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Abstract
To explore contrast (C) and homogeneity (H) gray-level co-occurrence matrix 
texture features on T2-weighted (T2w) Magnetic Resonance (MR) images 
and apparent diffusion coefficient (ADC) maps for predicting prostate cancer 
(PCa) aggressiveness, and to compare them with traditional ADC metrics for 
differentiating low- from intermediate/high-grade PCas.

The local Ethics Committee approved this prospective study of 93 patients 
(median age, 65 years), who underwent 1.5 T multiparametric endorectal 
MR imaging before prostatectomy. Clinically significant (volume  ≥0.5 ml) 
peripheral tumours were outlined on histological sections, contoured on T2w 
and ADC images, and their pathological Gleason Score (pGS) was recorded. 
C, H, and traditional ADC metrics (mean, median, 10th and 25th percentile) 
were calculated on the largest lesion slice, and correlated with the pGS 
through the Spearman correlation coefficient. The area under the receiver 
operating characteristic curve (AUC) assessed how parameters differentiate 
pGS = 6 from pGS ≥ 7.

The dataset included 49 clinically significant PCas with a balanced 
distribution of pGS. The Spearman ρ and AUC values on ADC were: −0.489, 
0.823 (mean); −0.522, 0.821 (median); −0.569, 0.854 (10th percentile); −0.556, 
0.854 (25th percentile); −0.386, 0.871 (C); 0.533, 0.923 (H); while on T2w 
they were: −0.654, 0.945 (C); 0.645, 0.962 (H). AUC of H on ADC and T2w, 
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and C on T2w were significantly higher than that of the mean ADC (p = 0.05).
H and C calculated on T2w images outperform ADC parameters in 

correlating with pGS and differentiating low- from intermediate/high-risk 
PCas, supporting the role of T2w MR imaging in assessing PCa biological 
aggressiveness.

Keywords: prostate cancer aggressiveness, pathologic Gleason score 
correlation, T2-weighted MR imaging, ADC maps, GLCM texture feature

(Some figures may appear in colour only in the online journal)

1. Introduction

Prostate cancer (PCa) has traditionally been treated by whole-gland approaches, with well-
known associated side-effects, such as urinary incontinence and erectile dysfunction (Potosky 
et al 2004), but also post-treatment urinary or rectal bleeding, infection in the urinary or lower 
gastrointestinal tract, and recto-urethral fistulae (Nam et al 2014, Rosenkrantz et al 2012). 
Because of the small survival benefit reported for radical prostatectomy (RP) and the generally 
excellent natural history reported in the series of PCa patients treated with active surveillance, 
there is an increasing interest in minimally invasive focal therapy or active surveillance strate-
gies (Rosenkrantz et al 2012). However, current clinical paradigms used to stratify patients 
into risk categories, including digital rectal examination results, PSA values, and the results 
of transrectal ultrasound guided biopsies, among others, are affected by intrinsic errors and 
possible complications (Gupta et al 2013). As a consequence, the choice of optimal treatment 
strategy in some patients remains challenging. Therefore, there is a need for improved risk-
stratification via noninvasive imaging in order to better identify patients who may benefit from 
gland-preserving strategies (Donati et al 2014).

Recently, efforts have been made to identify quantitative parameters derived from mul-
tiparametric Magnetic Resonance (mp-MR) imaging and to investigate their correlation with 
tumour aggressiveness. However, to date, robust and standardized imaging biomarkers have 
not yet been identified (Peng et al 2014, Bae et al 2014, Vos et al 2013, Kobus et al 2012, 
Vargas et al 2011, Turkbey et al 2011, Oto et al 2011, Hambrock et al 2011, Peng et al 2013, 
Jung et al 2013, Wang et al 2008). The association between apparent diffusion coefficient 
(ADC) values and Gleason score (GS) has been identified in both peripheral (Peng et al 2014, 
Bae et al 2014, Vos et al 2013, Kobus et al 2012, Vargas et al 2011, Turkbey et al 2011, Oto 
et al 2011, Hambrock et al 2011, Peng et al 2013) and transition zones (Jung et al 2013), but 
there is no consensus on the best metric to describe lesion ADC values (Donati et al 2014). On 
the other hand, the correlation of the T2 signal intensity (SI) with GS has not been uniformly 
observed (Wang et al 2008, Rosenkrantz et al 2010, Giannini et al 2014). Furthermore, the 
studies on T2 SI should correct SI differences across patients due to the presence of the endo-
rectal coil (Wang et al 2008), introducing a potential source of errors.

