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A Morse-Smale index theorem for indefinite elliptic systems

and bifurcation

Alessandro Portaluri∗, Nils Waterstraat†

March 19, 2014

Abstract

The aim of this paper is to publish at least something, which is, however, not that bad...

1 Introduction

The Morse index theorem is a famous result in differential geometry, relating the Morse index of
a geodesic on a Riemannian manifold to its number of conjugate points (cf. [?]). It was proved
by Marston Morse in the forties and since then has been generalized into various directions.
After introducing coordinates, the Morse-index theorem turns out to be a result about Dirichlet
boundary value problems for strongly elliptic systems of ordinary differential equations of second
order. More precisely, the equations are of the form

−u′′(x) + S(x)u(x) = 0, x ∈ [0, 1],

u(0) = u(1) = 0
(1)

where S : [0, 1] → M(n;R) is a smooth path of symmetric matrices for some n ∈ N. If we now
set the Morse index µMorse(S) to be the number of negative eigenvalues of the boundary value
problem (1) counted with multiplicities and

m(t) = dim{u : [0, t]→ Rn : −u′′(x) + S(x)u(x) = 0, u(0) = u(t) = 0}, (2)

then the Morse index theorem states that

µMorse(S) =
∑
t∈[0,1]

m(t). (3)

Instants t ∈ I such that m(t) > 0 are called conjugate and (3) implies in particular that they are
finite in number.
. Smale showed in [?] that an equality like (3) continues to be true in the more general case of
general strongly elliptic second order partial differential equations as follows: let M be a smooth
compact manifold with non empty boundary ∂M , E a Riemannian vector bundle over M and
ϕt : M → M a continuous curve of smooth embeddings such that ϕ0 = id and Ms ⊂ Mt for
s > t. Let L : Γ0(E) → Γ(E) be a strongly elliptic selfadjoint differential operator of order 2k,
where Γ0(E) denotes the subspace of those elements of Γ(E) that vanish on the boundary of M .
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Note that L has a finite Morse index by the strong ellipticity assumption. Moreover, we obtain
differential operators Lt : Γ0(EMt)→ Γ(EMt) by restricting L to E |Mt and we denote

m(t) = dim{u ∈ Γ0(Et) : Ltu = 0}.

Now Smale’s theorem states that under a certain “unique continuation property” of the operators
L, the corresponding equality (3) still holds. Later Uhlenbeck [?] and Swanson [?] gave alternative
proofs of Smale’s result using abstract Hilbert space theory and intersection theory in symplectic
Hilbert spaces respectively. However, all the constructions mentiones so far use strongly the
assumption of Dirichlet boundary conditions, which permit an extension of functions in the Sobolev
spaces Hk(Mt), t ∈ (0, 1) to Hk(M) by 0.
A completely different variation of Morse’s classical result is inspired by physical applications
and concerns the corresponding statement for geodesics in Lorentzian manifolds, the models of
space-time in general relativity theory. Complete results in case of so called light-like and time-
like geodesics can be found for example in the book [?]. Fifteen years ago, Helfer studied the
same question for the remaining space-like geodesics and, moreover, geodesics in arbitrary semi-
Riemannian manifolds [?]. His results yield that it is not even possible to make sense of the values
involved in the classical Morse-index theorem (3) in this generality since the ordinary Morse index
is infinite and conjugate points may accumulate. Starting with Helfers work, considerable amount
of research has been done in order to extend the Morse-index theorem to geodesics in arbitrary
semi-Riemannian manifolds (cf. PICCIONE +REFERENCES). A new approach to this problem
was proposed by Musso, Pejsachowicz and the first author in [?], where topological tools like
spectral flow and the winding number were used in order to give a meaning to the Morse index
and the conjugate index in the semi-Riemannian setting. Subsequently, the second author gave
an alternative proof of their version of the Morse theorem using the Atiyah-Jänich bundle and
K-theoretic methods [?]. This makes the Morse-index theorem reminiscent of the Atiyah-Singer
index theorem for selfadjoint elliptic operators.
Recently, Smale’s theorem was extended for scalar equations to more general boundary conditions
under the additional assumption that the manifold M is a star-shaped domain Ω with respect to
the origin in some Euclidean space RN and the shrinking ϕ is the canonical contraction to 0 ∈ RN .
Deng and Jones considered in [?] bounded perturbations of the Laplace equation for boundary
value problems which are either similar to the Dirichlet- or the Neumann problem. HOWEVER;
THERE IS A GAP! The first author extended their results in collaboration with Dalbono for the
classical Dirichlet and Neumann problem to the case of general scalar second order elliptic partial
differential equations [DP12]. The novelty in these investigations is that now, except for the case
of the classical Dirichlet condition as treated by Smale in [?], conjugate points can accumulate
as in the case of semi-Riemannian geodesics and hence the right hand side in [?] does no longer
makes sense, while the left hand side is still well defined. Deng and Jones overcome this problem
in [?] by using a Maslov index for curves of Lagrangian subspaces in a symplectic Hilbert space
consisting of functions on the boundary of Ω.
Note that compared to (1), the equations considered in [?] and [DP12] correspond for Dirichlet
boundary conditions to the case of geodesics in one-dimensional manifolds. The aim of this work
is to extend their ideas to systems of partial differential equations which are formally of the type
(1). More precisely, let Ω ⊂ RN be a bounded and smooth domain which is star-shaped with
respect to the origin 0 ∈ RN for some N ∈ N. We denote henceforth the boundary of Ω by Γ. Let
us consider for some k ∈ N homogenous systems of second-order differential equations

