
http://ec.europa.eu/eurostat/statistics-explained/images/3/3c/Focus_on_competitiveness_RYB2014.xlsx
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Fig. 3 instead shows an overall tendency toward an increase in the indicator 

measuring the average ubiquity of the technological activities of regions. This is an 

obvious outcome considering that, as evidenced by the dynamics of the 

diversification indicators, the observed regions have generally experienced entry into 

new technological domains so that the command of a fraction of previously “rare” 

technological capabilities becomes more common across regions.  

The graph shows that the growth in average ubiquity of the medium-performance 

regions is highly dispersed, showing an increase in the relative commonality of their 

patenting activities. The distribution of the high-performance regions is instead more 

concentrated and evenly distributed with respect to the average dynamics of the 

population. Finally, data seems to reveal that within the group of low-performing 

regions, the increase of average ubiquity is greater for those regions that at the 

beginning of the observation period were characterized by lower ubiquity levels and 

vice versa. 

[ FIGURE 3 AROUND HERE ] 
 

Finally, Fig. 4 shows the distribution of European regions with respect to the measure 

of technological complexity associated with regional technological capabilities. On 

average, the highest levels of the complexity index are found in regions belonging to 

the high-performance group, with a strong degree of persistence in time. On the 

contrary, the variance in time in the level of technological complexity of the low-

performance regions is greater, with the majority of regions belonging to this group 

experiencing an increase in this indicator with respect to the initial level. 

[ FIGURE 4 AROUND HERE ] 

 

The overall descriptive evidence on the correlations between the knowledge base 

characteristics and a broadly defined indicator of economic performance and 

competitiveness has revealed some interesting issues.  

First, the proposed indicators appear to provide relevant and consistent information 

about the effects of the evolution of the knowledge bases on the competitiveness of 

regions. On average, high performing regions show a specialization into more 



 16 

technologies that have a lower degree of ubiquity, indicating their ability to command 

more rare technological capabilities. Still, during the observed years there has been 

considerable entry by a subset of lagging regions into new technological domains. 

However, we observe that on average high performing regions have been able to 

consistently keep more complex specialization patterns. We suggest that such 

evidence exactly points to the relevance of the composition of the portfolio of 

technologies at the region level to support further innovation development. The 

increasing technological interdependencies in new products and the hybridization of 

related scientific domains engenders a persistent advantage for those regions that 

have brought together diverse knowledge pools rather than pursuing competitive 

advantage through the specialization into fewer technological domains. In the 

following section we further explore this issue by applying to the data an econometric 

approach that controls for region level inputs and spatial dynamics.  

 

5. Econometric analysis 

 

In this section, we test whether the composition of the knowledge base of a specific 

region displays a significant correlation with its capability to generate further 

innovations. In line with our theoretical discussion on the role of Jacobs externalities 

in the knowledge generation function, the approach is meant to test whether – after 

accounting for the time invariant specific effects and R&D inputs – it is still possible 

to identify a positive marginal effect of the composition of the knowledge base on 

innovation performance. In the baseline model specification, the regional innovation 

output is regressed against a set of region-level controls and two indicators of the 

properties of the regional knowledge base, according to the following specification: 

 

PATi,t = 1GERDi,t-1 +2Popi,t-1 +3HiTechEmpli,t-1 +4Kr0/Kr1i,t-1 +5TCIi,t-1 + i,t 

 

where the regional innovation output is measured by means of the log of the number 

of new patent applications by inventors located in region i in year t (PAT). All the 

controls are one-year lagged and include the logs of region population (POP), gross 
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regional R&D expenditures (GERD) and the intensity of employment in high tech 

sectors (HiTechEmpl). Moreover, the lagged values of the Kr0/Kr1 ratio and the 

technological complexity index (TCI) are used. The Kr0/Kr1 ratio provides a rarity-

weighted measure of variety of the technology knowledge base of a specific region. 

An higher value of this indicator implies that the patent portfolio of the region is 

specialised in more technological domains that are also more rare among all the 

analysed regions.  

The TCI and the Kr0/Kr1 ratio have been computed using a period of 2 years with a 

moving average approach, i.e. the value of the TCI for region i in year t was based on 

the processing of data on patent filings in region i and all other regions in the sample, 

during the years t-1 and t-2. Since the adoption of a wider time window for the 

definition of Kr0, Kr1 and TCI could account for a higher inertial effect, we have 

also run models using a moving average of 4 years and similar results to those 

presented below were obtained. Standard summary statistics of the variables are 

presented in Table 2. 