The observation of correlation between pathologic GS (pGS) and lesion cellularity 
(Schiebler et al 1997, Quint et al 1991) prompted us to investigate the lesions’ textural fea-
tures on T2-weighted (T2w) images and ADC maps. In fact, textural features may potentially 
quantify texture changes due to histological alterations present in some illness (Castellano 
et al 2004). Texture, defined as a measure of spatial variations of the SI in an image, has 
been studied in medical image analysis to quantify image properties such as homogeneity 
(Chen et al 2007), to correlate with specific histopathologic features (Yun et al 2014), and 
to evaluate tumor heterogeneity (Herlidou-Même et al 2003). The texture analysis method 
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based on gray level co-occurrence matrix (GLCM) (Haralick et al 1973) has gained wide 
applications in medical image analysis (Chan et al 1995, Li et al 2005, Gibbs and Turnbull 
2003, Freeborough and Fox 1998, Antel et al 2003, Mahmoud-Ghoneim et al 2003) for its 
ability to characterize the spatial dependence of gray-levels using the second-order statistics. 
Regarding prostate imaging, Chan et al (Chan et al 2003), Madabhushi et al (Madabhushi  
et al 2005), and Niaf et al (Niaf et al 2012) considered GLCM based features, in combination 
with other imaging parameters, to highlight PCa presence on MR images, while Viswanath 
et al (Viswanath et al 2012) used GLCM texture-based characterization of T2w MR data to 
account for spatial location of prostate disease (i.e. in the transition or peripheral zone).

However, to the best of our knowledge, GLCM texture analysis method has never been 
applied to differentiate PCa grade on MR imaging.

The purpose of this study was to evaluate contrast and homogeneity GLCM texture fea-
tures on T2w MR images and on ADC maps as potential new biomarkers of peripheral PCa 
aggressiveness, and to compare them with traditional ADC metrics (mean, median, 10th and 
25th percentile) (Donati et al 2014), to determine which parameter best differentiates low- 
from intermediate- or high-grade PCa lesions. The proposed strategy does not require image 
normalization procedures, and is, therefore, more reproducible in respect to methods based on 
the comparison of SI values across patients.

2. Materials and methods

The local Ethics Committee approved this prospective study and participants into the study 
signed informed consent forms. This study was in accordance with the Helsinki Declaration.

2.1. Patients

We enrolled prospectively 93 consecutive patients at our Institution, with the following inclu-
sion criteria: (a) biopsy-proven adenocarcinoma, (b) mp-MR examination between April 
2010 and November 2012, including axial T2w and diffusion weighted (DW) sequences, (c) 
RP within 3 months of MR, and (d) a clinically significant peripheral lesion (tumour vol-
ume ≥0.5 ml, Stamey et al 1993) at the whole-mount histopathologic analysis.

In order to build a dataset with a balanced distribution of the four pGS classes (3 + 3, 3 + 4, 
4 + 3, and ≥4 + 4), a chi-squared distribution test with three degrees of freedom was applied. 
The idea behind the chi-square distribution test is to verify if the sample comes from the 
population with the claimed distribution, which is called the null hypothesis. In our study, the 
null hypothesis stated that the population had a balanced distribution of the four pGS classes. 
All available peripheral lesions with 3 + 3, 4 + 3 and ≥4 + 4 pGS were included in the dataset, 
while the number of pGS 3 + 4 peripheral lesions, which represent the large majority of PCa 
lesions (Helpap and Egevad 2006), was fixed at 14 in order to have a statistical significance 
higher than 0.90 to accept the null hypothesis, randomly ignoring some cases.