Lu(x) + S(x)u(x) = 0, (4)

where u : Ω→ Rk,
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J is a diagonal matrix having entries ±1, and S : Ω → S(k;R) is a smooth map of symmetric
matrices.
We consider the classical Dirichlet and Neumann problem for the equation (4). Accordingly, we
study boundary value problems of the form

Lu(x) + S(x)u(x) = 0, x ∈ Ω

P l(u |Γ, ∂nu |Γ) = 0,
(5)

where

P lu = (u1, . . . , ul, ∂nul+1, . . . , ∂nuk)

and ∂nui = 〈n,∇ui〉, where n denotes the outward normal to the boundary ∂Ω.
Note that the boundary value problems (5) are selfadjoint. Our aim is to construct three indices
which are obtained by shrinking the domain Ω into a point in the canonical way.
The paper is structured as follows: In the second section we consider the weak formulations of
the equations (5) and we introduce the spectral index which is defined by means of the spectral
flow. In the third section we define the Maslov index for (5), where we follow the ideas of Deng
and Jones from [?]. In the fourth section we state and prove our main theorem on the equality
of these indices. In the fifth section we discuss briefly bifurcation for semi-linear systems under
shrinking of the star-shaped domain in connection with the non-vanishing of our indices for the
linearised equations. Finally, there are two appendices. In the first one we recall some facts about
the Fredholm Lagrangian Grassmannian of symplectic Hilbert spaces and the Maslov index. In the
second one we recall the definition of the spectral flow for bounded selfadjoint Fredholm operators
and a construction of Robbin and Salamon from [RS95] which we strongly use in our proofs.

2 Weak formulation and the generalised Morse index

Let us consider a boundary value problem of the form (5). The bilinear form in the weak formu-
lation of (5) is given by

B(u, v) =

∫
Ω

N∑
i=1

〈JDiu(x), Diu(x)〉 dx+

∫
Ω

〈S(x)u(x), v(x)〉 dx, u, v ∈ E, (6)

where

E = H1
0 (Ω)⊕ · · · ⊕H1

0 (Ω)⊕H1(Ω)⊕H1(Ω) ⊂ H1(Ω,Rk).

By assumption the domain Ω is star-shaped with respect to 0 ∈ RN . In what follows we denote
by Ωt := {tx ∈ Ω : x ∈ Ω}, t ∈ (0, 1], the shrinked domain and we consider the restriction of the
boundary value problem (5) to Ωt, that is,

Lu(x) + S(x)u(x) = 0, x ∈ Ωt

P l(u, ∂nu)(x) = 0, x ∈ ∂Ωt,
(7)
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Definition 2.1 We call t ∈ (0, 1] a conjugate instant for the equation (5) if the boundary value
problem (7) admits a non trivial solution.

Remark 2.2 It was already shown by Smale in [Sma65] that conjugate points are isolated for
the Dirichlet problem and our theorem 3 below will give a new proof of this fact (cf. also OUR
WORK IN PROGRESS). In contrast, it is easily seen that conjugate instants can accumulate for
the Neumann problem. Indeed, if there exists t0 ∈ (0, 1] such that S |Ωt0≡ 0, then every instant in
(0, t0] is conjugate.

It is easily seen by rescaling that (7) is equivalent to

1

t2
Lu(x) + S(tx)u(x) = 0, x ∈ Ω

P (u, ∂nu(x)) = 0, x ∈ ∂Ω
(8)

and as in (6) the bilinear forms of the weak formulations are given by

Bt(u, v) =
1

t2

∫
Ω

N∑
i=1

〈JDiu(x), Div(x)〉 dx+

∫
Ω

〈S(tx)u(x), v(x)〉 dx, u, v ∈ E (9)

Henceforth we will denote Lt the Riesz representation of Bt, that is, the unique bounded selfadjoint
operator Lt on E, such that

Bt(u, v) = 〈Ltu, v〉E , u, v ∈ E.

Remark 2.3 explain why we do not just multiply the equation by t2.

Lemma 2.4 Lt, t ∈ (0, 1], define Fredholm operators on E.

Proof. Has to be written but is clear....relatively...
Before we can define the spectral index, we need to introduce a technical assumption.

(A) There exist ν, t0 > 0 such that σ(Lt) ∩ (−ν, 0) = ∅ for all 0 < t < t0.

In what follows we denote by C the Riesz representation of the L2 scalar product on E, i.e.

〈u, v〉L2(Ω,Rk) = 〈Cu, v〉E , u, v ∈ E,

and we consider for δ ∈ R

Lδt (u) = Lt(u) + δCu.

Note that Lδt is a selfadjoint Fredholm operator.

Lemma 2.5 Let the boundary value problem (5) admit only the trivial solution and assume that
(A) holds. Then there exists δ0 > 0 such that Lδ1 = Lδ and Lδt0 are invertible for all δ ∈ (0, δ0)
and

sf (Lδ, [t0, 1]) = sf (Lδ̃, [t1, 1])

for all δ, δ̃ ∈ (0, δ0) and 0 < t1 < t0.
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Proof. Since (5) has no non-trivial solutions, we know that there exists δ0 > 0 such that Lδ

is invertible for all δ ∈ (−δ0, δ0). Moreover, Lt1 is non-negative by (A) and hence Lδt1 is positive
for all δ > 0. This shows the first assertion. The second assertion now follows immediately from
the properties of the spectral flow as stated in theorem B.1.

