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Abstract 

Despite the established role of SDHB and SDHA immunohistochemistry (IHC) as a valuable tool to 
identify patients at risk for familial succinate dehydrogenase (SDH)-related pheochromocytoma 
(PCC)-paraganglioma (PGL) syndromes, the reproducibility of the assessment methods has not as 
yet been determined. The aim of this study was to investigate interobserver variability among 
seven expert endocrine pathologists using a web-based virtual microscopy approach in a large 
multicenter, multinational cohort of genetically well-characterized paraganglionic tumors 
comprising 351 samples: (1) 73 SDH mutated (39 SDHD, 24 SDHB, 4 SDHA, 4 SDHAF2 and 2 
SDHC), (2) 105 non-SDH mutated (37 VHL, 25 RET, 21 NF1, 8 MAX, 6 HIF2A, 4 TMEM127 and 4 
HRAS), (3) 128 without identified SDH-x mutations, and (4) 45 samples with incomplete SDH 
molecular genetic analysis. Substantial agreement among all the reviewers was observed either 
with a two-tiered classification (SDHB IHC κ=0.7338; SDHA IHC κ=0.6707) or a three-tiered 
classification approach (SDHB IHC κ=0.6543; SDHA IHC κ=0.7516). Consensus, defined as 
agreement at least among 5 out of 7 pathologists, was achieved in 315 cases (89.74%) for SDHB 
IHC and in 348 cases (99.15%) for SDHA IHC respectively. Among the concordant cases, 62 of 69 
(~90%) SDHB-/C-/D-/AF2 mutated cases displayed SDHB immunonegativity and SDHA 
immunopositivity, 3 of 4 (75%) with SDHA mutations showed loss of SDHA/SDHB protein 
expression, while 98 of 105 (93%) non-SDH mutated counterparts demonstrated retention of 
SDHA/SDHB protein expression. Of note, two SDHD-mutated extra-adrenal paragangliomas were 
scored as SDHB immunopositive, whereas 8 of 128 (~6%) tumors without identified SDH-x 
mutations, 6 of 37 (~16%) VHL mutated as well as 1 of 21 (~5%) NF1 mutated tumors were 
evaluated as SDHB immunonegative. Although 13 out of the latter were non-metastatic, a 
significant correlation between SDHB immunonegativity and malignancy was observed 
(P=0.0002). We conclude that SDHB/SDHA IHC is a reliable tool to identify patients with SDH 
mutations at least in the specialized setting and together with SDH molecular genetic analysis 
should be viewed as complementary tests. In this framework, if SDH genetics fails to detect a 
mutation, SDHC promoter methylation and/or VHL/NF1 testing with the use of targeted Next-
Generation Sequencing (NGS) is advisable. The presence of discordant cases highlights the need 
for quality assessment programs regarding not only standardized staining protocols, but also 
SDHB/SDHA IHC evaluation procedures. 



Introduction 
 
Pheochromocytomas (PCCs) and paragangliomas (PGLs) are neural-crest derived neuroendocrine 
tumors arising from the adrenal medulla and sympathetic/parasympathetic paraganglia 
respectively [1]. As carrying the highest degree of heritability among human neoplasms, germline 
and/or somatic mutations of at least 15 genes (NF1, RET, VHL, SDHA, SDHB, SDHC, SDHD, 
SDHAF2, TMEM127, MAX, HIF2A, KIF1B, PHD2, HRAS and FH) are involved in their development 
with approximately 40% of these tumors harboring a germline mutation and an additional 25-30% 
a somatic one [2].  
 
Familial succinate dehydrogenase (SDH)-related PCC/PGL syndromes are caused by SDHA, 
SDHB, SDHC, SDHD and SDHAF2 (collectively SDH-x) mutations and inherited as autosomal 
dominant traits [3]. These syndromes predispose not only to PCCs/PGLs, but also to 
gastrointestinal stromal tumors (GISTs), renal cell carcinomas (RCCs) and pituitary adenomas [4-
6]. In the vast majority of SDH-associated tumors, there is also loss of SDHB and/or SDHA protein 
expression, which can be detected by immunohistochemistry (IHC) [4-40]. In particular, SDHB-, 
SDHC- and SDHD-mutated tumors display SDHB immunonegativity but SDHA immunoreactivity, 
whereas SDHA-mutated tumors show negativity for both SDHB and SDHA immunostainings. 
GISTs and PGLs associated with the Carney Triad (the syndromic but non-hereditary association 
of GIST, PGL, pulmonary chondroma, adrenocortical adenoma and esophageal leiomyoma) [3] 
show negative staining for SDHB in the absence of SDH-x mutations [28, 39]. There is provisional 
evidence that Carney Triad-related tumors display somatic hypermethyalation of the SDHC 
promoter locus [41] and therefore negative staining for SDHB may also identify these cases not 
found by conventional molecular testing. 
 