2.2. MR image acquisition

Images were acquired with a 1.5 T scanner (Signa Excite HD, GE Healthcare, Milwakee, 
Illinois, USA) using a four–channel phase-array coil combined with an endorectal coil 
(Medrad, Indianola, Pa). T2w images in the axial plane were obtained using the following 
protocol: slice-thickness, 3 mm; FOV, 16  ×  16 cm; NEX, 2; acquisition matrix, 384  ×  288; 
TR/TE ratio 3020/85. DW imaging was obtained using axial EPI sequences as follows: 
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slice-thickness, 3 mm, FOV 16  ×  16 cm, matrix 128  ×  128, NEX 6; TR/TE 7000/101; b-val-
ues 0 and 1000 s mm2. Pixel-wise ADC values were calculated with in-house C++ algorithms, 
developed using ITK open source libraries (Johnson et al 2013), by using a monoexponential 
model (Peng et al 2014).

2.3. Reference standard and MR correlation

The prostate specimen was step-sectioned at 3-mm intervals perpendicular to the long axis 
(apical-basal) of the gland (Montironi et al 2001). This confidently reproduces the inclination 
of axial T2w images, which are acquired perpendicular to the rear gland surface. The bases 
and the apexes were cut parasagittally. Five µm sections were then obtained and coloured with 
hematoxylin eosin. The pathologist (E.B., with 24 years of experience in pathology, 20 attend-
ing uropathology) outlined each clinically significant peripheral tumour on microscopic slices 
and assigned a pGS.

The radiologist (F.R., with an experience of more than 500 prostate mp-MR studies inter-
preted per year) in consensus with the pathologist, established the reference standard for PCa 
on T2w images drawing freehand regions of interest (ROIs) on cancer foci, following the 
outlines drawn by the pathologist on digital images of the pathologic slices, annotating the 
whole lesion.

Always working in consensus, the radiologist and the pathologist established the locations 
of tumours with respect to identifiable anatomic landmarks (e.g. urethra, ejaculatory ducts, 
and benign prostatic hyperplasia). This imaging-pathologic correlation allowed the correct 
identification of tumor ROIs on T2w images and their translation from T2w images to ADC 
maps, even in the case of deformation of prostate specimen slices (because of the modified 
prostate shape soaked by formaldehyde), and deformed DW images (because of chemical 
shift and susceptibility artifacts).

2.4. Image analysis

The 2D GLCM texture features were calculated on the largest ROI among all the ROIs belong-
ing to the same lesion (single-section approach) for both T2w images and ADC maps.

Each lesion ROI outlined by the radiologist was enclosed by its minimum bounding box, 
i.e. the smallest enclosing rectangular area of the ROI, extracted from the original image 
(T2w or ADC), and was saved as a new image. In the latter image, the pixel values outside the 
original ROI were set to the minimum intensity value of the ROI pixels in the original image 
(preprocessing procedure). This preserved the range of intensity of the original image lesion 
ROI. Subsequently, the GLCM was calculated on this preprocessed ROI.

The GLCM is a tabulation of how often different combinations of pixel brightness values 
(i.e. grey levels) occur between neighbouring pixels in an image. Therefore, the GLCM allows 
the calculation of second order texture features, i.e. describing the relationship between groups 
of contiguous pixels in the image (Mryka Hall-Beyer 2007).

The difference of spatial locations of two pixels in an image can be described by a dis-
placement vector d. For an image of G gray levels, the G × G gray level co-occurrence matrix 
Pd for a displacement vector d is defined as follows. The entry (i, j) of Pd is the number of 
occurrences of pixel-pair of gray levels i and j whose spatial locations are a vector d apart. 
When normalized by the total counts, the entry (i, j) of Pd, denoted as pi,j, represents the 
(empirical) probability of occurrence of pixel pair of gray levels i and j whose spatial loca-
tions are a vector d apart. In this definition, the co-occurrence matrix Pd is a function of the 
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displacement vector d, which can be decomposed into a norm-1 distance d and a direction. 
Thus, Pd describes distributions of certain spatial patterns of scale d in a certain direction 
(Chen et al 2007).