INTRODUCE u!!!

Definition 2.6 Assume that the boundary value problem (5) admits only the trivial solution and
that assumption (A) holds. Then the generalised Morse index of u is defined by

µMorse(u) = −sf (hδ, [t0, 1]),

where t0 ∈ (0, 1] is chosen as in (A).

Let us consider the special case that J is the identity; i.e., the differential operator L is
positive. Then the Morse index of L = L1 is finite and we obtain the following result. WRITE
SOMETHING ON THE COMPONENTS OF THE SPACE OF SELFADJOINT FREDHOLM
OPERATORS...

Lemma 2.7 If J is the identity, assumption (A) holds and (5) admits only the trivial solution,
then

µMorse(u) = iMorse(h1).

Proof. .....

3 The spectral index and the Maslov index

The aim of this section is to define the spectral index and the Maslov index for the boundary
value problems (5). We introduce in a first section the spectral index which is defined as spectral
flow of a path of unbounded selfadjoint Fredholm operators. In a second section we introduce
a symplectic Hilbert space β and show that the space of solutions of (4) induces a Lagrangian
subspace of β. Finally, we consider (4) on the shrinked domains Ωt, t ∈ (0, 1], and obtain a curve
of Lagrangian subspaces which we use in order to define the Maslov index of (5).

3.1 The spectral index

We consider the differential equations (7) and define a path of differential operators by

Aδt : D = {u ∈ H2(Ω,Rk) : P l(u, ∂nu) = 0} ⊂ L2(Ω,Rk)→ L2(Ω,Rk), t ∈ (0, 1],

defined by

(Aδtu)(x) =
1

t2
Lu(x) + S(tx)u(x) + δ u(x).

Compact resolvent etc.... We observe at first:

Lemma 3.1 If the boundary value problem (5) admits only the trivial solution and assumption (A)
holds, then there exists t0, δ0 > 0 such that At1 + δI and A1 + δI are invertible for all 0 < δ < δ0,
0 < t1 <≤ t0 and

sf (Aδ, [t1, 1]) = sf (Aδ, [t0, 1]).

Proof.
By the previous lemma we obtain that the following definition is possible, because it does not

depend on the particular choice of δ and t0.
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Definition 3.2 Assume that (5) has only the trivial solution and (A) holds. Then the spectral
index of u is defined by

µspec(u) = sf (Aδ, [t0, 1]),

where δ, t0 > 0 are sufficiently small.

Let us recall that the Morse index of (5) is the number of negative eigenvalues of this equation
counted with multiplicities; i.e., the sum of the dimensions of all subspaces of L2(Ω,Rk) such that

Lu(x) + S(x)u(x) = λu(x), x ∈ Ω

P l(u |Γ, ∂nu |Γ) = 0

for some λ < 0. If J is the identity then the Morse index is finite and it obviously coincides with
the Morse index of the differential operator A1 as defined in ????APPENDIX.

Lemma 3.3 If J is the identity, assumption (A) holds and (5) admits only the trivial solution,
then

µspec(u) = iMorse(A1).

3.2 Definition of the Maslov index

Let us consider the differential operator L and recall that L is closed and symmetric on the domain

Dmin = {u ∈ H2(Ω) : u |Ω= ∂nu |Ω= 0}.
In what follows, we will denote by Lmin the restriction of L to Dmin and we denote by Lmax :=
(Lmin)∗ the adjoint of Lmin. It is well known (cf. ???) that Lmax is given by the operator L on
the domain

Dmax = {u ∈ L2(Ω,Rk) : Lu ∈ L2(Ω,Rk)}.
If we consider the latter space with the graph scalar product

〈u, v〉 = 〈u, v〉L2(Ω,Rk) + 〈L∗u, L∗v〉L2(Ω,Rk), u, v ∈ Dmax,

then this is a Hilbert space and Dmin is a closed subspace in it. Consequently, the quotient space
β = Dmax/Dmin is a Hilbert space. In what follows, we denote by γ the quotient map from Dmax

to β. We define a bilinear form on β by

ω : β × β → R, ω(γ(u), γ(v)) = 〈L∗u, v〉L2(Ω,Rk) − 〈u, L∗v〉L2(Ω,Rk).

Note that this is well defined...

Lemma 3.4 ω is a symplectic form on β.

Proof.
Let us now show that our domain space D ⊂ H2(Ω) is a Lagrangian subspace of β......
In what follows, we denote by a slight misuse of notation by St the ´bounded operator on

L2(Ω,Rk) which is defined by

St : L2(Ω,Rk)→ L2(Ω,Rk), (Stu)(x) = t2 S(t · x)u(x).

We consider Lt = γ(ker(L∗ + St)) ⊂ β, t ∈ I. Note that from the very definition Lt ∩ γ(D) 6= {0}
if and only if kerA6 = 0. The following proposition will give the possibility to define the Maslov
index of u.

Proposition 3.5 Lt is an element of FLγ(D)(β) and the path L : I → FLγ(D)(β) is smooth.

Proof. Rather long, but understandable...
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4 The main results

After having constructed the indices of the boundary value problems (5), we now can state our
main theorem.

Theorem 1 Let the equation (5) admit only the trivial solution and assume that (A) holds. Then

µMorse(u) = µspec(u) = µMas(u) ∈ Z.