Since loss of SDHB/SDHA expression is predictive of an underlying SDHx germline mutation [7, 9-
10, 16, 20-23, 28, 33, 38], the role of SDHB/SDHA IHC has been underlined as a supplementary 
approach in molecular genetic testing especially for PCCs and PGLs [7, 9-10]. As Sanger or 
targeted Next-Generation Sequencing (NGS) analysis of all PCC/PGL susceptibility genes is labor 
intensive and/or requires clinical molecular diagnostic laboratories [42-44], it might be prudent to 
use IHC to identify patients with SDH-related PCC/PGL syndromes. In addition, the presence of an 
SDHB mutation is one of the strongest predictors both for metastasis and subsequently poor 
outcome in PCCs/PGLs [3]. In this context, it has been proposed that a combination of the grading 
system for adrenal phaeochromocytoma and paraganglioma (GAPP) and SDHB IHC might be of 
valuable aid in the prediction of metastatic disease [45], further necessitating correct 
interpretation of SDHB/SDHA IHC. 
 
Given the high prevalence of unsuspected hereditary disease, false-positive as well as false-
negative evaluations of SDHB/SDHA immunostainings can lead to failure to identify PCC/PGL 
affected individuals at increased risk for SDH-related neoplasia, incorrect interpretation of the 
pathogenicity of genetic variants of uncertain significance and inappropriate genetic testing. 
Because studies addressing the issue of interobserver variation for SDHB/SDHA IHC in 
PCCs/PGLs are lacking, we assessed interobserver agreement among practicing expert endocrine 
pathologists through virtual microscopy in a large multicenter, multinational cohort of genetically 
well-characterized tumors. Accordingly, we examined the validity of SDHB/ SDHA IHC to identify 
patients with SDH-related PCC/PGL and of SDHB IHC as a marker of malignancy. 
 
Material and Methods 
 
Case Selection  
 
Three hundred fifty-one paraganglionic tumors from 333 patients of 46 years median age (ranging from 
5.5 to 84 years; 56% females) were retrieved from 15 specialized centers from Europe, United States and 
Australia: (1) Université catholique de Louvain, Brussels, Belgium (95 samples from 84 patients), (2) 
Hôpital Européen Georges Pompidou, Paris, France (68 samples from 67 patients), (3) University of 
Florence, Florence, Italy (40 samples), (4) National Institutes of Health (NIH), Bethesda, Maryland, 



United States of America (24 samples), (5) Klinikum der Universität München, Munich, Germany (20 
samples), (6) Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands (18 samples 
from 17 patients), (7) Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Lisbon, 
Portugal (15 samples from 12 patients), (8) Hôpital Cochin, Paris, France (13 samples), (9) Jagiellonian 
University Medical College, Krakow, Poland (12 samples), (10) Technische Universität Dresden, 
Dresden, Germany (11 samples), (11) San Luigi Gonzaga Hospital and University of Turin, Turin, Italy 
(11 samples), (12) Erasmus MC Cancer Institute, Rotterdam, The Netherlands (10 samples from 8 
patients), (13) University of Sydney, Sydney, Australia (8 samples), (14) Spanish National Cancer 
Research Centre (CNIO), Madrid, Spain (5 samples) and (15) Hospital Universitario San Cecilio, 
Granada, Spain (1 sample). Clinical and genetic characteristics of these patients are detailed in 
Supplementary Table 1. Out of 351 tumor samples, (1) 73 were SDH-x mutated (39 SDHD, 24 SDHB, 4 
SDHA, 4 SDHAF2 and 2 SDHC), (2) 105 non-SDH-x mutated (37 VHL, 25 RET, 21 NF1, 8 MAX, 6 
HIF2A, 4 TMEM127 and 4 HRAS), (3) 128 samples without any SDHB-/C-/D- (A-/AF2- in part) germline 
mutations and large deletions (7 head and neck (HN) PGLs, 13 extra-adrenal (ea) PGLs and 108 PCCs) 
and (4) 45 samples with incomplete SDH-x molecular genetic analysis in terms either of SDH-x genes or 
the techniques performed i.e Sanger sequencing and/or multiplex ligation-dependent probe amplification 
(MLPA). Informed consent was obtained for genetic analysis and access to the clinical data in 
accordance with institutional guidelines.  
 