In our case, the displacement vector d was one pixel. Four GLCM matrices were created 
to describe the directions with angles 0°, 45°, 90°, and 135° with respect to the xy plane of 
the MR based coordinate system (Chen et al 2007). An additional matrix, spatially invariant, 
was created by averaging the counts in the four directions. In order to discard the contribution 
of ROI boundary pixels (which are set to the minimum gray level), the first row and the first 
column of the spatially invariant GLCM were removed.

Among traditional 2D GLCM features, we considered the ones measuring the contrast:
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where C is known as contrast and H is known as homogeneity. Measures related to contrast 
use weights related to the distance from the GLCM diagonal. Values on the GLCM diagonal 
show no contrast, and contrast increases away from the diagonal. So, weights are created that 
increase as distance from the diagonal increases. The GLCM feature extraction and the ROI 
preprocessing were performed using a free software (Octave 3.8.1, GNU Octave 2014).

Four ADC metrics (mean, median, 10th and 25th percentile), identified as potentially effec-
tive in the task of classifying PCa according to the level of aggressiveness (Donati et al 2014), 
were calculated on the lesions’ ROIs.

Traditional ADC metrics were calculated with a single-section approach to properly com-
pare them with the 2D GLCM features, but the whole-lesion approach (i.e. considering the 
ADC histogram of all the ROIs belonging to the same lesion) was also considered, and the 
results of the two approaches were compared.

2.5. Statistical analysis

The relationship between image parameters and pGS was analyzed in two ways: (a) the origi-
nal pGS values, divided into four categories (3 + 3, 3 + 4, 4 + 3, and ≥4 + 4), were used for 
Spearman correlation; (b) binary categories (pGS = 6 versus pGS ≥ 7) were used for receiver 
operating characteristic (ROC) analysis.

The Spearman correlation coefficient (ρ) was calculated to establish the correlation of 
each parameter (ADC mean, median, 10th and 25th percentile; and both ADC and T2 GLCM 
homogeneity and contrast) with the lesion pGS, using the method of Bland and Altman (Bland 
and Altman 1995) to take into account multiple lesions per patient. Besides, the Spearman 
correlation coefficient was calculated to characterize correlation strength between image fea-
tures. Finally, the area under the ROC curve (AUC) was calculated to evaluate the ability of 
each image parameter to help differentiate low-risk (pGS = 6) from intermediate- or high-
risk PCas (pGS ≥ 7). The 95% confidence interval of each ρ and AUC was estimated, and 
the AUC values of different ADC parameters were compared using the method proposed by 
Obuchowski (Obuchowski 1997) to take into account multiple lesions per patient.

The median and interquartile ranges were tabulated for all image parameters according to 
the previously reported four pGS categories. The Wilcoxon rank sum test for paired samples 
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was applied to assess differences between the ADC parameters obtained with the whole-lesion 
and the single-section approach.

Box plots were plotted for: (a) the two best parameters, according to ρ, among all ADC 
parameters, and (b) the GLCM homogeneity and contrast for T2w images.

All statistical analyses were performed with MedCalc Software, version 13.2.2.0 (MedCalc 
Software, Ostend, Belgium), and a p-value of 0.05 or lower was considered statistically 
significant.

3. Results

From the initial cohort of 93 patients, thirty-two were excluded because of the following: 
the whole-mount step section pathologic tumour maps were not available (n = 22); received 
hormonal therapy at the time of MR examination (n = 2); did not have any confirmed cancer 
on the excised prostate (n = 1); the whole-mount histopathologic analysis did not find any 
clinically significant lesion in the peripheral zone of the prostate gland (n = 7). Flowchart in 
figure 1 shows the final study population.

The study population (45 patients) included 41 patients (91%) with one clinically signifi-
cant tumour focus, and 4 patients (9%) with two clinically significant tumour foci, for a total 
of 49 clinically significant peripheral PCas. The patient and lesion characteristics are sum-
marized in table 1.

Figure 1. Flowchart of study population.

A Vignati et alPhys. Med. Biol. 00 (2015) 1



7

Figures 2 and 3 show the pipeline to obtain ADC metrics and GLCM contrast features on 
two example cases, the first one referring to a low-risk PCa patient, the second referring to a 
high-risk PCa patient.