We now derive various corollaries of this theorem. Let us at first consider the case that J is
the identity matrix. We obtain from Lemma ??? and Lemma ????: HAS TO BE MODIFIED....

Theorem 2 Let the equation (5) admit only the trivial solution and assume that (A) holds. Then
the Morse index of u is given by

µspec(u) = µMas(u).

In the case that we have in addition Dirichlet boundary conditions, we will prove in addition

Theorem 3 Let the equation (5) admit only the trivial solution for the Dirichlet problen. Then
the Morse index of (5) is given by

µspec(u) = µMas(u) =
∑
t∈I

m(t),

where

m(t) = dim{u ∈ H1
0 (Ωt) : u solves (7)} = dim kerht.

Note that this in particular implies that there are only finitely many conjugate instants. More-
over, recall that this fact and the equality of the Morse index and the sum in theorem 3 were
already obtained by Smale in [Sma65].
GEODESICS IN SEMI RIEMANNIAN AND RIEMANNIAN

5 Proofs

We now prove the assertions in three?????? consecutive steps. Moreover, at the end of the proof we
make some comments on possible generalisations of our arguments to broader classes of boundary
conditions.

Step 1: Equality of Morse and spectral index

According to the definition we have

µMorse(u) = −sf (hδ, [t0, 1])

where

hδt [u] =

∫
Ω

N∑
i=1

〈JDiu,Diu〉 dx +

∫
Ω

〈t2S(tx)u, u〉 dx + δ‖u‖2L2(Ω) ∀ t ∈ [t0, 1], u ∈ E.

The crossing form Γ(hδ, t) is defined as the restriction of the derivative of hδt with respect to t to
the subspace kerhδt . In particular, for each u ∈ kerhδt it is easy to show that the crossing form is
given by
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Γ(hδ, t)(z) = − 2

t3

∫
Ω

N∑
i=1

〈JDiz ,Diz〉 dx +

∫
Ω

〈Ṡ(tx)z, z〉 dx, (10)

Now consider the unbounded selfadjoint operators Aδt acting on L2(Ω) with domains D(Aδt ) = D
that we introduced in ??????. By construction we have

hδt [u] = 〈Aδtu, u〉, u ∈ D (11)

and hence a function u is a crossing for hδt if and only if it belongs to the kernel of the corresponding
unbounded operator Aδt . According to theorem B.3 Aδ has only regular crossings for almost all
δ ∈ R and it follows from (11) that the crossing forms of Aδ coincide with the ones of hδ. Hence
in what follows we can assume without loss of generality that hδ has only regular crossing points,
which accordingly are in particular finite in number. Moreover, we conclude from propositions
B.3 and B.2

µspec(u) = −sf (Aδ) = sf (hδ) = µMorse(u).

CORRECT AND EXTEND THE COMPUTATIONS!!!

Step 2: Equality of spectral and Maslov index

According to our first step of the proof, we can assume without loss of generality that hδ has only
regular crossings. We now fix a regular crossing point t ∈ (0, 1) and our aim is to compute the
crossing form (10) more explicitely.
We assume that z = (z1, . . . , zk) ∈ kerhδt . In particular, z solves (4), namely

− 1

t2
∆̃z + S(tx)z + δz = 0 in Ω.

For every s ∈ (0, 1] we set

zts(x) := z
(s
t
x
)
.

Clearly ztt = z and, for every s, we get

− 1

s2
(∆̃zts)(x) + S(sx)zts(x) + δztz(x) = 0, x ∈ Ω (12)

which follows from the fact that ( 1
s2 ∆̃)zts = 1

t2 (∆̃zts) and S(sx) = S(t sxt ).
If we now differentiate the equation (12) with respect to s and evaluate in s = t, we obtain

2

t3
∆̃z(x) − 1

t3
∆̃ż(x) + Ṡ(tx)z(x) +

1

t
S(tx) ż(x) +

δ

t
ż = 0, (13)

where we denote

ż(x) :=
d

ds
|s=t z(sx) = (〈∇z1, x〉, . . . , 〈∇zk, x〉). (14)

Taking scalar products with z in (13) and integrating over Ω, we infer

0 =
2

t3

∫
Ω

〈∆̃z, z〉 dx− 1

t3

∫
Ω

〈∆̃ż, z〉 dx+

∫
Ω

〈Ṡ(tx)z, z〉 dx+
1

t

∫
Ω

〈S(tx)ż, z〉 dx+
1

t

∫
Ω

δ〈ż, z〉 dx.
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By applying Green’s formula three times, we obtain

0 = − 2

t3

∫
Ω

N∑
i=1

〈Diz,Djz〉dx+

∫
Ω

〈Ṡ(tx)z, z〉 dx− 1

t3

∫
Ω

〈∆̃z, ż〉 dx+
1

t

∫
Ω

〈S(tx)z, ż〉 dx

+
1

t

∫
Ω

δ〈ż, z〉 dx+
1

t3

∫
Γ

〈ż, ∂nz〉 dΓ +
2

t3

∫
Γ

〈z, ∂nz〉 dΓ− 1

t3

∫
Γ

〈z, ∂nż〉 dΓ.