SDHB/ SDHA Immunohistochemistry  
 
Each case was thoroughly reviewed and representative unstained glass slide(s) (n= 147) and/or formalin-
fixed paraffin-embedded (FFPE) block(s) (n=204) were selected and further provided for 
immunohistochemical analysis within a single research setting (Department of Pathology, Erasmus MC, 
Rotterdam, the Netherlands) with the following protocol. Slides and FFPE whole-tissue sections of 4μm 
thickness were stained with commercially available antibodies: (1) mouse monoclonal Ab14715 antibody 
(Mitosciences, Abcam, Cambridge, UK; 1:500 dilution) against SDHA and (2) rabbit polyclonal 
HPA002868 antibody (Sigma–Aldrich Corp, St. Louis, MO, USA.; 1:400 dilution) against SDHB on an 
automatic Ventana Benchmark Ultra System (Ventana Medical Systems Inc. Tuscon, AZ, USA) using 
Ultraview DAB detection system preceded by heat-induced epitope retrieval with Ventana Cell 
Conditioning 1 (pH 8.4) at 97◦C for 52 and 92 minutes respectively. Diaminobenzidine was used as the 
chromogen. No tumor samples have been previously published elsewhere in terms of SDHB/ SDHA IHC 
investigation and were assessed anonymously according to the Proper Secondary Use of Human Tissue 
code established by the Dutch Federation of Medical Scientific Societies (http:// www.federa.org). The 
Medical Ethical Committee of the Erasmus MC approved the study. 
 
Telepathology Application 
 
High-resolution, whole-slide images were acquired from 702 SDHB/SDHA immunostainings using a 
NanoZoomer Digital Pathology (NDP) System (Hamamatsu Photonics K.K. Japan) working at a resolution 
of 0.23 μm/pixel. The immunostainings were scanned at a x40 magnification and automatically digitized in 
their proprietary NDP Image (NDPI) file format. A quality control was subsequently set to ensure good 
focus. Between August 2012 and December 2013, digital files were consecutively uploaded in six sets to 
a server at Erasmus MC through the standard File transfer Protocol (FTP) in the DMZ with URL: 
http://digimic.erasmusmc.nl/; enabling online worldwide viewing through a virtual microscopy interface 
(NDP.view Viewer Software, Hamamatsu Photonics K.K. Japan). 
 
Participants and Interpretation of Staining Results 
 
Nine pathologists, including six who had published on SDHB and/or SDHA IHC assessments and three 
who had dealt for many years with endocrine pathology both on diagnostic and research grounds, were 
invited to participate. Accordingly, seven participants (A.J.G, F. van N., A.S.T., F.T., M.V., X.M.-G., 
R.R.deK.) received: (i) a word file detailing the context and the objectives of the project along with an 
instructory panel of SDHB/SDHA IHC, (ii) a Virtual Microscopy (NDP) Manual, (iii) the corresponding link 
providing access to the virtual slides of the first set of tumors, and (iv) a scoring list to be completed 
during SDHB/SDHA IHC evaluations. All virtual slides were distributed online, reviewed by each observer 

https://mail.erasmusmc.nl/owa/redir.aspx?C=vJCp_1xjJk61IR1CZT1O6ipfl1YCQ9EIL2n5Nunb7RBi-bJtvYlzIkv3kLq4s39rI8X-zfrvNgU.&URL=http%3a%2f%2fdigimic.erasmusmc.nl%2f


in a blinded fashion without knowledge of the corresponding clinicopathological and genetic data or 
scores assigned by other pathologists and scored as follows: 
 
(i) with regard to SDHB IHC 

Positive as granular cytoplasmic staining displaying 
the same intensity as internal positive control (endothelial cells, sustentacular cells, lymphocytes); 
Negative as completely absent staining in the presence of an internal 
positive control;  
Weak diffuse as a cytoplasmic blush lacking definite granularity 
contrasting the strong granular staining of internal positive control; 
Heterogeneous as granular cytoplasmic staining  
combined with a cytoplasmic blush lacking definite granularity or 
completely absent staining in the presence of an internal positive control 
throughout the same slide; 
Noninformative as completely absent staining in the absence of an internal 
positive control 
 

(ii) with regard to SDHA IHC 
Positive as granular cytoplasmic staining displaying 
the same intensity as internal positive control (endothelial cells, sustentacular cells, lymphocytes);  
Negative as completely absent staining in the presence of an internal 
positive control; 
Heterogeneous as granular cytoplasmic staining  
combined with a cytoplasmic blush lacking definite granularity or 
completely absent staining in the presence of an internal positive control 
throughout the same slide; 
Noninformative as completely absent staining in the absence of an internal 
positive control 
 

Of note, in an effort to simulate widespread adoption of the scoring system as would occur in community 
practice, no prescoring consensus meeting was organized. In order to imitate clinical practice as much as 
possible for SDHB/SDHA IHC interpretations, we selected a large retrospective cohort comprising SDH-x 
and non-SDH-x mutated paraganglionic tumors with and without mutations in the remainder PCC/PGL-
associated genes. 
 