Table 2 shows the median values of the mean, median, 10th and 25th percentile of the ADC 
map according to four pGS classes (3 + 3, 3 + 4, 4 + 3, and ≥4 + 4), for both the whole-lesion 
and the single-section approach. No statistically significant difference was found between the 
two approaches. In table 2 the median values of contrast and homogeneity GLCM features are 
also reported according to four pGS classes for both ADC map and T2w image. Since tradi-
tional GLCM texture analysis extracts information from a 2D slice, the results of contrast and 
homogeneity features refer to the single-section approach. In order to facilitate the compari-
son of parameters, traditional ADC metrics results will hereinafter refer to the single-section 
approach, taking into account that the absence of statistically significant difference between 
the whole-lesion and the single-section approach was previously verified.

Among all ADC calculated parameters, the 10th percentile showed the highest correlation 
with pGS (ρ = −0.569), while contrast and homogeneity GLCM parameters on the T2w image 
showed nearly the same strong correlation with GS (respectively, ρ = −0.654 and 0.645) (table 
3, figure 4). The correlation coefficients for all parameters were statistically significant.

The Spearman correlation coefficients between image features are reported in table  4. 
Traditional ADC metrics were highly correlated among them (ρ = 0.88–0.97), while GLCM 
contrast and homogeneity features (both on ADC and T2w) showed moderate/high correlation 
among them (ρ = 0.64–0.93). A moderate/low correlation was found among ADC metrics and 
GLCM contrast and homogeneity features, both on ADC and T2w (ρ = 0.21–0.50).

Table 1.  Patient Demographics, Clinical Characteristics, and Lesion Characteristics.

Parameter Value

No. of patients included in study 45
Patients median age [y] (1st–3rd quartile) 65 (60–70)
Median PSA at diagnosis [ng/ml] (1st–3rd quartile) 5.9 (4.9–8.6)
Median time between MR imaging and prostatectomy [d]  
(1st–3rd quartile)

26 (13–47)

Median no. of days between biopsy and MR examination [d]  
(1st–3rd quartile)

92 (61–112)

Median prostate volume [ml] (1st–3rd quartile) 44.8 (37.3–59.5)
Clinical stage at prostatectomya [no. of patients]
 T2a 9 (20%)
 T2c 16 (36%)
 T3a 11 (24%)
 T3b 9 (20%)
No. of lesions with tumor volume ≥ 0.5 ml 49
Median volume (ml) (1st–3rd quartile) 1.6 (0.8–2.6)
Distribution of pathologic Gleason scores [no. of patients]
 3  +  3 11 (22%)
 3  +  4 14 (29%)
 4  +  3 13 (27%)
 4  +  4 9 (18%)
 4  +  5 2 (4%)

a Staged according to the American Joint Committee on Cancer Staging Manual, 5th edition 
(Fleming et al 1997).

A Vignati et alPhys. Med. Biol. 00 (2015) 1
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Figure 2. Method pipeline in a 64 year-old-man, with a pathology confirmed 
adenocarcinoma of pathologic Gleason Score 3+3 with a volume of 0.75 ml. The PCa 
is outlined with ink (arrow) on the histopathologic slice (a). Corresponding T2w image 
(b) and ADC map (b-values, 0 and 1000 s mm−2) (c) show the same lesion encircled 
with a ROI. Traditional ADC metric values are reported. Results of the preprocessing 
procedure (described in the Image Analysis paragraph) for the T2w ROI (d) and the 
ADC ROI (e) are shown. GLCMs of the preprocessed T2w ROI (f) and the preprocessed 
ADC ROI (g) are shown. Values of contrast (C) and homogeneity (H) GLCM texture 
features are reported.

A Vignati et alPhys. Med. Biol. 00 (2015) 1
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Figure 3. Method pipeline in a 61 year-old-man, with a pathology confirmed 
adenocarcinoma of pathologic Gleason Score 4 + 4 with a volume of 1.59 ml. The PCa 
is outlined with ink (arrow) on the histopathologic slice (a). Corresponding T2w image 
(b) and ADC map (b-values, 0 and 1000 s mm−2) (c) show the same lesion encircled 
with a ROI. Traditional ADC metric values are reported. Results of the preprocessing 
procedure (described in the Image Analysis paragraph) for the T2w ROI (d) and the 
ADC ROI (e) are shown. GLCMs of the preprocessed T2w ROI (f) and the preprocessed 
ADC ROI (g) are shown. Values of contrast (C) and homogeneity (H) GLCM texture 
features are reported.