Since z ∈ kerhδt , we conclude

− 2

t3

∫
Ω

N∑
i=1

〈Diz,Diz〉dx+

∫
Ω

〈Ṡ(tx)z, z〉 dx

= − 1

t3

∫
Γ

〈ż, ∂nz〉 dΓ− 2

t3

∫
Γ

〈z, ∂nz〉 dΓ +
1

t3

∫
Γ

〈z, ∂nż〉 dΓ

(15)

and accordingly we obtain

Γ(hδ, t) = − 1

t3

∫
Γ

〈ż, ∂nz〉 dΓ +
1

t3

∫
Γ

〈z, ∂nż〉 dΓ. (16)

Our next aim is to calculate the crossing form Γ(lδ, µ; t) of the Maslov index at the regular
crossing point t, where µ is the Lagrangian subspace γ(D). We will show that the quadratic form
Γ(lδ, µ; t) coincides up to a positive constant with Γ(h, t).
By definition, l(t) ∩ µ 6= {0}. In order to write the explicit expression of Γ(l, µ; t), we consider
a Lagrangian subspace ν which is transversal to l(t). Then there exists a differentiable path of
bounded operators φs : l(t)→ ν so that l(s) = graphφs for every s in a suitable small neighborhood
of t. In other words, given y ∈ l(t), then φs(y) is the unique vector such that

φs(y) ∈ ν, y + φs(y) ∈ l(s).

Let us recall that Γ(l, µ; t) is the quadratic form associated with

Q(x, y) :=
d

ds

∣∣∣
s=t

ω(x, φs(y)), ∀x, y ∈ l(t) ∩ µ.

Fix y ∈ l(t) ∩ µ, then y = T̃t(z) = (zΓ, ∂nz |Γ), where z solves the equation (??). As before,
we can immediately prove that zts solves equation (12). If we define X(s) := γ(zts), we note that
X(s) ∈ l(s). Hence, X(s) = c(s) + φs(c(s)), with c(s) ∈ l(t). Observe that X(t) = y = c(t).
Taking into account that ċ(t) + φt(ċ(t)) ∈ l(t), we get

ω(X(t),
dX

ds
(t)) = ω(y, ċ(t) + φt(ċ(t)) + φ̇t(c(t))) = ω(y, φ̇t(y)).

Hence,

Γ(l, µ; t) =
d

ds

∣∣∣
s=t

ω(y, φs(y)) = ω(X(t),
dX

ds
(t))

= ω

(
γ(z),

d

ds

∣∣∣
s=t

γ(zst )

)
.

(17)

From
d

ds

∣∣∣
s=t

γ(zst ) = γ(ż) and the fact that z, ż are smooth, we conclude

Γ(lδ, µ; t) = − 1

t2

∫
Γ

〈ż, ∂nz〉+
1

t2

∫
Γ

〈z, ∂nż〉 dΓ = tΓ(hδ, t).

Accordingly the crossing forms coincide up to the positive factor 1
t with Γ(hδ, t), and by the

propositions B.2 and A.13 this shows the equality of the spectral and the Maslov index.
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Step 3: Conjugate instants of the Dirichlet problem

For the Dirichlet problem we obtain from (16) Check and
explain!

Γ(hδD, t)[z] = − 1

t3

∫
Γ

〈ż, ∂nz〉 dΓ = − 1

t3

∫
Γ

〈〈x,∇z〉, ∂nz〉 dΓ

= − 1

t3

∫
Γ

‖x‖‖∂nz‖2 dΓ < 0

Accordingly, the crossing form Γ(hδD, t) is negative-definite for any δ and so in particular for δ = 0.
Hence any crossing t of hD is regular, the crossings are isolated and the contribution to the spectral
index at each crossing is precisely the dimension of the kernel, i.e. the multiplicity m(t) of the
conjugate instant.

A remark on the proof

It is clear that the results (15) and (17) can also be used to show the equality of the crossing forms
for the Maslov index and the spectral index for more general boundary conditions. However, in
this case the unbounded operators in the first step of our proof have varying domains and the
perturbation result B.3 is no longer valid. Hence one can only show the equality of corresponding
spectral and Maslov indices under the additional assumption that all crossings are regular.

Geodesics

6 Bifurcation

Let f : Ω× Rk → Rk be a C∞ function. We assume henceforth that there are constants a, b and
r, with r > 1, such that

|f(x, u)| ≤ a+ b|u|r and |∂uf(x, u)| ≤ a+ b|u|r, ∀ (x, u) ∈ Ω× Rk.

Consider the functional E : H1
0 (Ω)→ R given by

E (u) :=
1

2
hD(u)−

∫
Ω

F (x, u) dx

where CHECK THIS CAREFULLY/ IT DOES NOT MAKE SENSE HERE F (x, s) =
∫ s

0
〈f(x, σ)σ, σ〉 dσ.

Lemma 6.1 The functional E is C 2 on the Hilbert space H1
0 (Ω).

Proof. The proof is standard and follows by the fact that the embedding H1
0 (Ω) → Lq(R) is

continuous for q ≥ 1. (It is enough to apply [AP95, Theorem 2.6] to f and ∂uf).
2

We now consider the Dirichlet problem for the semi-linear equation

−∆̃u(x) + S(x)u(x) + f(x, u(x)) = 0, x ∈ Ω

u(x) = 0, x ∈ Γ
(18)

and its linearisation at 0 ∈ H1
0 (Ω)

−∆̃u(x) + S(x)u(x) +G(x)u(x) = 0, x ∈ Ω

u(x) = 0, x ∈ Γ,
(19)

where G(x) =.
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Lemma 6.2 The critical points of E are the weak solutions u ∈ H1
0 (Ω) of the problem (18).

Proof. In fact by an elementary computation, we infer

〈∇E (u), v〉 = hD(u, v)−
∫

Ω

〈f(x, u), v〉dx, ∀u, v ∈ H1
0 (Ω).