 

[ TABLE 2 AROUND HERE ] 

 

The processes observed at the regional level can be affected by significant cross-

regional interdependencies mediated by geographical distances. Hence, in our 

econometric analysis we correct for spatial autocorrelation. In particular, we have 

applied to our data a weighting matrix based on the inverse of the geographical 

distances between all the analysed regions and we have adopted Spatial Durbin 

Models (SDM)8, in which the TCI and the Kr0/Kr1 variables were weighted through 

the region distance matrix. Since this class of models requires the use of balanced 

panel we have preliminary conducted an imputation for those control variables that 

                                                        
8 The spatial Durbin models were estimated with the xsmle routine for STATA 12. We have also run the baseline 

models using standard OLS panel model with fixed effects. Results are confirmed. Related tables are available from the 

authors upon request. 
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had some missing observations9. The effect of the knowledge base indicators on the 

innovation output at the region level was first estimated separately and then jointly. 

In the empirical analysis we further investigate the presence of different patterns in 

the relationship between knowledge base composition and the innovation 

performance between high-performing regions and non high-performing regions 

according to the Regional Competitiveness Index presented in the previous section. 

In order to this do this, we interact a dummy variable for the high-performing regions 

(HIGH_REG), with the knowledge composition indicators (Kr0/Kr1 and TCI). Such 

approach allows us to maintain the spatial data structure while observing the presence 

of significant differentials between the two subgroups of regions.   

[ TABLE 3 HERE ] 

The results presented in Table 3 indicate that, after accounting for potential spatial 

autocorrelation and aggregated R&D inputs, the indicators of weighted variety and of 

technological complexity show a significant correlation with the subsequent level of 

patenting performance. The results of the Durbin spatial models highlight the actual 

presence of spatial autocorrelation, thus suggesting the appropriateness of this 

modelling approach. Results confirm the robustness of the proposed patent-based 

indicators. Interestingly, the splitting of regions in Model IV of Table 3 indicate that 

the patenting output of high-performing regions has a higher correlation with the 

complexity measure TCI, while the opposite is found for the indicator Kr0/Kr1. This 

evidence seems to provide ground for a deeper understanding of the meaning and 

implications of the knowledge base indicators. The TCI indicator displays a greater 

effect for high-performing regions that have possibly already achieved an average 

specialisation pattern focussed on more rare technologies. In this perspective, the 

indicator Kr0/Kr1 seem to capture mostly the process of technological 

reconfiguration of lagging regions, while the TCI is more effective in representing 

                                                        
9 Missing data refer only to the aggregated region-level control variables (GERD and Hi-Tech Employment). We 
have used for this purpose the mi-impute routine of STATA 12 with 45 imputations. The related OLS model for 
the imputation includes time and region dummies. The indicators RVI and FMI (Fraction Missing Information) 
indicate the validity of the imputation process. 



 19 

the properties of the dense network or interactions among technological capabilities, 

that in turn is correlated to a higher innovation output among more advanced regions.         

 

 

6. Conclusions 

 

The results of our empirical analysis suggest that the characterization of regional 

knowledge bases through the HH indicators provides interesting information to 

understanding its composition and the source of Jacob’s externalities.  

The analyses suggest that the Technological Complexity Index positively contributes 

to knowledge generation performance, supporting the view that Jacobs knowledge 

externalities stemming from the composition of the knowledge base are a 

complementary input for knowledge generation, next to R&D expenditures and the 

size of the local knowledge base.  

Jacobs knowledge externalities stemming from the qualified composition of the local 

knowledge base do exert strong pecuniary effects that contribute the recombinant 

generation of knowledge: not only the quantity of external knowledge matters, but 

also its quality in terms of relative rarity of its components. Moreover, we found 

evidence that the TCI indicator displays a greater effect for high-performing regions 

that have possibly already achieved an average specialization pattern focussed on 

more rare technologies. In this perspective, the TCI appears to be particularly 

effective in representing the properties of the dense network or interactions among 

technological capabilities, that in turn is correlated to a higher innovation output 

among more advanced regions.     

The overall evidence points to the relevance of the composition of the portfolio of 

technologies at the region level to support further innovation development. This 

result appears to be consistent with the idea behind the current European policy 

approach envisaged by the smart specialisation strategy. The observed patterns seem 

to indicate at the European level a process of diffusion and diversification of 

technological capabilities. However, it is among regions with more advanced 
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economic systems, where the command of key enabling technological competencies 

is higher, that we observe an higher correlation between the complexity of the 

knowledge base and innovation performance. The increased technological 

interdependencies in new products and the hybridisation of related scientific domains 

calls for a policy design targeted at bringing together diverse and qualified 

knowledge pools rather than pursuing competitive advantage through the 

specialisation into a single technological domain or unqualified diversification.     
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Figure 1 – Kr0 vs Kr1 by region. H, M, and L indicate high-, medium-, and low-

performance regions, respectively. Axes represent the average values of the 

indicators; the dashed line is a linear regression. 
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Figure 2 – Level of Kr0 and its variation (ΔKr0) between 1994-1998 and 2004-

2008. H, M, and L indicate high-, medium-, and low-performance regions, 

respectively. Axes represent the average values of the indicators. 