A Vignati et alPhys. Med. Biol. 00 (2015) 1
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Table 2. Median values of ADC parameters, contrast and homogeneity GLCM texture 
features parameters.

Pathologic 
gleason 
score

Whole-lesion 
approach 
mediana

Single-section 
approach mediana

Test whole-lesion versus 
single-section approach 
(p-value, Wilcoxon)

Mean ADC

×10−3 mm2 s−1 3  +  3 1.15 (0.94–1.26) 1.15 (0.95–1.30) 0.1475
3  +  4 0.99 (0.87–1.10) 0.96 (0.92–1.07) 0.7148
4  +  3 0.91 (0.83–1.10) 0.86 (0.78–1.04) 0.1909

≥4  +  4 0.87 (0.80–0.98) 0.90 (0.80–0.96) 0.7646

Median ADC

×10−3 mm2 s−1 3  +  3 1.12 (0.94–1.31) 1.12 (0.96–1.31) 0.1230
3  +  4 0.98 (0.85–1.09) 0.95 (0.88–1.06) 0.7609
4  +  3 0.89 (0.80–1.08) 0.84 (0.76–1.01) 0.2734

≥4  +  4 0.84 (0.79–0.94) 0.88 (0.79–0.94) 0.6377

10th percentile ADC

×10−3 mm2 s−1 3  +  3 0.87 (0.68–1.10) 0.90 (0.80–1.13) 0.0830
3  +  4 0.75 (0.64–0.90) 0.75 (0.65–0.89) 0.8077
4  +  3 0.64 (0.58–0.71) 0.64 (0.56–0.80) 0.6848

≥4  +  4 0.65 (0.55–0.73) 0.63 (0.55–0.74) 0.4131

25th percentile ADC

×10−3 mm2 s−1 3  +  3 1.04 (0.84–1.18) 1.01 (0.88–1.22) 0.4648
3  +  4 0.83 (0.72–0.98) 0.80 (0.75–0.97) 1.0000
4  +  3 0.75 (0.71–0.86) 0.76 (0.68–0.89) 0.6355

≥4  +  4 0.72 (0.65–0.82) 0.71 (0.66–0.83) 0.7002

Contrast ADC

3  +  3 287.4 (177.2–520.0)
3  +  4 148.4 (86.22–170.1)
4  +  3 67.43 (47.84–154.9)

≥4  +  4 134.2 (76.56–248.9)

Homogeneity ADC

×10−3 3  +  3 5.239 (3.519–6.907)
3  +  4 8.714 (6.938–10.62)
4  +  3 12.09 (11.57–15.79)

≥4  +  4 9.334 (7.047–12.71)

Contrast T2

3  +  3 150.0 (108.4–208.8)
3  +  4 71.99 (53.08–95.52)
4  +  3 46.57 (31.45–68.84)

≥4  +  4 41.88 (30.81–88.26)

Homogeneity T2

×10−3 3  +  3 9.011 (7.870–9.575)
3  +  4 12.61 (10.93–13.52)
4  +  3 13.26 (12.79–15.18)

≥4  +  4 14.68 (10.93–15.88)

a Numbers in parentheses are interquartile ranges.
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In the differentiation of PCa lesions with pGS = 6 from those with pGS ≥ 7, 10th and 
25th percentile ADC yielded the highest AUC (both 0.854; 95% confidence interval: 0.724, 
0.939 for 10th, 0.722, 0.939 for 25th percentile) among the four ADC parameters already 
studied in literature. Considering all the calculated parameters, homogeneity yielded the 
highest AUC for both the ADC map (0.923; 95% confidence interval: 0.811, 0.980) and 
the T2w image (0.962; 95% confidence interval: 0.864, 0.996), followed by contrast (table 
5, figure 5). The p-values for the comparison of different parameter AUC values are also 
reported in table 5.