2

We now consider the family of domains Ωt, t ∈ (0, 1] induced by shrinking the star-shaped domain
Ω and the induced family of boundary value problems

−∆̃u(x) + S(x)u(x) + f(x, u(x)) = 0, x ∈ Ωt

u(x) = 0, x ∈ Γt
(20)

and we assume henceforth that f(x, 0) = 0, x ∈ Ω.

Definition 6.3 We call t∗ ∈ (0, 1] a bifurcation point if there exists a sequence {(tn, un)}n∈N ∈
(0, 1]×H1

0 (Ωtn) such that un solves (20) for t = tn, un 6= 0 ∈ H1
0 (Ωtn), n ∈ N, and ‖un‖H1

0 (Ωtn ) →
0, n→∞.

The main result of this section reads as follows.

Theorem 6.4 Assume that the linearised boundary value problem (19) admits only the trivial
solution. If one of the indices in theorem 3 does not vanish, then there exists a bifurcation point
t∗ ∈ (0, 1] for the equation (18). Moreover, the bifurcation points are precisely the conjugate points.

After rescaling, the boundary value problem (20) can be written as

−∆̃u(x) + t2S(t x)u(x) + t2f(t x, u(x)) = 0, x ∈ Ω

u(x) = 0, x ∈ Γ
(21)

and we note that t∗ is a bifurcation point for (20) if and only if there exists a sequence {(tn, un)}n∈N ∈
(0, 1]×H1

0 (Ω) such that un 6= 0 solves (21) and un → 0, n→∞.
As above one can check that solutions of (21) are precisely the critical points of the functional

Et(u) =
1

2
hD,t(u) + F (tx, u), t ∈ (0, 1]

and that the Hessians at the critical point 0 ∈ H1
0 (Ω) are given by

hess(0)t[ξ, η] = hD,t(ξ, η)−
∫

Ω

〈g(tx, 0)ξ, η〉 dx.

We now infer from theorem 3 that hDt∗ is non-invertible if and only if t∗ is a conjugate point and,
since we are considering Dirichlet boundary conditions, that µMorse(hess(0)t∗+ε) 6= µMorse(hess(0)t∗−ε)
for any sufficiently small ε > 0. According to [FPR99, Corollary 2], this implies that t∗ is a bifur-
cation point of the equation (21) and hence for (20) as well.

A Fredholm Lagrangian Grassmannian and Maslov index

In this section we recall some facts about the Fredholm Lagrangian Grassmannian and the con-
struction of the Maslov index in the infinite dimensional setting. Our basic references are [Fur04,
DN06, DN08, DJ10].

Let H be a real separable Hilbert space of infinite dimension equipped with a (strong) sym-
plectic form, i.e. a skew-symmetric, bounded bilinear form ω which is non-degenerate in the sense
that it induces an isomorphism between H and its dual space H∗.
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Definition A.1 A subspace L of the symplectic space (H,ω) is called isotropic if ω|L ≡ 0, i.e.
ω(p, q) = 0 for all p, q ∈ L. A Lagrangian subspace is a maximal closed isotropic subspace of H.

Let Λ(H) denote the set of all Lagrangian subspaces of H which is called the Lagrangian
Grassmannian. Λ(H) is an infinite dimensional Banach manifold modeled on the Banach space
of all bounded selfadjoint operators (cf. [Fur04]).

Definition A.2 Given two closed subspaces µ, η of H, the pair (µ, η) is called a Fredholm pair if

dim(µ ∩ η) < +∞ and codim(µ+ η) < +∞. (22)

Note that many authors require in the definition of a Fredholm pair also the sum µ + η ⊂ H to
be closed. However, it is not hard to show that this property follows from (22) (cf. KATO).

Definition A.3 The Fredholm Lagrangian Grassmannian with respect to the Lagrangian subspace
µ ∈ Λ(H) is defined as

FL µ(H) := {η ∈ Λ(H) : (µ, η) is a Fredholm pair},

and the subset
Mµ(H) := {η ∈ FL µ(H) : η ∩ µ 6= {0}},

is called the Maslov cycle with respect to µ.

We denote by Glc(H) the Fredholm group of H consisting of all compact perturbations of the
identity which are invertible. Moreover, we define the Fredholm symplectic group Spc(H) as the
group of all Ψ ∈ Glc(H) such that Ψ∗ω = ω (cf. [Swa78a, Swa78b] for further details).

Definition A.4 Let L ⊂ H be a closed subspace. We define the reduced Fredholm Grassmannian
Fred res(L) as the orbit of L under the action of the group Glc(H). Moreover, if L ∈ Λ(H) is
a Lagrangian subspace, then the reduced Fredholm Lagrangian Grassmannian FL res(L) is the
orbit of L under the group Spc(H).

It is easily seen from the definition that Fred res(L) ⊂ Fred L(H) for any closed subspace L ⊂ H
and, accordingly, FL res(L) ⊂ FL L(H) if L ∈ Λ(H).

A.1 Some useful criteria

The aim of this section is to collect some useful facts about the (reduced) Lagrangian Grassmannian
which we frequently use in our arguments.
We begin by recalling some elementary facts about Lagrangian subspaces which can be found in
[DJ10, Section 3].