Statistical Analysis 
 
Interobserver agreement was assessed using kappa (κ) statistics; the strength of the former was 
evaluated with criteria previously described by Landis and Koch [46]. A κ value <0 indicates less than 
chance agreement, <0.20 is regarded as slight agreement; 0.21-0.40 as fair agreement, 0.41-0.60 as 
moderate agreement, 0.61-0.80 as substantial agreement, 0.81-0.99 as almost perfect agreement, and 1 
indicates perfect agreement. A dichotomous classification was used for the analysis of the pathologists’ 
evaluations (negative/ weak diffuse and positive) as well as a three-tiered classification approach 
(negative/ weak diffuse, positive, and heterogeneous). Consensus was defined as agreement at least 
among 5 out of 7 pathologists reaching the same interpretation on positive, negative/weak diffuse, 
heterogeneous and non-informative expression for SDHB/SDHA IHC. Discordant evaluation was defined 
as at least three observers reporting different SDHB/SDHA expression patterns on the same slide.  In 
order to capture the performance of SDHB IHC as a predictive tool, we calculated the Youden's J 
statistic (Youden's index) per pathologist either in tumors harboring SDH-x mutations vs non-SDH-x 
mutations or in SDH-x mutated tumors vs counterparts without identified SDH-x mutations. We used 
Pearson’s χ2-test to associate SDHB IHC status with biological behavior i.e. benignancy vs malignancy 
and for a potential correlation between SDHD mutations and weak diffuse pattern on SDHB IHC; the 
latter based on a consolidated call from at least four observers. Two-sided P values <0.05 were 
considered statistically significant. Statistical analyses were performed using Analyse-it v2.26 (Analyse-it 
Software, Ltd. Leeds, United Kingdom). 
 



Results 
 
The interobserver agreement following a two-tiered classification approach i.e. positive and weak 
diffuse/negative ranged from moderate to almost perfect for SDHB IHC and from fair to perfect for SDHA 
IHC (Table 1). With regard to SDHB IHC, the highest agreement was reached between observer 2 and 3 
(κ=0.8593) and the lowest between observer 4 and 7 (κ=0.5318), while regarding SDHA IHC, the highest 
agreement was reached between observers 6 and 2/7 (κ=1.0000) and the lowest between observer 4 and 
5 (κ=0.3542). All agreements were highly significant (P <0.0001). Substantial agreement among all the 
reviewers was observed either with a two-tiered classification (SDHB IHC κ=0.7338; SDHA IHC 
κ=0.6707) or a three-tiered classification approach (SDHB IHC κ=0.6543; SDHA IHC κ=0.7516). Notably, 
observer 1 as well as observers 3/4/5 did not score any slide as heterogeneous pattern for SDHB IHC 
and SDHA IHC respectively. 
 
Consensus among pathologists was achieved in 348 cases (99.15%) for SDHA IHC and in 315 cases 
(89.74%) for SDHB IHC respectively. Sixty-two of 69 tumor samples endowed with SDHB/C/D/AF2 
mutations displayed SDHB immunonegativity and SDHA immunopositivity, while 3 of 4 with SDHA 
mutations showed loss of SDHA/ SDHB protein expression (Figure 1). Two SDHD-mutated ea-PGLs 
(c.274G>T p.Asp92Tyr and c.405delC p.Phe136Leufs*32) were scored as SDHB immunopositive by 5 
observers, while as immunonegative (weak diffuse) by the remainder ones (observers 2/5) respectively. 
Discordant evaluations of SDHB and SDHA IHC were reported in 5 tumors carrying SDH-x- (SDHD-, 
SDHB- and SDHAF2-) mutations and 2 SDHA-/SDHD-mutated ones respectively. All tumors harboring 
RET, TMEM127, HIF2A and HRAS mutations as well as 31 of 37 VHL mutated- and 20 of 21 NF1 
mutated-tumors displayed retention of SDHB/SDHA expression (Figure 2). Six benign VHL-mutated 
PCCs (6 out of 37; ~16%) and one malignant NF1-mutated ea-PGL (1 out of 21; ~5%) were evaluated as 
SDHB imunonegative [VHL: by all observers (3 cases), 6 observers (1 case), 5 observers (2 cases); NF1: 
by 6 observers (1 case)] in the absence of SDH-x mutations in four of these cases (two examined only at 
the germline, one both at the germline and somatic, and one only at the somatic level) . Data on the exact 
mutations were available in four cases (VHL p.Ser80Asn, p.Arg161*, p.Arg167Gln; NF1 p.Trp561*).  
 