Table 3. Spearman correlation coefficients for correlation of parameters with pathologic 
Gleason score.

ADC T2

ρ p-value ρ p-value

Mean −0.489 <0.001
Median −0.522 <0.001
10th percentile −0.569 <0.001
25th percentile −0.556 <0.001
Contrast −0.386 0.01 −0.654 <0.001
Homogeneity 0.533 <0.001 0.645 <0.001

Figure 4. Box plots show comparison of 10th and 25th percentile ADC (upper line), 
and contrast and homogeneity GLCM texture features on T2w images (lower line) for 
all lesions. Line in box is median, height of box represents interquartile range, whiskers 
are lowest and highest data points still within 1.5 interquartile range.
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4. Discussion

Investigating quantitative approaches to reliably characterize PCa aggressiveness with mp-MR 
imaging is a challenging task, but the stake is high. Indeed, identifying robust imaging bio-
markers of PCa aggressiveness will improve patient management, opening the way to tailored 
treatment. While various studies demonstrate the association between ADC values and PCa 
aggressiveness (Vargas et al 2011, Turkbey et al 2011, Oto et al 2011, Hambrock et al 2011, 
Peng et al 2013), the correlation of the T2w images with biological tumour activity has not 
been clearly assessed (Wang et al 2008, Rosenkrantz et al 2010, Giannini et al 2014).

To evaluate the capability to non-invasively predict pGS, contrast and homogeneity GLCM 
texture features, calculated on both T2w MR image and ADC maps, were compared with four 

Table 5.  Comparison of AUC values for differentiating tumour foci with pathologic 
Gleason Score 6 from those with pathologic Gleason score ≥ 7.

AUCa p-value p-value p-value p-value

Mean ADC 0.823 (0.687; 0.917) REF 0.886 0.325 0.064
Median ADC 0.821 (0.685; 0.915) 0.886 REF 0.377 0.092
10th percentile ADC 0.854 (0.724; 0.939) 0.325 0.377 REF 1.000
25th percentile ADC 0.854 (0.722; 0.939) 0.064 0.092 1.000 REF
Contrast ADC 0.871 (0.744; 0.949) 0.177 0.189 0.730 0.622
Homogeneity ADC 0.923 (0.811; 0.980) 0.019 0.019 0.206 0.067
Contrast T2 0.945 (0.840; 0.990) 0.009 0.008 0.118 0.033
Homogeneity T2 0.962 (0.864; 0.996) 0.006 0.006 0.073 0.016

a Numbers in parentheses are 95% confidence intervals. Each p-value column represents the comparison between all 
parameters and the reference one (REF). Bold values are statistically significant.

Figure 5. Comparison of ROC curves in the differentiation of tumor foci with 
pathologic Gleason Score of 6 from those with pathologic Gleason Score of at least 7.

A Vignati et alPhys. Med. Biol. 00 (2015) 1
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ADC metrics described in the literature (mean, median, 10th and 25th percentile) (Donati et 
al 2014) in the same cohort of patients.

This study demonstrates that contrast and homogeneity GLCM texture features calculated 
on T2w image outperform traditional ADC parameters in correlation with pGS (ρ = −0.654, 
and 0.645 respectively), and yielded the highest AUC for differentiating low-risk from inter-
mediate- or high-risk PCas compared to ADC metrics (AUC = 0.945, and 0.962 respectively). 
Moreover, the moderate/low correlation among ADC metrics and GLCM parameters, both 
on ADC and T2w, allows to hypothesize that contrast and homogeneity GLCM features may 
provide some additional independent information related to PCa aggressiveness.

Furthermore, a significant difference was observed between the AUC value for the homo-
geneity and contrast GLCM features calculated on the T2w image and the mean, median and 
25th percentile of the ADC map. The AUC value for the homogeneity GLCM feature calcu-
lated on the ADC map was found significantly different from the one for the mean and median 
ADC parameters.