Lemma A.5 Let (H,ω) be a symplectic Hilbert space.

i) Let ξ ∈ Λ(H) be a Lagrangian subspace of H. If µ ∈ Fred res(ξ) and ν ∈ Fred res(µ), then
ν ∈ Fred res(ξ).

ii) For µ, η ∈ Λ(H), if dim(µ ∩ η) is finite dimensional and µ + η is closed, then (µ, η) is a
Fredholm pair.

iii) Let ξ ∈ Λ(H) and η ∈ Fred res(ξ). If ω vanishes on η, then η ∈ Λ(H).

For the following result we also refer to [DJ10, Section 3].

Lemma A.6 Let µ, η be two closed subspaces of H. If (η, µ) is a Fredholm pair and ξ ∈ Fred res(η),
then (ξ, µ) is a Fredholm pair.

12



The following well known lemma is often helpful for checking that an isotropic subspace is
actually Lagrangian (cf. BOOSS).

Lemma A.7 Let L0, L1 ⊂ H be isotropic subspaces of the symplectic Hilbert space H such that
H = L0 + L1. Then L0, L1 ∈ Λ(H).

We fix a direct sum decomposition H = H+ ⊕ H−, where H+, H− are infinite-dimensional
orthogonal closed subspaces. The following result can be found in [DN06, Lemma6].

Lemma A.8 A closed subspace H1 ⊂ H belongs to Fred res(H−) if and only if there exists a (not
necessarily invertible) compact perturbation of the identity A = Id + K and H2 ∈ Fred res(H−)
such that:

• im (A) +H2 = H,

• A−1(H2) = H1.

Finally, for the differentiability of curves in Fred res(H−) we need the following lemma. For its
proof we refer to [DN06, Lemma 9].

Lemma A.9 Let I 3 λ 7→ S(λ) := I +K(λ) ∈ L (H) be of class C k for some k ∈ N, where K(λ)
is a compact operator for each λ and assume that

im (S(λ)) +H− = H, ∀λ ∈ I.

Then we have

1. S(λ)−1(H−) ∈ Fred res(H−), for each λ ∈ I;

2. The map Ψ : I 3 λ 7→ Ψ(λ) := S(λ)−1(H−) ∈ Fred res(H−) is of class C k.

A.2 The infinite dimensional version of the Maslov index

The Maslov index was introduced in ????? for finite dimensional symplectic vector spaces (V, ω)
and it provides an explicite isomorphism between the fundamental group π1(Λ(V )) and the in-
tegers. Heuristically, the Maslov index COUNTS SOMETHING AND SO IS A QUITE POOR
GUY! In contrast, it can be shown from Kuiper’s theorem [Kui65] that Λ(H) is a contractible
space if H is an infinite dimensional symplectic Hilbert space (cf. e.g. [Nic95]) and hence no
non-trivial homotopy invariants can arise. However, it can be shown that π1(FL µ(H)) ∼= Z for
any µ ∈ Λ(H) and an explicite isomorphism is provided by the Maslov index , which we now want
to introduce briefly. Our reference in this section is [Fur04].
Let (H,ω) be a symplectic Hilbert space and let µ ∈ Λ(H) be a fixed Lagrangian subspace. We
cannot give a detailed account on the construction of the Maslov index, which is quite elaborate,
but instead we introduce it axiomatically. To this aim we fix a generator l̃ ∈ π1(FL µ(H)).

Theorem A.10 There exists precisely one integer valued map iMas on the set of all paths γ :
[a, b]→ FL µ(H) having ends outside Mµ which satisfies the following properties:

1. iMas(l̃, µ, [a, b]) = 1.

2. if γ(t) /∈Mµ(H) for each t ∈ [a, b], then iMas(γ, µ, [a, b]) = 0;

3. if γ1 : [a, c] → FL µ(H) and γ2 : [c, b] → FL mu(H) are two continuous curves such that
the concatenation γ1 ∗ γ2 exists, then

iMas(γ1 ∗ γ2, µ, [a, b]) = iMas(γ1, µ, [a, b]) + iMas(γ2, µ, [a, b])

where ∗ denotes the concatenation.
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4. If H : [0, 1]× [a, b] → FL µ(H) is continuous and H(λ, a), H(λ, b) /∈Mµ for all λ ∈ [0, 1],
then iMas(H(0, ·), µ, [a, b]) = iMas(H(1, ·), µ, [a, b]).

5. Let ξ ∈ FL res(µ). Then iMas(γ, µ, [a, b])− iMas(γ, ξ, [a, b]) depends only on the endpoints.

The interpretation of iMas(l, µ, [a, b]) is as in the finite case the number of intersections of l
with Mµ.

Definition A.11 Let γ : [a, b] → FL µ(H) be a C 1 path. We say that t∗ ∈ [a, b] is a crossing
instant for the curve γ, if γ(t∗) ∈Mµ(H).

Let t∗ ba a crosiing for the path γ : [a, b]→ FL µ(H) and let ν be a Lagrangian subspace which
is transversal to γ(t∗). Since transversality is an open condition, there exists ε > 0 such that
the Lagrangian subspace γ(t) is transversal to ν for each |t − t∗| < ε. Therefore, we can find a
C 1-family of bounded operators φt : γ(t∗)→ ν so that

γ(t) = Graph(φt), t ∈ (t∗ − ε, t∗ + ε).

The crossing form Q(t∗) at the instant t = t∗ is the bilinear form on γ(t∗) ∩ µ, defined by

Q(t∗)(x, y) :=
d

dt

∣∣∣
t=t∗

ω(x, φt(y)), x, y ∈ γ(t∗) ∩ µ.