Likewise, 8 out of 128 (6.25 %) paraganglionic tumors were scored as SDHB immunonegative/ SDHA 
immunopositive in the absence of SDH-x mutations. Clinicopathological and genetic data of these eight 
cases from three independent centers are detailed in Table 2. Discordant evaluations of SDHB IHC were 
additionally observed in 18 tumors without identified SDH-x mutations, 11 VHL- and 2 RET-mutated 
tumors, whereas of SDHA IHC concerned one NF1-mutated tumor. The classification of stainings as ‘non-
informative’ and ‘heterogeneous’ represented the major reasons for SDHA/SDHB IHC discrepancies in 
the SDH-x mutated subgroup, while the ‘weak diffuse’ category accounted largely for those in tumors 
without identified SDH-x mutations and VHL-mutated subsets. 
 
The association between the predicted SDH genetic status with SDHB IHC was investigated for each 
observer. The sensitivity of this approach, defined as the percentage of SDH-x mutated tumors which are 
SDHB immunonegative, ranged from 83.58% to 98.57% (mean 94.23%). The specificity, defined as the 
percentage either of non-SDH-x mutated tumors or tumors without identified SDH-x mutations which 
are SDHB immunopositive, varied between 74.03% and 96.11% (mean 84.35%) as well as 83.06% and 
92.91% (mean 86.67%) respectively. Observer 1 was the best predictor with a Youden’s index of 0.880 
and 0.860 (Table 3). A significant correlation was observed between SDHB immunonegativity and 
malignancy (P=0.0002), while no association could be shown between the SDHD mutations and the weak 
diffuse pattern on SDHB IHC (P=0.1490). 
 
Discussion  
 
Immunohistochemistry has notably revolutionized the practice of endocrine pathology during the 
last decade [47]. In parallel with recent advances in molecular genetics, IHC has been shown to 
detect various types of molecular alterations i.e. BRAF V600E mutation in papillary thyroid 
carcinomas [47], PTEN mutations in various neoplastic thyroid lesions [48], beta-catenin 
(CTNNB1) mutations in cribriform-morular variant of papillary thyroid carcinoma, undifferentiated 
carcinomas of the thyroid gland and adrenocortical carcinomas [47, 49-50], TP53 mutations as 



well as mutations in mismatch repair (MMR) genes i.e. MLH1, MSH2, MSH6 and PMS2 in 
adrenocortical carcinomas [50-52], HRPT2 mutations in parathyroid carcinomas and 
hyperparathyroidism-jaw tumor syndrome-related adenomas [47, 53], PRKAR1A mutations in 
Carney complex-associated tumors [54-56], SDH-, FH- as well as MAX deleterious- mutations in 
PCCs/PGLs [7, 9-10, 57-58]. 
 
Loss of SDHB protein expression is seen in PCCs/PGLs either harboring a mutation in any of the 
SDH genes or with somatic hypermethylation of the SDHC promoter region [41], whereas loss of 
both SDHB and SDHA immunoreactivity is demonstrated only in the context of an SDHA mutation 
[7-19]. In agreement with previous studies [7, 9-10, 16-19], SDHB-/C-/D- and SDHA- mutated 
tumors displayed the aforementioned immunoexpression patterns with SDHAF2-mutated 
counterparts showing SDHB immunonegativity and SDHA immunopositivity. Notably, all tumors 
harboring RET, TMEM127, HIF2A and HRAS mutations displayed retention of SDHB/SDHA 
expression, whereas 6 benign VHL-mutated PCCs and 1 malignant NF1-mutated ea-PGL were 
evaluated as SDHB immunonegative. The latter contrasts previous observations in 37 PCCs/PGLs 
and 14 PCCs endowed with VHL [7, 10] and NF1 mutations [7, 9] respectively. Albeit, by using a 
mouse monoclonal (21A11) SDHB antibody at a low concentration (1 in 1000), Gill et al. [9] 
suggested that VHL-associated tumors could be classified as negative or weak diffuse rather than 
positive as demonstrated by a high concentration approach of two SDHB antibodies [7]. Along the 
same lines, loss of SDHB protein expression has been recently displayed in a subset of NF1-
mutated PCC/PGLs (J Favier 2014, personal communication). The remote possibility of a double 
mutant, potentially explaining the SDHB immunonegativity by an additional SDH-x mutation, was 
ruled out in 4 of these 7 cases occurring in the VHL- and NF1- deficient setting. 
 