We may speculate that contrast and homogeneity GLCM texture features are affected by 
lesion cellularity, as well as by the presence and amount of fluid contents, collagen, and fibro-
muscular stroma. High-grade tumours are associated with poorly differentiated and often 
packed epithelial cells, while low-grade tumours have at least some individual glandular 
structures, which preserve some (albeit reduced) intercellular space (Peng et al 2014). This 
may explain why homogeneity (or contrast) is directly (or negatively) correlated with pGS, 
although large interpatient variations cause overlap in feature texture values between different 
pGS groups and motivate the moderate-strong correlation strength.

This study confirms that 10th and 25th percentile ADC perform better than mean and median 
ADC values in correlating with pGS, and in differentiating low-grade (pGS = 6) from interme-
diate- and high-grade tumours (pGS ≥ 7), although no significant difference was found among 
AUC values of traditional ADC metrics. Since a previous study stated that ADC parameters 
derived from whole-lesion histogram may better differentiate low-risk lesions from intermedi-
ate- and high-risk lesions (Donati et al 2014), we compared ADC parameters derived from the 
whole-lesion and the single-section approach. Contrary to Donati et al (Donati et al 2014), we 
did not find any statistically significant difference between the two approaches.

The range of Spearman correlation coefficients describing the relationships between ADC 
parameters and lesion pGS in our study (ρ = −0.489 to −0.569) lies within the previously 
reported values for peripheral PCas (Donati et al 2014, Turkbey et al 2011, Oto et al 2011, 
Peng et al 2013). AUC values for ADC parameters in discriminating low- from intermediate- 
and high-risk lesions (AUC = 0.821–0.854) also lie within the range of previously reported 
values for peripheral prostate lesions (Donati et al 2014, Kobus et al 2012, Vargas et al 2011, 
Turkbey et al 2011, Oto et al 2011, Hambrock et al 2011, Peng et al 2013). One recent 
study reported a higher value of AUC (0.90) for the median ADC in peripheral zone PCas 
(Hambrock et al 2011). This result may depend on the fact that the ROC analysis was cal-
culated on only one section which included the most aggressive part of the tumour. It has 
been hypothesized that high tumour aggressiveness is characterized by limited intercellular 
space and restricted water molecule diffusion, and, thus, results in reduced ADC values. This 
motivates the negative correlation between ADC values and pGS, albeit large inter-patient 
variations cause overlap in the ADC values between high-, intermediate-, and low-grade PCa.

The strengths of this study include the use of histologic analysis performed on whole-
mount sections, which is known to improve the accuracy of the MR-histologic correlation 
analysis of lesions (Peng et al 2014), and the use of a dataset characterized by uniform distri-
bution of pGS classes (3 + 3, 3 + 4, 4 + 3, and ≥4). A balanced dataset is in fact very important 
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for creating a good training set, and therefore to define how accurate is a biomarker in clas-
sifying different risk classes (Mostafizur Rahman and Davis 2013).

Moreover, since GLCM textural features measure spatial variations of the SI, the proposed 
method does not necessitate post-processing strategies to correct differences in T2 SI ranges 
across patients, avoiding a related potential source of errors.

This prospective study also has limitations. First, it includes a limited number of patients 
and it lacks of analysis of the transition zone, because of the few PCas in this area in our 
cohort.

Second, the capability of GLCM features to differentiate PCa from healthy tissue, although 
worthy of investigation, was not explored. In fact, this study aims at investigating new 
potential biomarkers to predict prostate cancer aggressiveness, which represents an equally 
important challenge. Future research will focus on GLCM texture feature capabilities to dif-
ferentiate PCa from normal-tissue, and/or PCa from benign prostatic hyperplasia or other 
benign abnormalities.

5. Conclusion

The results of this study suggest that, in addition to providing anatomic information, T2w 
endorectal MR imaging may play a primary role in assessing PCa biological aggressiveness, 
complementing or even improving ADC. If confirmed, this finding could positively impact 
on patient management. We envisage applying this new imaging marker to suspicious areas 
highlighted by mp-MR Computer Aided Detection (CAD) systems, providing clinicians not 
only with the exact location of the tumour, but allowing them also to evaluate its aggressive-
ness. Future studies with larger numbers of patients are warranted to confirm our results and 
to extend the investigation of contrast and homogeneity GLCM features for distinguishing 
PCa from normal tissue.
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