It can be shown that Q(t∗) does not depend on the choice of ν. Crossing forms are fundamental
for us, since they give a way to compute the local contribution to the Maslov index as we will
introduce now.

Definition A.12 The crossing t∗ ∈ (a, b) will be called regular if Q(t∗)|γ(t∗)∩µ is non-degenerate.
A curve γ : [a, b]→ FL µ(H) is called regular if each crossing instant is regular.

It is easy to see that regular crossings are isolated and hence on a compact interval are finite
in number.

Proposition A.13 (Localization property) Let γ : [a, b]→ FL µ(H) be a C 1 path. If t∗ ∈ (a, b)
is a regular crossing instant of γ, then there exists δ > 0 such that

iMas(γ, µ, [t
∗ − δ, t∗ + δ]) = signQ(t∗),

where sign denotes the signature.

Note that accordingly the Maslov index of a regular C 1 curve γ : [a, b] → FL µ(H) having
ends outside Mµ is given by

iMas(γ, µ, [a, b]) =
∑

t∗∈γ−1(Mµ)

signQ(t∗). (23)

B The spectral flow

In this section we introduce the concept of spectral flow of paths of Fredholm quadratic forms
acting on a Hilbert space as in [MPP05, FPR99] and for a certain class of paths of unbounded
selfadjoint Fredholm operators as in [RS95]. We will give axiomatic definitions as for the Maslov
index in the previous section.
We consider a bounded quadratic form q : H → R and we let b = bq : H × H → R be the
bounded symmetric bilinear form such that q(u) = b(u, u), u ∈ H. By the Riesz representation
theorem there exists a bounded selfadjoint operator Aq : H → H such that bq(u, v) = 〈Aqu, v〉,
u, v ∈ H. We call q : H → R a Fredholm quadratic form if Aq is Fredholm; i.e., kerAq is of
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finite dimension and RanAq is closed. Recall that the space Q(H) of bounded quadratic forms
is a Banach space with respect to the norm ‖q‖ = sup {|q(u)| : ‖u‖ = 1}. The subset QF (H) of
all Fredholm quadratic forms is an open subset of Q(H) which is stable under perturbations by
weakly continuous quadratic forms. A quadratic form q ∈ QF (H) is called non-degenerate if the
corresponding Riesz representation Aq is invertible. The following characterisation of the spectral
flow can be found in ????? (cf. also [?]).

Theorem B.1 There exists prcisely one integer values map sf , which is defined for any path
q : [a, b]→ Q(H) having non-degenerate ends, such that

i) If h : [0, 1] × [a, b] → QF (H) is such that h(λ, 0) and h(λ, 1) are non-degenerate for all
λ ∈ [0, 1], then

sf (h(0, ·), [a, b]) = sf (h(1, ·), [a, b])

.

ii) If qt is non-degenerate for all t ∈ [a, b], then sf (q, [a, b]) = 0.

iii) Let q1, q2 : [a, b]→ QF (H) be two paths having invertible ends such that q1
b = q2

a. Then

sf (q1 ∗ q2, [a, b]) = sf (q1, [a, b]) + sf (q2, [a, b]).

iv) If µMorse(qt) <∞ for all t ∈ [a, b], then

sf (q, [a, b]) = µMorse(qa)− µMorse(qb).

As for the Maslov index, the spectral flow can be calculated explicitely for paths which are
sufficiently regular. If a path q : [a, b]→ QF (H) is differentiable at t, then the derivative q̇(t) with
respect to t is again a quadratic form. We call t a crossing instant if q(t) is degenerate and we say
that the crossing instant t is regular if the crossing form Γ(q, t), defined by

Γ(q, t) := q̇(t)|ker q(t),

is non-degenerate.

Proposition B.2 If all crossing instants ti of the path q are regular, then they are finite in
number and

sf (q, [a, b]) =
∑
i

sign Γ(q, ti). (24)

Finally, we want to introduce briefly the construction of the spectral flow of Robbin and
Salamon in [RS95], which is in particular important for us due to a perturbation result that we
will state below. We assume as before that H is a searable Hilbert space. Let W ⊂ H be a Hilbert
space in its own right with a compact and dense injection W ↪→ H. Let FS(W,H) ⊂ L(W,H)
denote the space of all bounded operators which are selfadjoint when regarded as unbounded
operators on H with dense domain W . Note that each operator in FS(W,H) has a compact
resolvent and hence is in particular Fredholm. In [RS95] the spectral flow sf (A, [a, b]) for paths
A : [a, b] → FS(W,H) having invertible ends is constructed by intersection theory and it is
characterised axiomatically as in theorem B.1. For details we refer to [RS95].
Now let A : [a, b]→ FS(W,H) be a C 1 path having invertible ends. As before, we call t∗ ∈ [a, b]
a crossing instant of A if kerAt∗ 6= {0}. Moreover, t∗ is called a regular crossing if the crossing
form

Γ(A, t∗)u := 〈Ȧt∗u, u〉H , u ∈ kerAt∗

is non-degenerate on kerA.
The following result can be found in [RS95, Theorem 4.2, Lemma 4.7].
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Theorem B.3 Let A : [a, b]→ FS(W,H) be a C 1 path having invertible ends.

i) For almost all δ ∈ R the path A+ δId has only regular crossings.

ii) If A has only regular crossings, then they are finite in number and the spectral flow is given
by

sf (A, [a, b]) =
∑
t∈I

sign Γ(A, t).
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