To further extend upon earlier observations [7, 10], 8 of 128 (6.25%) tumors without identified 
SDH-x mutations were evaluated as SDHB immunonegative (Table 2). van Nederveen et al. [7] and 
Castelblanco et al. [10] reported on 9 cases (6 out of 53; 11% & 3 out of 19; 15.7%) displaying loss 
of SDHB expression in the absence of SDHB, SDHC, SDHD, VHL or RET mutation. Nevertheless, 
these studies lacked either SDHA/ SDHAF2 genetic testing [7, 10] or screening for large-scale 
SDH-x deletions [10], which may account for higher percentages. Intriguingly, in the present 
study, seven SDHB immunonegative tumors in the absence of SDH-x mutations were non-
metastatic bearing a close resemblance to the Carney-triad-associated counterparts in terms of 
SDHB IHC and biologic behavior [3, 28, 59]. Because somatic hypermethylation of SDHC was not 
investigated, the intriguing possibility that the aforementioned tumors represented cases of 
Carney-Triad could not be assessed. Nevertheless, as shown herein, SDHB IHC status overall is 
strongly correlated with the clinical behavior of PCC/PGL further strengthening the role of SDHB 
IHC as a prognostic marker [60]. 
 
Our data reinforce the notion that IHC is a valid tool to identify patients at risk for familial SDH-
related PCC/PGL syndromes, whereas occasionally this might be difficult even in a specialized 
setting (Table 3). In support of the latter, two ea-PGLs endowed with missense and frameshift 
SDHD mutations were scored as SDHB immunopositive by five observers similar to what has 
been previously reported on an ea-PGL harboring a nonsense SDHD mutation (c.14G>A p.Trp5*) 
in the context of Carney Stratakis syndrome (CSS) [30]. Given that the latter developed an 
additional GIST exhibiting SDHB immunonegativity [30], while identical missense and nonsense 
SDHD mutations in other tumors destabilized the protein leading to absence of expression [4, 7], it 
is tempting to postulate that either the second hit in the SDHD gene resulted in an inactive SDH-
complex with preservation of antigenicity or this could be alternatively ascribed to an erroneous 
interpretation. Paradoxically, one papillary RCC arising in a patient with a germline missense 
SDHC mutation (c.3G>A p.M1I) and harboring somatic loss of heterozygosity (LOH) of the SDHC 
locus displayed SDHB immunopositivity [35] further adding to those rare familial cases 
characterized by disparity between molecular genetic aberrations of a tumor suppressor gene and 
retention of protein expression [61]. Of note, every pathologist missed at least 1 SDH-x-related 
tumor, of which SDHD counterparts most frequently, necessitating SDHD IHC as a potential 
complementary tool to SDHB IHC to identify SDHD-mutated patients [62]. Taken together, SDHB 
IHC and SDH-x genetic analysis should be viewed as complementary tests. In the eventuality of 



strong clinical suspicion, despite retention of SDHB expression, follow-up mutational analysis 
should be considered. 
 
The relatively good level of reproducibility in the current study may either reflect a high level of 
experience with scoring SDHB/SDHA immunostainings among expert endocrine pathologists or 
be attributable in part to the fact that very precise scoring guidelines were provided. Accordingly, 
it would be essential to provide such guidelines in clinical reporting templates [63]. Albeit, the 
classification of stainings as ‘non-informative’ and ‘heterogeneous’ represented the major 
reasons for SDHA/SDHB IHC discrepancies in the SDH-x-mutated subgroup, while the ‘weak 
diffuse’ category accounted largely for inconsistencies in the SDH-x wild-type and VHL-mutated 
subsets. These could be potentially ascribed to (i) technical variability owing to differences in 
fixation time, buffered formalin concentrations and/or age of the FFPE blocks [9-10], (ii) biological 
variability e.g. reduced SDHB protein levels in VHL-mutated PGLs [64] or even to (iii-iv) individual 
conceptions and experience from specific staining protocols, as has been shown with IHC for 
MMR proteins [65]. Technically suboptimal immunostainings were not unexpectedly encountered 
given the fact that provided material was derived from several pathology laboratories, each 
following their own fixation and embedding protocols.  
 