 
Figure 3 – Level of Kr1 and its variation (ΔKr1) between 1994-1998 and 2004-

2008. H, M, and L indicate high-, medium-, and low-performance regions, 

respectively. Axes represent the average values of the indicators. 
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Figure 4 – TCI in 1994-1998 vs. TCI in 2004-2008. H, M, and L indicate high-, 

medium-, and low-performance regions, respectively. Axes represent the average 

values of the indicators. 
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TABLES 

 
Table 1 - The search for Jacobs externalities 
 
 LOW RARITY HIGH RARITY 

LOW VARIETY 

 

POOR SPECIALIZATION:  

 

A LIMITED BUNDLE WITH HIGH 

LEVELS OF SPECIALIZATION IN 

UBIQUITOUS TECHNOLOGIES:  

 

 

 

LOW LEVELS OF JACOBS 

KNOWLEDGE EXTERNALITIES 

HYPERSPECIALIZATION: 

 

LOW LEVELS OF VARIETY LIMIT 

RECOMBINATION BUT THE COMMAND 

OF RARE KNOWLEDGE INPUTS MAY 

MAKE IT HIGHLY PRODUCTIVE:  

 

HIGH VARIANCE IN JACOBS 

KNOWLEDGE EXTERNALITIES 

HIGH VARIETY UNQUALIFIED VARIETY: 

 

DISPERSION ACROSS LARGELY 

COMMON TECHNOLOGICAL 

ACTIVITIES:  

 

 

LOW LEVELS OF JACOBS 

KNOWLEDGE EXTERNALITIES 

QUALIFIED VARIETY:  

 

A LARGE BUNDLE OF DIVERSE 

TECHNOLOGICAL ACTIVITIES SOME OF 

WHICH ARE RARE:  

 

 

HIGH LEVELS OF JACOBS KNOWLEDGE 

EXTERNALITIES 

 
 
 

Table 2 –  Variables definition and summary statistics 
 

Variable Definition Mean Std. Min Max 

PAT 
Log of the number of patent 

applications by region i in year t 5.413 1.487 1.386 8.948 

Pop 
Log of the population of region i 

in year t 7.370 0.698 5.486 9.359 

GERD 

Log of the gross regional R&D 

expenditures in region i and year 

t 5.978 1.297 2.073 9.583 

HiTechEmpl 
Log of employment in high tech 

sectors in region i and year t 6.505 0.698 4.482 8.543 

HIGH_REG 

A dummy variable that takes the 

value of one if region i belongs 

to the top tertile of the 

distribution of the analysed 

regions on the Regional 

Competitiveness Index  0.3  0 1 

Kr0/Kr1 

Ubiquity-weighted indicator of 

the technological diversification 

in region i in year t 2.254 1.351 0.057 6.344 

TCI 
Technology Complexity Index 

in region i and year t 0.000 0.998 -4.559 2.181 
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Table 3 – Spatial Durbin Model. Dependent variable: log of the number of new 

patent applications by region i in year t.  
 

Models I II III IV 

   

  

GERD (t-1) 0.156*** 0.128*** 0.152*** 0.131*** 

 

(0.024) (0.024) (0.024) (0.024) 

HiTechEmpl (t-1) 0.045 0.223 0.043 0.043 

 

(0.128) (0.141) (0.128) (0.131) 

Pop (t-1) -0.002 -0.684** 0.043 -0.099 

 

(0.283) (0.303) (0.282) (0.279) 

Kr0/Kr1 (t-1) 0.318*** 

 

0.313*** 0.432*** 

 

(0.017) 

 

(0.017) (0.023) 

TCI (t-1) 

 

0.044*** 0.029*** 0.020** 

  

(0.010) (0.009) (0.010) 

Kr0/Kr1 (t-1) * HIGH_REG    -0.265*** 

    (0.034) 

TCI (t-1) * HIGH_REG    0.053* 

    (0.029) 

Weight - Kr0/Kr1 (t-1) 1.012*** 

 

0.896*** 0.981*** 

 

(0.103) 

 

(0.109) (0.111) 

Weight – TCI (t-1) 

 

0.863*** 0.259*** 0.251** 

  

(0.096) (0.096) (0.125) 

   

  

   

  

Spatial rho 0.801*** 0.921*** 0.800*** 0.761*** 

 

(0.030) (0.017) (0.029) (0.033) 

Variance 0.038*** 0.0457*** 0.038*** 0.037*** 

 (0.001) (0.001) (0.001) (0.001) 

Observations 2782 2782 2782 2782 

Avg RVI 0.220 0.192 0.178 0.131 

Lar FMI 0.399 0.388 0.404 0.404 

F test 268.93*** 279.74***  222.75*** 171.15*** 
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