In contrast to previous studies [9-10] indicating a stronger correlation of weak diffuse pattern with 
SDHD mutations, we could not significantly reinforce this particular association. Moreover, SDHB 
and/or SDHA IHC may not always be an all-or-none phenomenon. In particular, two SDHAF2- and 
SDHA-mutated tumors displayed a heterogeneous expression pattern (Fig. 3 & 4) being consistent 
with previous observations concerning SDHB IHC in a pituitary adenoma harboring an SDHD 
germline mutation [36]. Along the same lines, heterogeneous expression patterns have been 
reported both with MMR protein IHC in Lynch syndrome and PTEN IHC in Cowden syndrome 
respectively [66-68]. The biologic nature of heterogeneous tumors in these genetic contexts is 
currently unknown [36, 66-68]. Because of potential misinterpretation of heterogeneous IHC for 
SDHB and/or SDHA protein loss, SDH genetic testing is recommended when confronted with such 
cases. 
 
In addition to a comprehensive NGS-based strategy for the analysis of multiple PCC/PGL 
susceptibility genes [42-44], several algorithms have been proposed as a targeted approach to 
genetic testing in clinical practice [7, 69-71]. In this rapidly expanding field, the importance of 
assessing the pathogenicity of a 'variant of unknown significance' has become a major and 
complex problem facing diagnostic laboratories. Our data further strengthen the role of 
SDHB/SDHA IHC in determining the functionality of such variants, alone or in an integrated 
approach with in-silico analysis [72] and/or Western blot analysis, SDH enzymatic assay and mass 
spectrometric-based measurements of ratios of succinate:fumarate and other metabolites [73-75]. 
 
In the current study, we conclude that SDHB/SDHA IHC appears to be a reliable tool to identify 
patients with SDHA/-B/-C/-D/-AF2 mutations with an additional utility to evaluate the pathogenicity 
of SDH variants of unknown significance in the new NGS era. A heterogeneous pattern of SDHB 
IHC has to be followed by SDH-x molecular genetic testing, while a SDHB immunonegative subset 
of VHL- and NF1-mutated paraganglionic tumors challenges the issue of specificity for SDHB IHC. 
Hence, if SDH-x genetics fails to detect a mutation, SDHC promoter methylation and/or VHL/NF1 
testing with the use of targeted NGS is advisable. Our findings highlight the need for quality 
assessment programs regarding not only standardized staining protocols, but also SDHB/SDHA 
IHC evaluation procedures. In a prospective setting, with standardized tissue fixation combined 
with a locally fine-tuned immunohistochemical staining protocol, the sensitivity and specificity of 
the SDHA/SDHB IHC can be improved. 
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Figure Legends 

Figure 1. SDHA and SDHB IHC in PCCs/PGLs endowed either with SDHA germline mutation 
displaying loss of SDHA/SDHB protein expression or with SDHB, SDHC, SDHD and SDHAF2 
germline mutations exhibiting loss of SDHB, but intact SDHA expression. Note the granular, 
cytoplasmic staining for SDHA/SDHB in normal cells of the intratumoral fibrovascular network, which 
serve as internal positive controls. 

Figure 2. Intact SDHB and SDHA protein expression in non-SDH mutated tumors harboring VHL, 
RET, NF1, TMEM127, MAX, EPAS1 and HRAS mutations at the germline or somatic level. Note the 
granular, cytoplasmic staining for SDHA/SDHB in normal cells of the intratumoral fibrovascular 
network, which serve as internal positive controls. 

Figure 3. An ea PGL harbouring an SDHA (c.1534C>T, p.Arg512*) germline mutation, metastatic to a 
para-aortic lymph node, showing SDHB immunonegativity (A, C), but a heterogeneous staining 
pattern for SDHA (B, D-F): central area (D) convincingly negative for SDHA, peripheral areas (F) 
convincingly positive for SDHA and transitional zones (E) inbetween exhibiting cells with intact SDHA 
expression intermingled with cells with absent SDHA expression. Note the granular, cytoplasmic 
staining for SDHA/SDHB in normal cells of the intratumoral fibrovascular network, which serve as 
internal positive controls. Three pathologists correctly classified this sample as heterogeneous for 
SDHA, with the remainder four observers as positive for SDHA. 

Figure 4. An SDHAF2-mutated (c.232G>A, p.Gly78Arg) HN PGL showing areas convincingly 
negative for SDHB and at a lesser extent areas convincingly positive for SDHB (A). Note the 
granular, cytoplasmic staining for SDHB in normal cells of the intratumoral fibrovascular network, 
which serve as internal positive control. Three pathologists correctly classified this sample as 
heterogeneous for SDHB, with the remainder four as negative for SDHB, while all observers scored it 
as SDHA immunopositive (B). 
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Table 1. Interobserver agreement (% upper half) and κ values (lower half) for SDHB and SDHA IHC 

 Observer 
1 

Observer 
2 

Observer 
3 

Observer 
4 

Observer 
5 

Observer 
6 

Observer 
7 

SDHB IHC        

Observer 1 - 89.82% 94.28% 84.31% 91.34% 87.78% 95.54% 

Observer 2 0.7623 - 93.88% 84.16% 90.91% 90.85% 85.54% 

Observer 3 0.8561 0.8593 - 86.29% 92.68% 89.87% 92.38% 

Observer 4 0.6282 0.6508 0.6819 - 82.10% 87.71% 81.17% 

Observer 5 0.7943 0.7998 0.8286 0.5981 - 89.71% 87.65% 

Observer 6 0.7199 0.8021 0.7721 0.7276 0.7759 - 85.99% 

Observer 7 0.8733 0.6476 0.7923 0.5318 0.6880 0.6621 - 

SDHA IHC        

Observer 1 - 99.43% 99.43% 98.86% 98.85% 99.71% 99.71% 

Observer 2 0.7471 - 99.43% 98.86% 99.42% 100.00% 99.71% 

Observer 3 0.7471 0.7471 - 98.86% 98.56% 99.71% 99.71% 

Observer 4 0.4942 0.4942 0.4942 - 97.99% 99.14% 99.14% 

Observer 5 0.5944 0.7972 0.5387 0.3542 - 99.13% 99.14% 

Observer 6 0.8557 1.0000 0.8557 0.5672 0.6628 - 100.00% 

Observer 7 0.8557 0.8557 0.8557 0.5672 0.6628 1.0000 - 

All agreements p<0.0001 

 

 

  



Table 2. Clinicopathological and genetic data of patients with SDHB-immunonegative 
paraganglionic tumors in the absence of SDH mutations.  

 
 
* SDH-x genes have been tested both for point mutations and large gross deletions at the germline level 
with DR10 and ITA48 also investigated at the somatic level 
** one non-informative call 
^ tested as well for FH at the germline and EPAS1 at the somatic level without any mutations 
subsequently detected 
Abbreviations: ea, extra-adrenal; F, female; HN, head and neck; IHC, immunohistochemistry; M, male; 
ND, not done; Neg, negative; PCC, pheochromocytoma; PGL, paraganglioma; Pos, positive. 
 
  



Table 3. Associating predicted SDHB IHC status either with SDH-x mutated vs. non-SDH-x mutated * 
status (Table 3I) or with SDH-x mutated vs. SDH-x wild-type status (Table 3II) ** 

 TABLE 3I Observer 
1 

Observer 
2 

Observer 
3 

Observer 
4 

Observer 
5 

Observer 
6 

Observer 
7 

Sensitivity 95.71% 98.57% 94.44% 93.22% 98.57% 95.52% 83.58% 

Specificity 92.30% 77.66% 90.00% 74.03% 82.35% 78.02% 96.11% 

PPV 89.33% 75.00% 87.17% 67.07% 79.31% 76.19% 93.33% 

NPV 96.96% 98.76% 95.74% 95.06% 98.82% 95.94% 90.00% 

Pval p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 

Youden’s 
Index 0.880 0.762 0.844 0.672 0.809 

 

0.735 

 

0.796 

 

TABLE 3II Observer 
1 

Observer 
2 

Observer 
3 

Observer 
4 

Observer 
5 

Observer 
6 

Observer 
7 

Sensitivity 95.71% 98.57% 94.44% 93.22% 98.57% 

 

95.52% 

 

83.58% 

Specificity 90.47% 83.06% 87.70% 84.55% 83.73% 

 

84.21% 

 

92.91% 

PPV 84.81% 76.66% 81.92% 74.32% 77.52% 

 

78.04% 

 

86.15% 

NPV 97.43% 99.03% 96.39% 96.29% 99.03% 

 

96.96% 

 

91.47% 

Pval p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 

Youden’s 
Index 0.860 0.816 0.821 0.777 0.823 

 

0.797 

 

0.764 

* including RET-, VHL-, NF1-, TMEM127-, MAX-, HIF2A- and HRAS-mutated tumors 

** Heterogeneous and noninformative calls are excluded 

Sensitivity is defined as the percentage of SDH-x mutated tumors which are SDHB immunonegative 
Specificity is defined as the percentage of non-SDH-x mutated tumors or tumors without identified 
SDH-x mutations which are SDHB immunopositive 



Pval: p-value Chi-square test 

PPV: positive predictive value 

NPV: negative predictive value 

Youden’s index is defined as sensitivity+specificity-1. The higher the Youden’s index, the better the 
prediction 

 
 
 
 
 
 

 


